Michael Valášek Vedoucí práce: doc. Ing. Václav Bauma, CSc.
Zadání bakalářské práce Mechanismus vztlakové klapky křídla 1. Proveďte rešerši možných konstrukčních řešení vztlakové klapky křídla 2. Seznamte se s metodami řešení kinematiky a dynamiky mechanismů 3. Sestavte matematický model pro jeden typ mechanismu 4. Programy KRESIC a DRESIC vyřešte pohyb mechanismu a navrhněte parametry pohonu
Přehled mechanismů vztlakových klapek
Vybraný mechanismus Fowlerova klapka Patent US8844878B2 a EP2178748B1
Kinematický model Fowlerovy klapky Kinematické schéma Počet stupňů volnosti n = 3 u 1 w j j 3 j=1 n = 3 6 1 7 2 = 1 Počet nezávislých smyček l = d + m u + 1 Přidružený graf l = 7 + 0 6 + 1 = 2
Vektorová metoda pro řešení kinematiky Uzavřené vektorové mnohoúhelníky Zvolené vektory pro dané smyčky b 1, b 2, b 3, b 4, b 5, b 6, b 7 a b 8 Zvolená nezávislá souřadnice β 2 Zvolené závislé souřadnice β 3, β 4, β 5 a β 6 Podmínky uzavřenosti vektorových mnohoúhelníků b 1 + b 2 + b 3 + b 4 = 0 b 4 + b 5 + b 6 + b 7 +b 8 = 0
Vazbové podmínky pro řešení kinematických úloh Poloha x: b 1 cos β 1 + b 2 cos β 2 + b 3 cos β 3 + b 4 cos β 4 = 0 y: b 1 sin β 1 + b 2 sin β 2 + b 3 sin β 3 + b 4 sin β 4 = 0 x: b 4 cos β 4 + b 5 cos β 5 + b 6 cos β 6 + b 7 cos β 4 + b 8 cos β 8 = 0 y: b 4 sin β 4 + b 5 sin β 5 + b 6 sin β 6 + b 7 sin β 4 + b 8 sin β 8 = 0 Rychlost x: b 2 sin β 2 β 2 b 3 sin β 3 β 3 b 4 sin β 4 β 4 = 0 y: +b 2 cos β 2 β 2 +b 3 cos β 3 β 3 +b 4 cos β 4 β 4 = 0 x: b 4 sin β 4 β 4 b 5 sin β 5 β 5 b 6 sin β 6 β 6 b 7 sin β 4 β 4 = 0 y: b 4 cos β 4 β 4 +b 5 cos β 5 β 5 +b 6 cos β 6 β 6 +b 7 cos β 4 β 4 = 0
Vazbové podmínky pro řešení kinematických úloh Zrychlení x: b 2 cos β 2 β 2 2 b 2 sin β 2 β 2 b 3 cos β 3 β 3 2 b 3 sin β 3 β 3 b 4 cos β 4 β 4 2 b 4 sin β 4 β 4 = 0 y: b 2 sin β 2 β 2 2 +b 2 cos β 2 β 2 b 3 sin β 3 β 3 2 +b 3 cos β 3 β 3 b 4 sin β 4 β 4 2 +b 4 cos β 4 β 4 = 0 x: b 4 cos β 4 β 2 4 b 4 sin β 4 β 4 b 5 cos β 5 β 2 5 b 5 sin β 5 cos β 4 β 2 4 b 7 sin β 4 β 4 = 0 β 5 b 6 cos β 6 β 6 2 b 6 sin β 6 β 6 b 7 y: b 4 sin β 4 β 4 2 +b 4 cos β 4 β 4 b 5 sin β 5 β 5 2 +b 5 cos β 5 β 5 b 6 sin β 6 β 6 2 +b 6 cos β 6 β 6 b 7 sin β 4 β 2 4 +b 7 cos β 4 β 4 = 0
Řešení úlohy polohy f z, q = 0 J z z k + f z k, q = 0 z i+1 = z i+1 + λ k Δz i J z = b 3 sin β 3 b 4 sin β 4 ) 0 0 +b 3 cos β 3 +b 4 cos β 4 ) 0 0 0 b 4 sin β 4 ) b 7 sin β 4 ) b 5 sin β 5 ) b 6 sin β 6 ) 0 +b 4 cos β 4 ) + b 7 cos β 4 ) +b 5 cos β 5 ) +b 6 cos β 6 ) J q = b 2 sin β 2 +b 2 cos β 2 0 0
Řešení úlohy rychlosti a zrychlení Řešení rychlostí J z z + J q q = 0 Řešení zrychlení J z z + J q q + j qz = 0 j qz = b 2 cos β 2 β 2 2 b 3 cos β 3 β 3 2 b 4 cos β 4 ) β 4 2 b 2 sin β 2 β 2 2 b 3 sin β 3 β 3 2 b 4 sin β 4 ) β 4 2 b 4 co s β 4 ) b 7 co s β 4 )) β 4 2 b 5 co s β 5 ) β 5 2 b 6 cos β 6 ) β 6 2 b 4 si n β 4 ) b 7 si n β 4 )) β 4 2 b 5 si n β 5 ) β 5 2 b 6 si n β 6 ) β 6 2
Řešení úlohy pohybu vybraného bodu r S5 = b 1 + b 4 + b 7 + x 5T + y 5T x S5 = b 1 cos β 1 + b 4 cos β 4 + b 7 cos β 4 + x 5T cos β 5 y 5T sin β 5 y S5 = b 1 sin β 1 + b 4 sin β 4 + b 7 sin β 4 + x 5T sin β 5 +y 5T cos β 5 v S5 x = b 4 sin β 4 β 4 b 7 sin β 4 β 4 x 5T sin β 5 β 5 y 5T cos β 5 β 5 v S5 y = +b 4 cos β 4 β 4 +b 7 cos β 4 β 4 + x 5T cos β 5 β 5 y 5T sin β 5 β 5 a S5 x = b 4 cos β 4 β 2 4 b 4 sin β 4 β 4 b 7 cos β 4 β 2 4 b 7 2 2 sin β 4 β 4 x 5T cos β 5 β 5 x5t sin β 5 β 5 +y 5T sin β 5 β 5 y5t cos β 5 a S5 y = b 4 sin β 4 β 2 4 +b 4 cos β 4 β 4 b 7 sin β 4 β 2 4 +b 7 2 2 cos β 4 β 4 x 5T sin β 5 β 5 + x5t cos β 5 β 5 y 5T cos β 5 β 5 y5t sin β 5 β 5 β 5
Výstupní grafy z program KRESIC Vypočteno z rovnoměrného otáčivého pohybu tělesa 2 okolo bodu A
Animace pohybu mechanismu
Dynamický model Fowlerovy klapky přímá úloha Rovnice pro vypočet dynamické úlohy Ma = DR + Q Síla -> pohyb a = V z z + V q q + a qz J z z + J q q + j qz = 0 M D 0 1 0 2 I 0 3 V z V q 0 4 0 5 J z J q a R z q = Q a qz j qz r S = j b j + x S + y S a S = b j + x S + y S. j
Schémata pro popis středů hmotnosti
Rovnice pro popis pohybu středu hmotnosti a úhlových veličin tělesa 6 x S6 = b 2 cos β 2 b 3 cos β 3 + b 5 cos β 5 + b 7 cos β 4 + t 6 cos β 6 y S6 = b 2 sin β 2 b 3 sin β 3 + b 5 sin β 5 + b 7 sin β 4 + t 6 sin β 6 α 6 = β 6 v S6 x = +b 2 sin β 2 β 2 + b 3 sin β 3 β 3 b 5 sin β 5 β 5 b 7 sin β 4 β 4 t 6 sin β 6 ) β 6 v S6 y = b 2 cos β 2 β 2 b 3 cos β 3 β 3 + b 5 cos β 5 β 5 + b 7 cos β 4 β 4 + t 6 cos β 6 ) β 6 α 6 = β 6 a S6 x = +b 2 cos β 2 β 2 2 +b 2 sin β 2 β 2 +b 3 cos β 3 β 2 3 +b 3 sin β 3 β 3 b 5 cos β 5 β 2 5 b 5 sin β 5 β 5 b 7 cos β 4 β 2 4 b 7 sin β 4 β 4 t 6 cos β 6 β 2 6 t 6 sin β 6 β 6 a S6 y = +b 2 sin β 2 β 2 2 b 2 cos β 2 β 2 +b 3 sin β 3 β 2 3 b 3 cos β 3 β 3 b 5 sin β 5 β 2 5 +b 5 cos β 5 β 5 b 7 sin β 4 β 2 4 +b 7 cos β 4 β 4 t 6 sin β 6 β 2 6 +t 6 cos β 6 α 6 = β 6 β 6
Schémata uvolněných těles pro sestavení Newton-Eulerových rovnic
Uvolněním těles a sestavením Newton-Eulerových rovnic příklad na tělese 5 m 5 a 5x = R Ex + R Fx F t cos φ F + F n sin φ F ) m 5 a 5y = R Ey + R Fy + F t sin φ F + F n cos φ F ) m 5 g I 5S5 α 5 = R Ex t 5x sin β 5 +R Ey t 5x cos β 5 R Ex t 5y cos β 5 R Ey t 5y sin β 5 R Fx l 5 t 5x ) sin β 5 +R Fy l 5 t 5x ) cos β 5 +R Fx t 5y cos β 5 +R Fy t 5y sin β 5 + F t cos δ F n si n δ)) y F t 5y ) F t sin δ + F n cos δ)) t 5x x F )
Průběh aerodynamických sil ve složkách
Dynamický model Fowlerovy klapky pro inverzní úlohu J z z + J q q = j qz Pohyb -> síla Ia V z z V q q = a qz Ma DR km 2 = Q q = 0 M D k 0 0 I 0 0 V z V q 0 0 0 0 0 0 J z0 J q I a R M 2 z q = Q a qz j qz 0
Průběh výsledné silové dvojice vypočtené z inverzní dynamické úlohy Základní parametr pohonu je kroutící moment potřebný pro vysunutí klapky. Pro náš případ musí být krouticí moment alespoň 1000Nm.
Spojení přímé a nepřímé dynamické úlohy pro ověření hnací silové dvojice Pro stabilní pohyb je třeba zpětnovazební řízení
Závěr Postupně byly splněny všechny cíle bakalářské práce 1. Vypracoval jsem rešerši různých konstrukčních řešení vztlakové klapky křídla 2. Seznámil jsem se s metodami řešení kinematiky a dynamiky mechanismů 3. Sestavil jsem matematický model pro Fowlerův mechanismus 4. S pomocí programů KRESIC a DRESIC jsem vyřešil pohyb mechanismu a navrhnul parametry pohonu
Děkuji Vám za pozornost