2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:



Podobné dokumenty
Modelové úlohy přijímacího testu z matematiky

Opakování k maturitě matematika 4. roč. TAD 2 <

Modelové úlohy přijímacího testu z matematiky

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

1. Přímka a její části

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám

Maturitní nácvik 2008/09

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Sbírka příkladů z m a t e m a t i k y. Příprava k profilové části maturitní zkoušky

Pracovní listy MONGEOVO PROMÍTÁNÍ

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ

c jestliže pro kladná čísla a,b,c platí 3a = 2b a 3b = 5c.

Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL.

STRUČNÉ OPAKOVÁNÍ STŘEDOŠKOLSKÉ MATEMATIKY V PŘÍKLADECH

MATEMATIKA+ MAIPD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

10. Analytická geometrie kuželoseček 1 bod

Sbírka příkladů ke školní části maturitní zkoušky z matematiky

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

MATEMATIKA. v úpravě pro neslyšící MAMZD19C0T01 DIDAKTICKÝ TEST SP-3-T SP-3-T-A

Obsah Matematická logika, důkazy vět, množiny a operace s nimi Mocninná funkce, výrazy s mocninami a odmocninami Iracionální rovnice a rovnice s absol

Alternace 2012/13 ALTERNACE MATEMATIKA 4. ROČNÍK 2012/13

Test Zkušební přijímací zkoušky

MATEMATIKA. 2Pravidla správného zápisu odpovědí. 1Základní informace k zadání zkoušky DIDAKTICKÝ TEST. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA MAIZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

1. Základní poznatky z matematiky

MATEMATIKA vyšší úroveň obtížnosti

2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině.

MATURITNÍ TÉMATA Z MATEMATIKY

Opakovací kurs středoškolské matematiky podzim

Základy matematiky pracovní listy

MATEMATIKA základní úroveň obtížnosti

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

2) Přednáška trvala 80 minut a skončila v 17:35. Jirka na ni přišel v 16:20. Kolik úvodních minut přednášky Jirka

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava

MATEMATIKA VYŠŠÍ ÚROVEŇ

Zadání domácích úkolů a zápočtových písemek

4 Goniometrické výrazy, rovnice a nerovnice Funkce, grafy funkcí, definiční obory... 14

SBÍRKA n PŘÍKLADŮ Z MATEMATIKY kde n =

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

Maturitní okruhy z matematiky - školní rok 2007/2008

Cvičné texty ke státní maturitě z matematiky

MATEMATIKA ZÁKLADNÍ ÚROVEŇ

17 Kuželosečky a přímky

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr

2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21

SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

CVIČNÝ TEST 39. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 13

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti,

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a

CZ 1.07/1.1.32/

Mgr. Ladislav Zemánek Maturitní okruhy Matematika Obor reálných čísel

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

Jak by mohl vypadat test z matematiky

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů

Funkce 1) Zakreslete body K, L a M do souřadného systému Oxy, jsou-li dány jejich souřadnice: K[-3;0]; L[0;-2]; M[4;3].

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

je číslo vyjádřené výrazem 7n 21n , C cos je iracionální číslo d) 0, 9 = 1

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

VZOROVÝ TEST PRO 2. ROČNÍK (2. A, 4. C)

MATEMATIKA vyšší úroveň obtížnosti

5.2. Funkce, definiční obor funkce a množina hodnot funkce

A[ 20, 70, 50] a výška v = 70, volte z V > z S ; R[ 40, 20, 80], Q[60, 70, 10]. α(90, 60, 70).

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

MATEMATIKA vyšší úroveň obtížnosti

Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí. Definičním oborem kvadratické funkce je množina reálných čísel.

Pokyny k hodnocení MATEMATIKA

Gymnázium Jiřího Ortena, Kutná Hora

CVIČNÝ TEST 43. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3]

Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky.

Maturitní otázky z předmětu MATEMATIKA

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, a 0,1, 0,01, 0,001.. Čísla navzájem opačná

CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 6. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21

Rozpis výstupů zima 2008 Geometrie

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Transkript:

KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. a =,011 b = 0,79. Největší společný dělitel dvou neznámých čísel je a nejmenší společný násobek těchto čísel je 8. Určete, o která dvě neznámá čísla se jedná.. Upravte a stanovte podmínky, za kterých má daný výraz smysl: a 9b. b c 5c. a 5c : a 5. 79 studentů mělo možnost přihlásit se do matematického nebo fyzikálního semináře. Z celkového počtu studentů se jich 9 7 přihlásilo alespoň do jednoho ze seminářů. Pouze do matematického semináře se přihlásilo třikrát více studentů než do obou seminářů současně. Pouze do fyzikálního se přihlásilo 7 studentů. Kolik se jich přihlásilo do fyzikálního a kolik do matematického semináře? 6. Určete dvě čísla, nichž jedno je o 10 větší než druhé, víte-li, že rozdíl druhých mocnin obou čísel je 00. 7. Vydělte a proveďte zkoušku: (5x +17x 6x +6 1x ) : (1 + x x) = Rozložte následující výrazy na součin: a. 9(m n) 9(m + n) = b. x - (b +6)x + (b ) = 8. Řešte v množině R soustavu nerovnic: 1 x 8 x x x 1 x 1 x x

9. V množině Z řešte soustavu nerovnic: 1 5x x 7 x 5x 1 x x 10. S využitím vhodné substituce řešte v R:. x x. x 1 x 1 11. Řešte v R rovnici : 1 x. x x 1 1. Řešte v R nerovnici : 1 x 1. Řešte v R nerovnici: x _ 1< x 1. Jsou dány úsečky délek a, b. Sestrojte úsečku délky a x. b a b 15. Je dán trojúhelník ABC, c = 8 cm, = 60 o, tc = 5 cm. Trojúhelník sestrojte, zapište konstrukci a sestrojte libovolný obdélník a čtverec, které budou mít stejné obsahy jako trojúhelník ABC. 16. Sestrojte všechny trojúhelníky ABC, je-li dáno: a = 8 cm, vc = 6 cm, ta = 5 cm. Zapište konstrukci a uveďte počet řešení. 17. Jsou dány dvě rovnoběžné přímky a,b tak, že jejich vzdálenost je,5 cm. Uvnitř rovnoběžkového pásu je dán bod M tak, že vzdálenost bodu M od přímky a je 1,5 cm. Sestrojte všechny kružnice k, které se dotýkají přímek a, b a procházení bodem M. Zapište konstrukci a uveďte počet řešení 18. Sestrojte úsečku délky 1.

SEXTA úlohy k opakování 1. Je dána funkce f: y = -x x 1. a) sestrojte graf funkce f, jednotku délky na osách x, y volte 1 cm b) stanovte definiční obor a obor hodnot fukce f c) určete, pro která x R platí 0 f(x) d) do téhož obrázku zakreslete graf funkce g: y = x a řešte graficky nerovnici f(x) g(x). Určete definiční obor funkce f: y = x x 5x x 1 x 1. Je dána funkce f: y = x 1 a) sestrojte graf funkce f b) určete definiční obor a obor hodnot funkce f, jednotku délky na osách x, y volte 1 cm c) vypočtěte, pro která x D(f) platí: f(x) = d) určete průsečíky grafu se souřadnými osami x, y. Je dána funkce f: y = x 1 x a) sestrojte graf funkce f, jednotku délky na osách x, y volte 1 cm b) určete definiční obor a obor hodnot funkce f x 5. Je dána funkce f: y =. x 1 a) sestrojte graf funkce f, jednotku délky na osách x, y volte 1 cm b) stanovte definiční obor a obor hodnot funkce f c) určete souřadnice průsečíků grafu funkce s osami x,y 6. Určete definiční obor funkce f: y = log ( x ) log( x 9) 7. Řešte v množině R rovnici a proveďte zkoušku: 65. x1 x1 1 8. Řešte v množině R rovnici: log(x-) log(-x) = 1 0, 9. Řešte v množině R rovnici: cos x 5sin x

10. Řešte v množině R rovnici: sin x.cos x 1 x x x 11. Určete hodnotysin x,cos x, tg x,sin,cos, tg je-li dáno cos x < 0 sin x 5 1. V rovnoběžníku ABCD je dáno AB = a = 7cm, BC = b = cm a velikost úhlu DAB = = 55 o. Vypočítejte výšku rovnoběžníka a jeho obsah. Zaokrouhlujte na dvě desetinná místa. 1. Sestrojte graf funkce f: y = sin x. cotg x. Stanovte definiční obor a obor hodnot. 1. Je dána krychle ABCDEFGH s dolní podstavou ABCD. Na hraně BC je dán bod X tak, že BX =.CX. Bod Y je středem hrany EH. Bod Z leží na polopřímce DH (nad bodem H) tak, že platí ZH = 1 DH. Sestrojte řez krychle rovinou = XYZ. Viditelnost vyznačte tak, že z krychle zůstane jen seříznutá část s vrcholem A. 15. V kvádru ABCDEFGH s rozměry AB = cm, BC = cm a AE = 6 cm vypočtěte odchylku přímek: a) BD a EF b) BG a AC 16. V krychli ABCDEFGH s dolní podstavou ABCD je X bodem polopřímky HG (vpravo od bodu G) tak, že platí HX =.GX. Vypočítejte odchylku přímky AX od roviny ABC. 17. Pravidelný čtyřboký jehlan ABCDV má podstavnou hranu BC = 5 cm. Odchylka pobočné hrany AV a roviny ABC je = 60 o. Vypočítejte objem a povrch jehlanu.

SEPTIMA úlohy k opakování 1. Je dána přímka p: x y + = 0 a body A = [, 0], B = [1, -], které na ní neleží. Na přímce p určete souřadnice bodu P, který má od obou bodů A, B stejnou vzdálenost.. Je dán trojúhelník ABC, A = [-, 0], B = [, 1], C = [1, 6]. a) určete obecnou rovnici přímky, ve které leží těžnice na stranu b = AC b) napište parametrické vyjádření přímky, ve které leží výška na stranu c = AB c) vypočítejte velikost vnitřního úhlu = BAC trojúhelníka ABC (bez počítačky). V rovině jsou dány dva body K = [-1, ], L = [5, ]. Světelný paprsek prochází bodem K, odrazí se od osy x a projde bodem L. a) určete obecnou rovnici přímky k, ve které leží dopadající paprsek (ten, který prochází bodem K) b) určete souřadnice bodu M na ose x, kde se paprsek odrazí c) určete obecnou rovnici přímky, ve které leží paprsek odražený (procházející bodem L). V rovině jsou dány přímky p: x y -15 = 0 a q: x = 5 - t y = - - 6t t R. a) vyšetřete vzájemnou polohu těchto dvou přímek b) napište vyjádření poloroviny určené přímkou p a bodem X = [6, ] c) leží v této polorovině body R = [5, -10], Q = [, -]? d) leží v této polorovině přímka q? 5. Jsou dány body A=[,1], B=[-1,7], C=[,0], D=[-,] a) napište obecné rovnice přímek p=ab, q=cd b) určete směrnice přímek p,q c) vypočtěte odchylku přímek p,q 7b. 6. Je dána rovnice k: x + y 6x +y + 5 = 0. a) zjistěte, zda se jedná o rovnici kružnice (určete střed a poloměr kružnice) b) určete všechna c R, pro která je přímka t: -x +y + c =0 tečnou kružnice k b. 7. V rovině jsou dány body S=[,1] a A=[,0]. a) napište rovnici kružnice se středem S, která prochází bodem A b) vypočtěte souřadnice průsečíků této kružnice se souřadnou osou y 8. Napište obecné rovnice tečen kružnice k: x + y + y 8 = 0, které jsou rovnoběžné s přímkou p: x y + 5 = 0. 9. Obecnou rovnicí je dána kuželosečka M: x y 8x y 0 0. a) Identifikujte rovnicí danou kuželosečku. b) Napište obecné rovnice tečen dané kuželosečky v jejích bodech T = [?, ] b.

10. Obecnou rovnicí je dána elipsa E: 9x 5y 18x 100y 116 0. Z bodu Q = [ -, 7] veďte tečny k dané elipse a napište jejich obecné rovnice. Na tečnách stanovte rovněž příslušné body dotyku. 11. Identifikujte a narýsujte kuželosečku K: x y x y 8 0. (Podle definice dané kuželosečky sestrojte několik jejích bodů, řádně v obrázku popište její určující prvky). 1. Napište rovnice parabol, které mají vrchol V = [, -7], prochází bodem M = [, -5] a jejich osa je rovnoběžná se souřadnou osou. x 1. Kolikátý člen binomického rozvoje výrazu 15 x obsahuje x? x 1 x 1. Řešte rovnici a proveďte zkoušku: 9 x x 15. V obchodě mají pět druhů kávy balené vždy v sáčcích po 50g. Kolika způsoby je možno koupit 1 kg kávy, když od jednoho druhu kávy mají pouze dva sáčky? Ostatní druhy jsou k dispozici v dostatečném množství. 16. Z osmi mužů, mezi kterými je pan Jiří a pan Pavel a z šesti žen, mezi kterými jsou paní Elvíra a Ivana budeme vybírat skupinu složenou z pěti mužů a čtyřech žen. Kolika způsoby je to možně udělat, když : a. mezi vybranými má být pan Jiří i paní Elvíra? b. mezi vybranými nemá být pan Pavel a má tam být paní Elvíra i Ivana? 17. Kolik existuje šesticiferných čísel, která : a. mají uprostřed dvojčíslí 59? b. začínají i končí stejnou číslicí? c. mají na místě tisíců sudou a na místě jednotek lichou číslici? 1

OKTÁVA úlohy k opakování 1. Zjednodušte a výsledné komplexní číslo zapište v algebraickém tvaru: 1 i 1 i 1 i 1 i. V Gaussově rovině komplexních čísel vyznačte množinu: M = {z C ; z - i + i z - i }.. V množině C řešte rovnici : i.( z z 1) ( i).( z z i ). a) Vypočtěte a výsledek zapište v algebraickém tvaru: i 1 i 1 b) V Gaussově rovině komplexních čísel jsou dány obrazy komplexních čísel a,b. Sestrojte obraz čísla z = a.b. 5. Řešte v oboru C rovnici: x ( i). x i 0 6. Řešte v oboru C rovnici: x 9x 0 0 7. Vypočtěte: 5 10 ( i i i i ) a) 1 i

1 b) 1 i 1 i 8. Určete kr tak, aby číslo z i k. i (5 k). i bylo a) reálné, b) ryze imaginární, c) bylo z 1. 9. Řešte v R: x x x 8x... 1 x x 1 10. Kolik Kč naspoří střadatel za 7 let, ukládá-li vždy počátkem měsíce, na účet úročený úrokovou mírou ročně, částku 1 00,- Kč? (Úrokovací období je jeden měsíc, úrok se počítá vždy koncem měsíce a daň z úroku se platí 15. Vypočtený kvocient nezaokrouhlujte!) Jaký je střadatelův celkový výnos z tohoto spoření? 11. Sečtěte prvních deset členů aritmetické posloupnosti n n1 a, ve které platí : a, a7 1,. Sečtěte rovněž prvních deset členů posloupnosti, která má stejný první člen, ale poloviční diferenci. 1. Zjistěte, které z následujících nekonečných řad jsou geometrické. Ty z nich, které jsou konvergentní, sečtěte. a) n1 5 n b) n n 1 1 n1 n c) 1