0. Úvodní poznámky Předpokládám znalost běžných základních pojmů z teorie metrických prostorů, jako je pojem uzávěru, otevřené množiny, souvislého prostoru apod. Většinu z nich včetně jejich základních vlastností lze nalézt např. v VI. kapitole Jarníkova Diferenciálního počtu II, mnohem více je obsaženo v Aleksandrovově Úvodudoobecnétheoriemnožinafunkcí([6]).Zatímconatytodefiniceavětynebuduodkazovat,budou v textu obsaženy odkazy na některá tvrzení z teorie dimenze, potřebná v posledních kapitolách; lze je nalézt např. v Kuratowského monografiích Topologie I a II. Jako věty jsouoznačenapodstatnějšítvrzenívč.tvrzenídůležitýchprodalšítext, poznámky obsahují zřejmá nebo snadno dokazatelná tvrzení, důsledky a ilustrující příklady. Označeníaterminologie.UžívámstejnézákladnítermínyjakoV.Jarníkv[],ažnato,žespolu skrátkýmnázvem separabilníprostor častoříkám prostorsespočetnoubází,protožemnohdyse potřebujebáze,nikolihustáčást. )Spočetnámnožinajepřitommnožina,kteroulzeprostězobrazitdo množiny N všech přirozených čísel; mezi spočetné množiny patří tedy všechny konečné množiny. Je-li V výrokováfunkcedefinovanánamnožině X,říkáme,že V(x)platíprotéměřvšechna x X,platí-lipro každé x X S,kde Sjenějakáspočetnámnožina;říkáme,že V(x)platíproskorovšechna(zkratka: pros.v.) x X,platí-liprovšechna x X K,kde K jenějakákonečnámnožina.je-linapř.ze souvislostizřejmé,že X= N,říkámezpravidlajen pros.v.n.množinuvšechcelýchčísel,racionálních čísela(konečných)reálnýchčíselznačímepořadě Z, QaR.Symbol:=znamená,ževýrazpřednímje výrazem za ním definován. V dekadických, triadických, dyadických(obecně v p-adických) zlomcích píši zásadnětečky,nikoličárky. ) Písmeno P(bez dalšího určení) značí neprázdný metrický prostor s metrikou ρ(v němž právě pracujemenebohodlámepracovat).je-lip P,A B P,znamenáρ(p,A)(resp.ρ(A,B))vzdálenostbodu p od množiny A(resp. vzdálenost množin A, B). Kromě běžných znaků pro množinové operace užívám znakyintm, H(M)aderMprovnitřek,hraniciaderivacimnožiny M. U(x,ε):= {x P; ρ(x,x) < ε} (kde ε >0)jekruhovéepsilonovéokolíbodu x Pv P, U(M,ε):= x M U(x,ε)jekruhovéokolíopoloměru εmnožiny M P. U(x)(resp. U(M))znamená(obecné)okolíbodu x(resp.množiny M),tj. jakoukoli otevřenou množinu obsahující bod x(resp. množinu M). Je-li Q P podprostor prostoru P, odlišímeokolívp odokolívqtím,žeprookolívp zachovámesymbol U,zatímcookolívQbudeme značit U Q.Je U Q (x,ε)=u(x,ε) Qprokaždé x QaU Q (M,ε)=U(M,ε) Qprokaždoumnožinu M Q.Je-li GmnožinaotevřenávP,je G QmnožinaotevřenávQ;obráceně:prokaždoumnožinu H otevřenouvqexistujemnožina GotevřenávPtak,že H= G Q.Je-limnožinaotevřenáiuzavřená, říkáme, že je obojetná. Množina M Pjehustá(v P),je-li M G prokaždouneprázdnouotevřenoumnožinu G P. Množina M P jeřídká(v P),je-livnitřekjejíhouzávěruprázdný.Uzavřenámnožinajetedyřídká, právěkdyžnemážádnévnitřníbody.otevřenámnožina N P jehustávp,právěkdyžjejejídoplněk P NřídkývP. ŘetězemmnožinbudemerozumětkaždoukonečnouposloupnostM 0,M,...,M s,kdem i M i pro i=,,...,s;říkáme,žetentořetězspojujebody a,b(v P),je-li a M 0, b M s a M i P pro i=0,,...,s. Znak{a,...,a n }(kden N)znamenákonečnoumnožinusloženouzbodůa,...,a n.podobnějako Whyburnvknize[5],Kuratowskivmonografiích[],[]aUrysonv[4]většinounerozlišuji(pokudse týká označení) bod p od jednobodové množiny{p} a v obou případech píši zpravidla jen p; k nedorozumění nemůže dojít, protože aktuální význam písmene je vždy patrný ze souvislosti. Symbol X... X n (kde n N)znamenákartézskýsoučinmnožin X,...,X n ;je-li X i = X pro i=,...,n,značímtentokartézskýsoučin X n.symbol A(podrobněji A )budeznačitmnožinu všech(konečných)reálnýchčíselsobvyklýmiaritmetickýmioperacemiauspořádáním; A n jearitmetický )Budemepracovatjenvmetrickýchprostorech,vnichžjeexistencehustéspočetnéčástiekvivalentnísexistencí spočetné báze. )PočítačovéprogramyjakojeMathematica,Mapleapod.knámpřicházejízeZápaduadokudnebudemetaksilní, abychom na světovém fóru vytlačili jejich tečky a prosadili naše čárky, měli bychom se přizpůsobit a ušetřit si řadu potíží. V naší dávnější historii jsme ostatně tečky psali do doby, kdy nám nějaká geniální normalizační komise naordinovala čárky.
n-rozměrnýprostor. ) R n je n-rozměrnýeukleidovskýprostor,tj.prostor A n skartézskounormou ametrikou:je-li a=(a,...,a n ) A n, b=(b,...,b n ) A n,je () a := a +...+a n, ρ(a,b):= a b = (b a ) +...+(b n a n ) ; místo R sezpravidlapíšejen R. Slovo úsečka budeznamenat uzavřenouúsečku,nebude-livýslovněřečenoněcojiného;jsou-li a,bjejíkrajníbody,budemejiznačit a; b ;(a;b)jepříslušnáotevřenáúsečka, a;b),(a;b příslušné úsečky polouzavřené. LomenoučarouvR n budemerozumětkaždoumnožinutvaru p () L:= a 0 ;a ;...;a p := a k ; a k, kde p Nakdebody a=a 0,a,...,a p = bležívr n asplňujípodmínku a k a k pro k=,...,p; budemeříkat,želomenáčára()spojujebody a,b.budemeříkat,želomenáčára()jeprostá,platí-li implikace () 0 < k < p a k ; a k a k ; a k+ =a k a 0 < i < j < p a i ; a i a j ; a j+ =. Snadno nahlédneme, že prostota lomené čáry() je ekvivalentní s existencí prosté po částech lineární funkce ϕ: α,β na L. *** I když předpokládáme, že čtenář Cantorovo diskontinuum a jeho vlastnosti zná, zopakujeme příslušnou konstrukci, abychom v dalším mohli užívat označení, která při této příležitosti zavedeme. Aritmetická definicecantorovadiskontinuajevelmijednoduchá:jetomnožinavšechčísel (4) x= k= i n n, kde i n {0,}prokaždé n N. Jinými slovy: Cantorovo diskontinuum se skládá právě ze všech čísel z intervalu 0,, která mají triadický rozvoj0.i i...i n...,kde i n prokaždé n.ještějinak:cantorovodiskontinuumjerovno 0, M, kde M jemnožinavšechčísel,vjejichžtriadickémzlomkumusíbýt aspoňnajednommístěcifra. Připomeňme, že triadicky racionální čísla z intervalu(0, ) lze napsat dvojím způsobem, protože (5 ) 0.i i...i n =0.i i...(i n )..., je-li i n {,}. Čísla (5 ) 0=0.000..., =0.000...=0.0..., =0...=0.000...,=0... tedy patří do Cantorova diskontinua stejně jako čísla (5 ) 0.000...= 4 a 0.000...= 4. PopišmenyníCantorovodiskontinuum geometricky :Interval := 0, rozdělmenatřistejně dlouhé intervaly a označme (6) (0):= 0,, J:=(, ), ():=,. Z nerovností () 0.0i...i k... 0.0...=, 0.i...i k... 0.000...= ihned plyne, že první cifra(za triadickou tečkou) čísel z intervalu J musí být, takže Cantorovo diskontinuum neobsahuje žádný bod z tohoto intervalu. Je tedy obsaženo v množině (0) (). )Aritmetickýprostorpovažujememlčkyzaprostorlineárnísobvykloudefinicísoučtudvoubodů(vektorů)asoučinu bodu(vektoru) a čísla. 4
Každýzintervalů (i )rozdělmeopětnatřistejnědlouhéintervaly,prvníresp.třetíuzavřený intervaloznačme (i,0)resp. (i,),zatímco J(i )jeprostředníotevřenýinterval.jetedy () (0,0):= 0,, J(0):=(, ), (0,):=,, (,0):=,, J():=(, ), (,):=, ; snadnozjistíme,žezatímcopřitriadickémzápisučíselzintervalů (i,i )nepotřebujemecifruna prvních dvou místech, cifra musí být na druhém triadickém místě čísel z intervalů J(0), J(). V n-tém kroku budeme mít uzavřené intervaly () (i,i,...,i n )= 0.(i )(i )...(i n ),0.(i )(i )...(i n )+ n, kde(i,i,...,i n ) {0,} n,aotevřenéintervaly (0) J, J(i ), J(i,i ),..., J(i,i,...,i n ); intervalyuvedenévřádcích()a(0)jsoudisjunktníajejichsjednocenímje 0,.Vdalšímkroku rozdělíme každý z intervalů() na tři stejně dlouhé intervaly; první a třetí jsou () (i,i,...,i n,0)= 0.(i )(i )...(i n ),0.(i )(i )...(i n )+ n, (i,i,...,i n,)= 0.(i )(i )...(i n )+ n,0.(i )(i )...(i n )+ n, druhý je roven () J(i,i,...,i n )=(0.(i )(i )...(i n )+ n,0.(i )(i )...(i n )+ n ). Zatímco každý bod z prvního(resp. z druhého) intervalu v() lze napsat jako triadický zlomek, jehož (n+)-nícifraje0(resp.),bodyzintervalu()musímít(n+)-nícifrurovnou. Jezřejmé,žeprokaždouposloupnost{i n },kde i n {0,}prokaždé n,jebod(4)jedinýmbodem průniku () (i,...,i n ), takže Cantorovo diskontinuum lze napsat ve tvaru (4) = n, kde n := (i,...,i n) {0,} n (i,...,i n ). Čtenář, který zná definici a základní vlastnosti(jednorozměrné) Lebesgueovy míry µ, ihned vidí, že pro µ( n ),tj.prosoučetdélekvšechintervalů,jejichžsjednocenímje n,platírelace (5) µ( n )= ( )n 0 pro n, znížplyne,že (6) µ( )=0. Cantorovo diskontinuum je přitom nespočetná množina, protože oborem hodnot funkce f, jejíž hodnotouvbodě(4)ječíslo () f(x):= jezřejměcelýinterval 0,.Ukažme,žefunkce fje(v )neklesající,tj.že(prokaždoudvojicibodů x,x z )platíimplikace i n n, () f(x ) > f(x ) x > x. 5
Nechť () x = i n n, x = kdekaždézčísel i n, i n jerovnobuď0nebo.zpředpokladu,že (0) f(x ) f(x )= i n n, i n i n n >0, zřejměplyne,žeprovhodné N Nje i n = i n pro,...,n ai N i N =.Podle(0)pakje () x x = N ( + což jsme měli dokázat. Intervaly m= i ) m i m m ( N m= ) m = N >0, () (,0), J, J(i ),..., J(i,...,i n ),..., (,+ ) se nazývají styčné k. Krajní body všech omezených styčných intervalů patří do Cantorova diskontinua anazývajísebody.druhu.protožejichjejenspočetněmnohoaprotože jenespočetnámnožina, obsahuje nespočetně mnoho bodů, které krajními body žádného omezeného styčného intervalu nejsou; tojsoutzv.body.druhucantorovadiskontinua. 4 ) Styčné intervaly jsou nejen disjunktní, ale žádné dva(různé) z nich nemají ani krajní bod společný; z toho snadno plyne, že Cantorovo diskontinuum nemá žádné izolované body. Protože sjednocení všech intervalů() je(otevřená) množina hustá v R, je Cantorovo diskontinuum množina řídká(a uzavřená). Poznamenejmeještě,žerovnost µ( )=0lzedokázatitakto:Protože µ(j)=,protožeprokaždé n Nmákaždýinterval J(i,...,i n )délku n aprotožetěchtointervalůje n,jejejichcelkovádélka rovna () n=0 ( ) ; míra Cantorova diskontinua je rovna rozdílu míry(délky) intervalu 0, a součtu() měr všech intervalů J,tedyrovna0. Ještěněkolikslovkfunkci f:protožekrajníbodyintervalu Jlzenapsatbezužitícifryvetvaru (4) =0.0... a =0.000..., je (5) f( )= n= = f( ). Obecně:Krajnímibodystyčnéhointervalu J(i,...,i n )jsoubodytvaru (6) a:=0.(i )...(i n )0... a b:=0.(i )...(i n )000...; protože k=n+ k= n, jezřejmě f(a)=f(b).vkrajníchbodechkaždéhoomezenéhostyčnéhointervalunabývátedyfunkce f stejné hodnoty; rozšíříme-li její definiční obor na celý interval 0, tím, že ji v každém omezeném styčném 4 )Pronásbude(zatím)výhodnějšípočítatbody0amezibody.druhu;literaturanenívtomtoohledujednotná. Čtenářsnadnodokáže,žemezibody.druhupatřínapř. 4 a 4. 6
intervalu položíme rovnu hodnotě v krajních bodech tohoto intervalu, bude f neklesající v 0,. Protože oboremhodnot(původníirozšířené)funkce fjeinterval 0,,jetatofunkcespojitáv 0,. 5 ) Rozšířenáfunkce f: 0, na 0, senazývácantorovastupňovitáfunkce;schémajejíhografu jevyobrazenonaobr.. 6 )Funkce fv 0, neklesá;jepozoruhodnátím,žerostejenvbodechcantorova diskontinua: V levých(resp. pravých) krajních bodech omezených styčných intervalů zleva(resp. zprava), vbodě0zprava,vbodězlevaavostatníchbodech.druhuzlevaizprava.ikdyžje µ( )=0,funkce fceléhosvéhopřírůstku f() f(0)=naintervalu 0, nabýváprávějennacantorovědiskontinuu. 4 5 4 0 0 5 6 Obr.. Schéma Cantorovy stupňovité funkce Délkagrafufunkce F : a,b Rsedefinujejakosupremumdélekaproximujícíchlomenýchčar: Každémudělení D:a=x 0 < x <...,x n = bodpovídálomenáčára,kterájesjednocenímúseček 5 )Kdybynebylaspojitávbodě x,bylobybuď f(x) f(x ) >0,nebo f(x+) f(x) >0;funkce f byvprvním případě nenabývala žádné hodnoty z intervalu(f(x ), f(x)), ve druhém případě žádné hodnoty z intervalu(f(x), f(x+)). 6 )Celýgrafnelzezpochopitelnýchdůvodůnakreslit; střídají sevněm(podobnějakosevr střídají racionální a iracionální čísla) stále kratší vodorovné úsečky s místy, kde f velmi rychle roste.
skrajnímibody(x k,f(x k )a(x k,f(x k )), k=,...,n.číslo () L(D):= n (xk x k ) +(F(x k ) F(x k )) k= jesoučtemdélekvšechtěchtoúsečekadélka L F grafufunkce F jedefinovánajakosupremumčísel (), kde D probíhá množinu všech dělení intervalu a, b. Je-li F neklesající funkce, jsou její přírůstky nezápornáčíslaavdůsledkutohoje () L(D) n ((x k x k )+(F(x k ) F(x k )))=(b a)+(f(b) F(a)) k= prokaždé D,takžeiL F (b a)+(f(b) F(a)).ProCantorovufunkci fdostávámetedyodhad L f. Dělení () D n :0=x n,0 < x n, <... < x n, n+= nechťseskládázbodů0aakrajníchbodůstyčnýchintervalů J,J(i ),...,J(i,...,i n ), (0) I n,k := x k,x k, k=,..., n+, nechťjsouintervalydělení D n.lomenáčárapříslušnákdělení D n jesloženaz n+ šikmýchúseček (odpovídajícíchintervalům I n,k slichým k)az n+ vodorovnýchúseček(odpovídajícíchintervalům I n,k sesudým k).délkašikméúsečkyje () (x n,k+ x n,k ) +(F(x n,k+ ) F(x n,k )) F(x n,k+ ) F(x n,k )= n, aprotožetěchtoúsečekje n+,jesoučetdélekvšechšikmýchúseček.protožesoučetdélekvšech vodorovných úseček je roven () (+( ) +( ) +...( )n+ = ( )n+, jedélkalomenéčáryvětšíneborovna+( (/) n+ ),cožjevýraz,kterýmápro n limitu. Graf funkce f má tedy maximální možnou délku(rovnou ).