Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.



Podobné dokumenty
Lineární algebra Operace s vektory a maticemi

Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer

3. Matice a determinanty

Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Soustavy lineárních rovnic

DEFINICE Z LINEÁRNÍ ALGEBRY

Základy maticového počtu Matice, determinant, definitnost

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Soustavy lineárních rovnic

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly

Operace s maticemi

Jazyk matematiky Matematická logika Množinové operace Zobrazení Rozšířená číslená osa

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

5. Maticová algebra, typy matic, inverzní matice, determinant.

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC

Matematika pro studenty ekonomie

Základní pojmy teorie množin Vektorové prostory

Lineární algebra - I. část (vektory, matice a jejich využití)

Operace s maticemi Sčítání matic: u matic stejného typu sečteme prvky na stejných pozicích: A+B=(a ij ) m n +(b ij ) m n =(a ij +b ij ) m n.

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.

Základy matematiky pro FEK

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

Operace s maticemi. 19. února 2018

Lineární algebra. Matice, operace s maticemi

VĚTY Z LINEÁRNÍ ALGEBRY

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru

Úvod do lineární algebry

Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím.

Matematika I Lineární závislost a nezávislost

Maticový a tenzorový počet

AVDAT Vektory a matice

Kapitola 11: Vektory a matice 1/19

Kapitola 11: Vektory a matice:

7. Důležité pojmy ve vektorových prostorech

Množinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ).

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

1 Determinanty a inverzní matice

Čtvercové matice. Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců

Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi

Lineární algebra : Násobení matic a inverzní matice

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE

Základy matematiky pro FEK

Lineární algebra. Soustavy lineárních rovnic

0.1 Úvod do lineární algebry

Číselné vektory, matice, determinanty

(Cramerovo pravidlo, determinanty, inverzní matice)

1 Vektorové prostory.

Vektory a matice. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.

0.1 Úvod do lineární algebry

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.

8 Matice a determinanty

Lineární algebra : Násobení matic a inverzní matice

předmětu MATEMATIKA B 1

1/10. Kapitola 12: Soustavy lineárních algebraických rovnic

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

SOUSTAVY LINEÁRNÍCH ROVNIC

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Vektorový prostor. d) Ke každému prvku u V n existuje tzv. opačný prvek u, pro který platí, že u + u = o (vektor u nazýváme opačný vektor k vektoru u)

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012

MATEMATIKA PRO PŘÍRODNÍ VĚDY LINEÁRNÍ ALGEBRA, DIFERENCIÁLNÍ POČET MPV, LADP TUL, ZS 2009/10

Vektory a matice. Matice a operace s nimi. Hodnost matice. Determinanty. . p.1/12

Obsah. Lineární rovnice. Definice 7.9. a i x i = a 1 x a n x n = b,

Kapitola 1. Tenzorový součin matic

EKONOMICKO-MATEMATICKÉ METODY

Poznámky z matematiky

Matice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami.

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. a m1 a m2... a mn

ČTVERCOVÉ MATICE. Čtvercová matice je taková matice, kde počet řádků je roven počtu jejích sloupců. det(a) značíme determinant čtvercové matice A

Regresní a korelační analýza

m n. Matice typu m n má

1 Soustavy lineárních rovnic

IB112 Základy matematiky

VEKTOROVÝ PROSTOR. Vektorový prostor V n je množina všech n-složkových vektorů spolu s operacemi sčítání, odčítání vektorů a reálný násobek vektoru.

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Matematika B101MA1, B101MA2

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

SOUČIN MATIC A m n B n p = C m p, přičemž: a i1 b 1j +a i2 b 2j + +a in b nj = c ij, i=1 m, j=1 p. Např: (-2) = -3

Lineární algebra a analytická geometrie sbírka úloh a ř ešených př íkladů

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

Soustavy lineárních rovnic a determinanty

y (5) (x) y (4) (x) + 4y (3) (x) 12y (x) 45y (x) 27y(x) (horní indexy značí derivaci) pro 3. y(x) = x sin 3x 4. y(x) = x cos 3x 9.

Matematika 2 pro PEF PaE

Základy teorie matic

11 Soustavy rovnic a nerovnic, Determinanty a Matice

Soustavy lineárních rovnic

Transkript:

Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010

Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a 1n a 21 a 22 a 2n.... a m1 a m2 a mn se nazývá matice typu m n.

Nechť A, B jsou matice stejného typu m n. Říkáme, že matice A, B jsou si rovny, a píšeme A = B, jestliže pro každé i = 1,..., m a každé j = 1,... n platí a ij = b ij.

typu m n, pro jejíž všechny prvky platí a ij = 0, i = 1,..., m, j = 1,..., n, se nazývá nulová matice typu m n. Nulovou matici značíme 0 m n nebo stručněji 0. Čtvercová matice řádu n je matice A typu n n. Jednotková matice E n řádu n je čtvercová matice taková, že platí { 1 pro i = j, e ij = 0 pro i j. ( ) 1 0 E 2 =, E 0 1 3 = 1 0 0 0 1 0 0 0 1

Diagonální matice je taková čtvercová matice, pro jejíž prvky platí a ij = 0 pro i j. A = 1 0 0 0 2 0 0 0 3 Nechť A je matice typu m n., která vznikne z matice A tak, že zaměníme řádky za sloupce, přičemž zachováme jejich pořadí, se nazývá matice transponovaná k matici A a značí se A T. ( ) 1 2 3 A =, A T = 1 4 2 5 4 5 6 3 6

Diagonální matice je taková čtvercová matice, pro jejíž prvky platí a ij = 0 pro i j. A = 1 0 0 0 2 0 0 0 3 Nechť A je matice typu m n., která vznikne z matice A tak, že zaměníme řádky za sloupce, přičemž zachováme jejich pořadí, se nazývá matice transponovaná k matici A a značí se A T. ( ) 1 2 3 A =, A T = 1 4 2 5 4 5 6 3 6

A typu m n se nazývá trojúhelníková matice, jestliže a) m n, b) a ij = 0 pro i > j, i = 1,..., m, j = 1,..., n. A = 1 2 3 0 5 6 0 0 9, která vznikne z matice A typu m n vynecháním některých řádků nebo sloupců, se nazývá submatice matice A.

A typu m n se nazývá trojúhelníková matice, jestliže a) m n, b) a ij = 0 pro i > j, i = 1,..., m, j = 1,..., n. A = 1 2 3 0 5 6 0 0 9, která vznikne z matice A typu m n vynecháním některých řádků nebo sloupců, se nazývá submatice matice A.

Nechť A, B jsou matice (stejného) typu m n. C typu m n, pro jejíž prvky platí c ij = a ij + b ij, i = 1,..., m, j = 1,..., n se nazývá součet matic A, B a značí se A + B. Nechť r je reálné číslo, A matice typu m n. D typu m n, pro jejíž prvky platí d ij = ra ij se nazývá reálný násobek matice A a značí se ra.

Nechť A, B jsou matice (stejného) typu m n. C typu m n, pro jejíž prvky platí c ij = a ij + b ij, i = 1,..., m, j = 1,..., n se nazývá součet matic A, B a značí se A + B. Nechť r je reálné číslo, A matice typu m n. D typu m n, pro jejíž prvky platí d ij = ra ij se nazývá reálný násobek matice A a značí se ra.

Nechť A, B, C, 0 jsou matice téhož typu a r, s R libovolná reálná čísla. Pak platí: 1 A + B = B + A... komutativní zákon pro sčítání matic, 2 A + (B + C) = (A + B) + C... asociativní zákon pro sčítání matic, 3 A + 0 = A... existence nulové matice, 4 A + ( A) = 0... existence opačné matice, 5 r(sa) = (rs)a... asociativní zákon pro reálný násobek, 6 (r + s)a = ra + sa... první distribuční zákon, 7 r(a + B) = ra + rb... druhý distribuční zákon. Množina V m n spolu s operacemi násobení matic a reálného násobku matice tvoří vektorový prostor.

Nechť A, B, C, 0 jsou matice téhož typu a r, s R libovolná reálná čísla. Pak platí: 1 A + B = B + A... komutativní zákon pro sčítání matic, 2 A + (B + C) = (A + B) + C... asociativní zákon pro sčítání matic, 3 A + 0 = A... existence nulové matice, 4 A + ( A) = 0... existence opačné matice, 5 r(sa) = (rs)a... asociativní zákon pro reálný násobek, 6 (r + s)a = ra + sa... první distribuční zákon, 7 r(a + B) = ra + rb... druhý distribuční zákon. Množina V m n spolu s operacemi násobení matic a reálného násobku matice tvoří vektorový prostor.

Nechť A je matice typu m n a B matice typu n p. C typu m p, pro jejíž prvky platí c ij = n a ik b kj, i = 1,..., m, j = 1,..., n, k=1 se nazývá součin matic A a B a značí se AB. Z definice součinu matic vyplývá, že prvek ležící v i-tém řádku a j-tém sloupci matice C dostaneme jako skalární součin i-tého řádku matice A a j-tého sloupce matice B. Operace násobení matic není komutativní, existují matice A a B takové, že AB BA. Navíc se může stát, že jeden ze součinů matic A a B je definován a druhý definován není.

Nechť A je matice typu m n a B matice typu n p. C typu m p, pro jejíž prvky platí c ij = n a ik b kj, i = 1,..., m, j = 1,..., n, k=1 se nazývá součin matic A a B a značí se AB. Z definice součinu matic vyplývá, že prvek ležící v i-tém řádku a j-tém sloupci matice C dostaneme jako skalární součin i-tého řádku matice A a j-tého sloupce matice B. Operace násobení matic není komutativní, existují matice A a B takové, že AB BA. Navíc se může stát, že jeden ze součinů matic A a B je definován a druhý definován není.

Pro každé tři matice A typu m n, B typu n p a C typu p q platí (AB)C = A(BC). Pro každé tři matice A typu m n, B typu n p a C typu n p platí A(B + C) = AB + AC. Pro každé tři matice A typu n p, B typu m n a C typu m n platí (B + C)A = BA + CA.

Pro každé tři matice A typu m n, B typu n p a C typu p q platí (AB)C = A(BC). Pro každé tři matice A typu m n, B typu n p a C typu n p platí A(B + C) = AB + AC. Pro každé tři matice A typu n p, B typu m n a C typu m n platí (B + C)A = BA + CA.

Dimenze lineárního obalu generovaného řádkovými vektory matice A se nazývá hodnost matice A a značí se h(a). Pro hodnost matice A typu m n platí h(a) min{m, n}. Hodnost trojúhelníkové matice A typu m n je rovna počtu řádků této matice, tj. h(a) = m.

Dimenze lineárního obalu generovaného řádkovými vektory matice A se nazývá hodnost matice A a značí se h(a). Pro hodnost matice A typu m n platí h(a) min{m, n}. Hodnost trojúhelníkové matice A typu m n je rovna počtu řádků této matice, tj. h(a) = m.

Dimenze lineárního obalu generovaného řádkovými vektory matice A se nazývá hodnost matice A a značí se h(a). Pro hodnost matice A typu m n platí h(a) min{m, n}. Hodnost trojúhelníkové matice A typu m n je rovna počtu řádků této matice, tj. h(a) = m.

budeme určovat tak, že ji pomocí tzv. ekvivalentních úprav převedeme na schodovitý tvar (každý nenulový řádek začíná větším počtem nul než řádek předcházející). Ekvivalentní úpravy matice (U1) záměna pořadí řádků matice, (U2) násobení libovolného řádku matice nenulovým reálným číslem, (U3) přičtení k libovolnému řádku lineární kombinaci ostatních řádků, (U4) vynechání řádku, který je lineární kombinací ostatních řádků. Počet nenulových řádků takto upravené matice potom určuje hodnost matice.

A se nemění, zaměníme-li v matici A libovolně pořadí sloupců. Nechť A, A T jsou navzájem transponované matice. Platí h(a) = h(a T ). Nechť A je čtvercová matice řádu n. Řekneme, že matice A je regulární, jestliže platí h(a) = n. Řekneme, že matice A je singulární, jestliže platí h(a) < n.

A se nemění, zaměníme-li v matici A libovolně pořadí sloupců. Nechť A, A T jsou navzájem transponované matice. Platí h(a) = h(a T ). Nechť A je čtvercová matice řádu n. Řekneme, že matice A je regulární, jestliže platí h(a) = n. Řekneme, že matice A je singulární, jestliže platí h(a) < n.

A se nemění, zaměníme-li v matici A libovolně pořadí sloupců. Nechť A, A T jsou navzájem transponované matice. Platí h(a) = h(a T ). Nechť A je čtvercová matice řádu n. Řekneme, že matice A je regulární, jestliže platí h(a) = n. Řekneme, že matice A je singulární, jestliže platí h(a) < n.