Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové k přípravě na zkoušku. Mohou se v něm vyskytovat některé chyby; autor ocení, když jej na chyby a nejasnosti upozorníte na emailu jiri.lipovskyzavináč uhk.cz. 2 Teorie Nyní se budeme zabývat lineárními diferenciálními rovnicemi. řádu s netriviální pravou stranou, tedy y + g()y = f(). Nejdříve nalezneme obecné řešení homogenní rovnice (rovnice bez pravé strany) y + g()y = 0. Toho dosáhneme separací proměnných (viz příslušný studijní tet). Příslušné obecné řešení homogenní rovnice má u sebe konstantu. Druhým krokem bude variace této konstanty. Představíme si, že místo této konstanty je funkce závislá na a dosazením do původní rovnice tuto konstantu vypočteme. 3 Příklady Příklad 3.. Řešte rovnici y + 3y = 2. Nejdříve vypočteme řešení homogenní rovnice y + 3y = 0. dy y = 3 d, ln y = 3 ln + ln c, y = c 3. Nyní si představíme, že místo konstanty c máme funkci c(). Proto výraz y() = dosadíme do původní rovnice. c() 3 c () 3 3 c() 4 + 3c() 3 = 2, c = 4 c() = 5 5 + C 2, y() = 5 2 + C 2 3. Příklad 3.2. Řešte rovnici y = (y cos ).
Homogenní rovnice: y = y, d y =, ln y = ln + C, y = c. y = c(), c() = c () + c() 2 cos, c () = cos, c() = sin + c 2, y() = (c 2 + sin ). Příklad 3.3. Řešte rovnici y + ( + )y = 3 2 e. Homogenní rovnice: y + ( + )y = 0, ( dy y = + ) d, ln y = ln + c, y() = e c. y() = c() e, c ()e c()e c() e + ce + c e = 3 2 e, Příklad 3.4. Řešte rovnici y = c () = 3 2 c() = 3 + c 2, ( y() = 2 + c ) 2 e. y 3 y 2. Rovnici si upravíme do tvaru 3 y 2 y dy d =, což odpovídá rovnici (y) = 3 y y. 2
Najdeme tedy jako funkci y. Homogenní rovnice: = 3 y, d 3 = y dy, ln = 3 ln y + c, = cy 3. (y) = c(y)y 3, c (y)y 3 + 3c(y)y 2 = 3c(y)y 2 y, Příklad 3.5. Řešte rovnici y + ay = e m. Homogenní rovnice: c (y) = y 2, c(y) = y + c 2, (y) = y 2 + c 2 y 3. y + ay = 0, y = ad, ln y = a + c, y = ce a. y() = c()e a, c ()e a ac()e a + ac()e a = e m, c () = e (a+m) c() = a + m e(a+m) + c 2, y() = m + a em + c 2 e a, a m. Příklad 3.6. Řešte rovnici y + 2y = 2e 2. Homogenní rovnice: y + 2y = 0, dy y = 2d, ln y = 2 + c, y = ce 2. 3
y() = c()e 2, c ()e 2 + c()( 2)e 2 + 2c()e 2 = 2e 2, c () = 2 c() = 2 + c 2, y() = ( 2 + c 2 )e 2. Příklad 3.7. Řešte rovnici y + 2y = 3, y(0) = 0. Homogenní rovnice: y + 2y = 0, dy y = 2 d, ln y = 2 ln + c, y = c 2. Z počáteční podmínky y() = c() 2, c () 2 + ( 2) c() 3 + 2c() 2 = 3, c () = 3 2 c() = 3 + c 2, y() = c 2 2 +. c 2 = 0 y() =. Příklad 3.8. Řešte rovnici y + y cos = sin cos, y(0) =. Homogenní rovnice: y + y cos = 0, y = cos d, ln y = sin + c, y = ce sin. 4
y() = c()e sin, c ()e sin + ( cos )c()e sin + c()e sin cos = sin cos, c() = c () = sin cos e sin, sin cos e sin d = te t dt = (At + B)e t, A + At + B = t A =, B =, c() = (t )e t + c 2 = (sin )e sin + c 2, y() = sin + c 2 e sin, y(0) = = + c 2 c 2 = 2, y() = sin + 2e sin. Příklad 3.9. Řešte rovnici ( 2 )y + y =, y(0) =. Homogenní rovnice: ( 2 )y + y = 0, y = 2 d, ln y = 2 ln 2 + c, y() = c 2. Z počáteční podmínky y() = c() 2. ( 2 )c () 2 + ( 2 )c() /2( 2) 2 + c() 2 =, c () = ( 2 ) 3 2 c = 2( 2 ) /2 + c, Příklad 3.0. Řešte rovnici y y cos sin = 2 sin. Homogenní rovnice: y y cos sin = 0, cos y = sin d, ln y = ln sin + c, y = c sin. y() = 2 + c 2. 5
y() = c() sin, c () sin + c() cos c() cos = 2 sin, c() = 2 d = 2 + c 2, Příklad 3.. Řešte rovnici y + y =. Homogenní rovnice: y() = (2 + c 2 ) sin. y + y = 0, y = d, ln y = 2 2 + c, y = ce 2 2. c() = e 2 y() = c()e 2 2, c ()e 2 2 c()e 2 2 + c()e 2 2 =, 2 d = u = 2, du = d 2 = c () = e 2 2, e u du = e u = e 2 2 + c2, y() = + c 2 e 2 2. Příklad 3.2. Řešte rovnici y = Homogenní rovnice: y = y ( ). y y = ( ), ( ( ) d = ) d, ln y = ln + c, y = c. 6
c () y() = c(), ( ) + c() = c() 2 ( ), ( ) ( ) + c() 2 = c() 2 ( ), c () Příklad 3.3. Řešte rovnici y + 3y = e 2. Homogenní rovnice: c () = ( ) 2, c() = + c 2, y() = + c 2 = + c 3. y + 3y = 0, y = 3d, ln y = 3 + c, y = ce 3. y() = c()e 3, c ()e 3 + c()e 3 ( 3) + 3c()e 3 = e 2, Příklad 3.4. Řešte rovnici y + y = cos. Homogenní rovnice: y + y = 0, y = d, ln y = + c, c () = e 5, c() = 5 e5 + c 2, y() = 5 e2 + c 2 e 3. y = ce. 7
y() = c()e, c ()e + c()e ( ) + c()e = cos, c() = e cos d = 2 e (sin + cos ) + c 2, Příklad 3.5. Řešte rovnici y Homogenní rovnice: y = y() = 2 (sin + cos ) + c 2e. y + =. y = y +, ( ( + ) d = ) d, + ln y = ln + + c, y = c +. y() = c() +, c () + + c() + ( + ) 2 c() ( + ) 2 =, Příklad 3.6. Řešte rovnici (2e y )y =. c () = + = +, c() = + ln + c 2, y() = + ( + ln + c 2). Použijeme triku, že hledáme řešení (y) jako funkce od y. Homogenní rovnice: = + 2e y. =, d = dy, ln = y + c, = ce y. 8
(y) = c(y)e y, c (y)e y c(y)e y = c(y)e y + 2e y, c(y) = 2e 2y = e 2y + c 2, (y) = c 2 e y + e y. Příklad 3.7. Řešte rovnici 2 y + 3 2y = 0. y() = + c 2 2. Příklad 3.8. Řešte rovnici y + 2y = 2 3. y() = 2 + c 2 e 2. Příklad 3.9. Řešte rovnici y + 2y = 2e 2. y() = ( 2 + c 2 )e 2. Příklad 3.20. Řešte rovnici y 2y = 3 2 2 4. y() = 3 + c 2 e 2. Příklad 3.2. Řešte rovnici y + ( )y = e. y() = ( 2 + c ) 2 e. Příklad 3.22. Řešte rovnici y + (y 2 sin ) cos = 0. y() = 2(sin ) + c 2 e sin. Příklad 3.23. Řešte rovnici y 2y = s počáteční podmínkou y(0) =. y() = 3e2 2 Příklad 3.24. Řešte rovnici ( + 2 )y + y = ( + 2 ) 5/2.. ( ) 5 y() = 5 + 23 3 + + c 2. + 2 9
Příklad 3.25. Řešte rovnici y + y = e s počáteční podmínkou y(0) = 2. y() = 2 (e + 3e ). Příklad 3.26. Řešte rovnici y + y = e s počáteční podmínkou y(0) = 3. y() = ( + 3)e Příklad 3.27. Řešte rovnici y 2 + 2 y = s počáteční podmínkou y(0) =. y() = (arctg + )( + 2 ). Příklad 3.28. Řešte rovnici y + 2 y = 0 s počáteční podmínkou y( ) = 2. y() = 2e +, (, 0). Příklad 3.29. Řešte rovnici y + +y = 0 s počáteční podmínkou y(0) =. y() = ( + ) >. Příklad 3.30. Řešte rovnici y +y cos = e sin s počáteční podmínkou y(0) =. y() = ( + )e sin. Příklad 3.3. Řešte rovnici y + y = 2 +. y() = 2 + c 2 e. 4 Rovnice, které lze převést na lineární Nakonec se budeme zabývat rovnicemi, které lze vhodnou úpravou převést na lineární. Prvním příkladem je Bernoulliova rovnice y + a()y = b()y n. Nejdříve tuto rovnici vydělíme y n a poté použijeme substituci z = y n. Příklad 4.. Řešte rovnici y + 2y = 2 3 y 3. 0
Zvolíme substituci z = y n+, 2 z + 2z = 2 3. Homogenní rovnice: 2 z + 2z = 0, dz z = 4 d, z = ce 22. z = c()e 22, c() = 2 c ()e 22 2c()e 2 + 2c()e 2 = 2 3, 4 3 e 22 d = t = 2 2, dt = 4d = 2 (22 + )e 22 + c 2, z() = 2 + 2 + c 2e 22 = y 2, y() = ±. 2 + 2 + c 2e 22 Druhou rovnicí je Ricattiova rovnice y + a()y + b()y 2 = c(). Jestliže známe jedno její partikulární řešení y (), lze ji substitucí y = y + z převést na Bernoulliovu rovnici. 5 Použitá a doporučená literatura. Kopáček Jiří, Příklady z matematiky pro fyziky II., Matfyzpress, Praha, 2003, kapitola.4 2. http://www.karlin.mff.cuni.cz/~jvesely/ma-2/brz ves/difrov.pdf, kapitola.3