Název školy Gymázium, Šterberk, Horí ám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šabloa III/2 Iovace a zkvalitěí výuky prostředictvím ICT Ozačeí materiálu VY_32_INOVACE_Hor018 Vypracoval(a), de Mgr. Radek Horeský, Ph.D., 1.6.2013 Ověřeo (datum) 12.6.2013 Předmět Matematika Třída 3.A Téma hodiy Charakteristiky polohy Druh materiálu Prezetace v Powerpoitu Aotace Základí statistické charakteristiky polohy, průměry, odchylky
Kombiatorika, pravděpodobost, statistika Mgr. Radek Horeský, Ph.D. Charakteristiky polohy
Pro popis statistického souboru je tabulka četostí (apříklad zámek z písemky z matematiky) kompletí statistickou iformací, ale pro rychlou orietaci máme údajů příliš moho hledáme proto určitá čísla, která ám rychle řekou, jaké jsou typické hodoty souboru dat.
Nejčastějším statistickým údajem jsou průměré hodoty souboru. K ejpoužívaějším patří: Aritmetický příp. aritmetický vážeý Geometrický příp. geometrický vážeý Harmoický Kvadratický
Aritmetický průměr x je ejčastěji užívaou charakteristikou polohy a je dá vzorcem: x = x 1 + x 2 +... +x = 1 x i i=1 Součet zjištěých hodot zaku všech jedotek vydělíme počtem všech jedotek. Vážeý aritmetický průměr, kdy prvek x 1 má četost výskytu 1, prvek x 2 má četost výskytu 2, atd. až prvek x k má četost výskytu k, pak kde x = 1x 1 + 2 x 2 +... + k x k 1 + 2 +... + k = 1 = 1 + 2 +... + k. k i=1 i x i,
Aritmetický průměr x v moha případech však dává zkresleé iformace o souboru. Vyskytuje-li se mezi srovávaými hodotami extrémě velký či extrémě malý prvek, dostáváme výsledý aritmetický průměr posuutý daým směrem. Pro lepší áhled a hodoty v souboru tyto extrémí hodoty ze souboru vyřadíme a aritmetický průměr vztáheme je a zbývající prvky. Pro velké soubory statistických dat jsou důležité další hodoty, a to: Modus x, resp. Mod(x) (prvek s ejvětší četostí) Mediá x, resp. Med(x) (prostředí prvek, resp. aritmetický průměr dvou prostředích prvků v uspořádaém souboru dat)
V případě souboru dat, který vyjadřuje apř. tempo růstu daé veličiy, zavádíme středí tempo růstu, které vystihuje geometrický průměr x g, který je dá vzorcem: x g = x 1 x 2... x = x i Vážeý geometrický průměr, kdy prvek x 1 má četost výskytu 1, prvek x 2 má četost výskytu 2, atd. až prvek x k má četost výskytu k, je pak i=1 x g = x 1 1 x 2 2... x k k k = x i i, i=1 kde = 1 + 2 +... + k.
V případě souboru dat, který vyjadřuje apř. výko růzých strojů, zavádíme středí výko, který vystihuje harmoický průměr x h, jehož převráceá hodota je aritmetický průměr převráceých hodot jedotlivých výkoů, platí tedy: x h = 1 + 1 +... + 1 = 1 x 1 x 2 x i=1 x i V případě souboru dat, který vyjadřuje apř. kietické eergie jedotlivých částic, je výhodé zavést kvadratický průměr x k, jehož hodota je: x k = x 1 2 + x 2 2 +... +x 2 = i=1 x i 2
Příklad: Písemka dopadla ásledujícím způsobem, 6 studetů dostalo výborou, 8 studetů chvalitebou, 9 studetů dobrou a 2 studeti dostatečou. Určete aritmetický, geometrický, harmoický a kvadratický průměr, modus a mediá souboru.
Tabulka četostí je: Aritmetický průměr je x = 6 1 + 8 2 + 9 3 + 2 4 + 0 5 25 Geometrický průměr je 25 x g = 1 6 2 8 3 9 4 2 5 0 = 57 25 = 2,28. 2,07.
Harmoický průměr je 25 x h = 6 1 + 8 2 + 9 3 + 2 4 + 0 5 Kvadratický průměr je 1,85. x k = 6 12 + 8 2 2 + 9 3 2 + 2 4 2 + 0 5 2 25 2,46. Modus je ejčastější hodota, tj. x = Mod x = 3. Mediá je prostředí, tj. třiáctá hodota uspořádaého souboru, tj. x = Med x = 2.
Citace: Příklady (eí-li uvedeo jiak) a formulace defiic jsou vlastí, resp. všeobecě zámé, pouze tematicky vycházejí z ásledující učebice: CALDA, Emil a Václav DUPAČ. Matematika pro gymázia: kombiatorika, pravděpodobost, statistika. 4., upr. vyd. Praha: Prometheus, c2001, 170 s. Učebice pro středí školy (Prometheus). ISBN 978-807- 1961-475.