UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy



Podobné dokumenty
Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Metody zkoumání závislosti numerických proměnných

Mendelova univerzita v Brně Statistika projekt

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

4.2 Elementární statistické zpracování Rozdělení četností

a další charakteristikou je četnost výběrového souboru n.

Úvod do korelační a regresní analýzy

Testování statistických hypotéz

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě.

9. Měření závislostí ve statistice Pevná a volná závislost

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

12. Neparametrické hypotézy

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2

, jsou naměřené a vypočtené hodnoty závisle

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění

Úvod do teorie měření

Doc. Ing. Dagmar Blatná, CSc.

Deskriptivní statistika 1

Generování dvojrozměrných rozdělení pomocí copulí

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

Chyby přímých měření. Úvod

Statistika - vícerozměrné metody

Odhady parametrů 1. Odhady parametrů

12. N á h o d n ý v ý b ě r

11. Časové řady Pojem a klasifikace časových řad

VY_52_INOVACE_J 05 01

APLIKOVANÁ STATISTIKA

Závislost slovních znaků

Spolehlivost a diagnostika

14. Korelace Teoretické základy korelace Způsoby měření závislostí pro různé typy dat

[ jednotky ] Chyby měření

1. Základy měření neelektrických veličin

PRAVDĚPODOBNOST A STATISTIKA

P1: Úvod do experimentálních metod

jsou varianty znaku) b) při intervalovém třídění (hodnoty x

Intervalové odhady parametrů některých rozdělení.

Testy statistických hypotéz

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

NEPARAMETRICKÉ METODY

Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky).

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

Náhodný výběr 1. Náhodný výběr

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru

11. Popisná statistika

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

P2: Statistické zpracování dat

Univerzita Karlova v Praze Pedagogická fakulta

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Pravděpodobnost a aplikovaná statistika

PRAVDĚPODOBNOST A STATISTIKA

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

BIVŠ. Pravděpodobnost a statistika

8 NELINEÁRNÍ REGRESNÍ MODELY

S1P Popisná statistika. Popisná statistika. Libor Žák

- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor

PRAVDĚPODOBNOST A STATISTIKA. Bodové a intervalové odhady

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík

TECHNICKÁ UNIVERZITA V LIBERCI

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson

PRAVDĚPODOBNOST A STATISTIKA

Pravděpodobnost a aplikovaná statistika

Regresní a korelační analýza

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)

Pravděpodobnost a aplikovaná statistika

Lineární regrese ( ) 2

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2

Intervalové odhady parametrů

PRAVDĚPODOBNOST A STATISTIKA

Pravděpodobnostní modely

Chyby měření: 1. hrubé chyby - nepozornost, omyl, únava pozorovatele... - významně převyšuje rozptyl náhodné chyby 2. systematické chyby - chybné

9.3.5 Korelace. Předpoklady: 9304

ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY

8. Analýza rozptylu.

Metody statistické analýzy. doc. Ing. Dagmar Blatná, CSc.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

Testování statistických hypotéz

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

1.1 Definice a základní pojmy

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík

Základy statistiky. Petr Kladivo

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA

PROJEKT PARKINSON KLUBU BRNO Život je pohyb a pohyb je život Význam a zaměření projektu. Hodnotící ukazatele projektu.

Statistická analýza dat

2. Vícekriteriální a cílové programování

Téma 6: Indexy a diference

Elementární zpracování statistického souboru

8. Zákony velkých čísel

Transkript:

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesé výchovy VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Zdeěk Havel Davd Chlář 0

VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Doc. PhDr. Zdeěk Havel, CSc. Mgr. Davd Chlář

Autoř: Edtor: Doc. PhDr. Zdeěk Havel, CSc. Mgr. Davd Chlář Mgr. Davd Chlář Recezoval: Mgr. Ja Hízdl, Ph.D. RNDr. Karel Hrach, Ph.D. Jazyková korektura: Mgr. Markéta Dvšová Zdeěk Havel, Davd Chlář, 0

Souhr Tato publkace avazuje a skrptum Cvčeí z Atropomotorky z roku 008 a je určea studetům všech studjích oborů studjího programu Tělesá výchova a sport. Jde o doplěí učva o vybraé eparametrcké statstcké techky, jejchž potřeba se ukázala v souvslost se zpracováím bakalářských a dplomových prací. Ve skrptech jsou uvedey výpočty těchto eparametrckých testů: χ - test, McNemarův test, Ma-Whtey U test, Kruskall Wallsův test, Wlcoxoův test a pořadová korelace. Posledí kaptola obsahuje stadardzac dotazíku - valdtu a relabltu pomocí Coheova koefcetu kappa. Kaptoly v této publkac jsou uspořádáy tak, že po úvodí teor ásleduje ukázka výpočtu příkladu základího postupu matematcké statstky. Jedá se o způsob, podle kterého je možé počítat podobé příklady. Každá kaptola je doplěa o tzv. věcou výzamost a jede z jejích ástrojů koefcet velkost účku EFFECT SIZE. Následuje ávod a výpočet pomocí programu Excel č programu STATISTICA a dále příklad pro samostatou prác studeta. Abstract Ths publcato follows the textbook Cvčeí z Atropomotorky from 008 ad s teded for semar work for studets of all felds of study program of Physcal Educato ad Sport studes. It s a supplemet subject matter of selected o-parametrc statstcal techques, whch eed to be show coecto wth the processg of Bachelor ad Master's theses. The oparametrc statstcal techques are gve scrpts calculatos of oparametrc tests: χ - test, McNemar test, Ma-Whtey U test, Kruskall Walls test, Wlcoxo test ad ordal correlato. The last chapter cludes the stadardzato of the questoare - the valdty ad relablty usg Cohe's kappa coeffcet. The chapters ths book are arraged so that after the tal demostrato of the theory follows the example of calculatg the basc process of mathematcal statstcs, the method by whch t s possble to calculate smlar examples. Each chapter s supplemeted by the substatve sgfcace ad oe of ts strumets - the coeffcet of sze effect 'EFFECT SIZE ". The followg gudace o the calculato usg software Excel or STATISTICA" ad example for depedet studet work.

OBSAH Úvod.... Závslé a ezávslé soubory, výběr testů. 3. Statstcké tříděí dat a popsá statstka 4. Měré škály 4. Četost. 6.3 Normálí rozložeí 7.4 Míry polohy... 0 3. Nezávslé soubory... 3. Parametrcká data.. 3. Neparametrcká data.. 3.. Čtyřpolí tabulka. 3.. Kotgečí tabulka...4 3..3 Početí postupy s procety..7 3..4 Ma Whtey U test...9 3..5 Kruskal - Wallsův test. 4. Závslé soubory.4 4. Parametrcká data...4 4.. T-test pro párové hodoty 4.. Součová korelace 4. Neparametrcká data...5 4.. χ² test dobré shody 5 4.. Zamékový test..6 4..3 McNemarův test...8 4..4 Wlcoxoův párový test...30 4..5 Spearmaův koefcet pořadové korelace..3 5. Stadardzace dotazíku valdta a relablta.. 35 Přílohy: Statstcké tabulky..38

Vybraé eparametrcké statstcké postupy v atropomotorce Úvod Tato publkace avazuje a skrptum Cvčeí z atropomotorky z roku 008 a je určea kurzu Cvčeí z atropomotorky studetům všech studjích oborů studjího programu Tělesá výchova a sport. Jedá se o doplěí učva o vybraé eparametrcké statstcké techky, jejchž potřebost se ukázala v souvslost se zpracováím bakalářských a dplomových prací. Ve statstce rozlšujeme testy parametrcké a eparametrcké. Skrptum Cvčeí z atropomotorky z roku 008 se věuje převážě parametrckým testům, které vyžadují splěí řady podmíek, apř. metrcká data, ale především ormálí rozděleí proměé, aby jejch použtí bylo oprávěé. V případě, že jsou požadavky a použtí parametrckých metod splěy, je vhodé je před metodam eparametrckým upředostt, eboť testy založeé a parametrckých metodách mají zpravdla větší statstckou účost. Neparametrcké postupy evyžadují splěí požadavků, jakým jsou apř. ormalta rozděleí, velkost rozptylů aj. Větší uverzálost eparametrckých testů však ovlvňuje jejch meší statstckou účost. Účost statstckého testu defujeme jako: schopost testu rozpozat malé odchylky od ulové hypotézy (Chráska, 003). Neparametrcké techky mají tedy méě přísé předpoklady a lze je použít pro jakékolv rozděleí pravděpodobost. Jejch využtí je však stejě jako u techk parametrckých založeo a áhodém výběru. Kaptoly v této publkac jsou uspořádáy tak, že po úvodí teor ásleduje ukázka výpočtu příkladu základího postupu matematcké statstky, tedy způsob, podle kterého je možé počítat podobé příklady. Každá kaptola je doplěa o tzv. věcou výzamost a jede z jejích ástrojů koefcet velkost účku EFFECT SIZE. Následuje výpočet pomocí programu Excel č programu STATISTICA a dále pak příklad pro samostatou prác studeta. V programu Excel se právě eparametrcké statstcké techky vyskytují je sporadcky, a proto je důležté, aby se studet aučl využívat program STATISTICA. V obou programech lze získat buď klascké testové charakterstky, ebo p-hodotu, což je pravděpodobost chybého zamítutí ulové hypotézy. Studet, př rozhodováí o tom, zda použje parametrcké č eparametrcké postupy, musí ejdříve posoudt, zda se jedá o závslé ebo ezávslé soubory. V druhém případě pak je třeba zjstt, jakou měrou škálou byly získaé hodoty a ásledě vytvořt sloupcový graf, z kterého se posuzuje, zda jde o ormálí rozděleí četostí. V tabulkách - 4 alezete odpovídající statstcké postupy. Poděkováí: Je aší mlou povostí poděkovat oběma recezetům Mgr. Jau Hízdlov, Ph.D. a RNDr. Karlu Hrachov, Ph.D. za posouzeí textu, přpomíky a doplňky. Za případé chyby a edostatky jsou však odpověd autoř. Děkujeme rověž Mgr. Markétě Dvšové za pečlvou jazykovou úpravu. Autoř

Kaptola Závslé a ezávslé soubory, výběr testů Úkolem statstky je sledovat a popsovat hromadé jevy. Tyto operace jsou prováděy ve výběrovém souboru a pomocí statstckých testů je pak možé získaé výsledky zobect a základí soubor. Všechy statstcké testy vychází z určtých předpokladů, které je uté splt. Je tedy uté všechy tyto předpoklady pečlvě zvážt a teprve potom je možé pustt se do statstckého zpracováí. Jedím ze základích hledsek, podle kterých volíme statstcké testy, je posouzeí, zda se jedá o závslé ebo ezávslé soubory. Za závslé soubory je možé považovat takové soubory, kde dochází k opakovaému měřeí č posuzováí zaků u stejých osob. Příkladem je ověřeí účost trékového pláu u rozvoje slových schopostí. Změříme u probadů výko ve skoku do dálky z místa, ásledě budeme po dobu jedoho měsíce rozvíjet jejch odrazové schopost. Po této době u stejých probadů opětově změříme výko ve skoku do dálky z místa. Zde je důležté, aby počet probadů byl u prvího druhého měřeí stejý, tedy ty probady, kteří se eúčastl obou měřeí, je uté vyloučt. Za ezávslé soubory považujeme dvě růzé skupy, u kterých zjšťujeme rozdíl ve výkoech. Příkladem je rozdíl ve výkoech ve skoku do dálky z místa u jedeáctletých a čtráctletých chlapců, tedy dvou růzých skup probadů. U souborů (ezávslých závslých) měříme zaky. Rozlšujeme zaky kvaltatví a kvattatví. Kvaltatví zaky jsou vyjádřey zpravdla slově a obvykle vyjadřují určtou vlastost (pohlaví, druh sportu, trékové skupy, školí zámku). Kvattatví zaky jsou vyjádřey číselě a obvykle představují možství ebo velkost (počet studetů, výkoy ve skoku do dálky, počet shybů). Hodoty zaků získáváme měřeím, testováím ebo odborým posuzováím. Ještě ež začeme počítat, je třeba s uvědomt ěkolk dalších důležtých pozatků. Všechy statstcké testy vycházejí z určtých předpokladů o rozděleí hodot testovaého zaku v základím souboru. Normálí rozděleí hodot testovaého zaku je možé sledovat apř. u tělesé výšky, hmotost, BMI, % podkožího tuku atd. Normálí rozděleí je také zámo jako Gaussovo rozděleí. U ormálí rozděleí testovaého zaku používáme tzv. parametrcké testy (t-test, párový t-test, ANOVA test, součová korelace). Z výše uvedeého je tedy zřejmé, že ormálí rozděleí je možé ajít pouze u metrckých zaků. V ostatích případech, kdy elze usuzovat a ormálí rozděleí hodot zaku, používáme tzv. eparametrcké testy (χ² test, McNemarův test, Ma-Whtey U test, Kruskall Wallsův test, Wlcoxoův test, pořadovou korelac). 3

Kaptola Statstcké tříděí dat a popsá statstka. Měré škály Výsledky měřeí ebo odborého posuzováí lze podle charakterstk a vlastostí dat vyjádřt a měrých škálách, které můžeme podle jejch rostoucího stupě dokoalost seřadt v pořadí: ) Měřítko omálí (klasfkačí) Objektům zde přřazujeme čísla, která určují příslušost objektu do ěkteré z epřekrývajících se kategor. Číslo přřazeé objektu evypovídá o kvaltě a kvattě, tudíž může být ahrazeo symbolem. Tříděí zde eí omezeo pouze a dchotomcký systém, jelkož objekty můžeme zařazovat do více kategorí. Čísla mohou být objektům přřazováa takovým způsobem, jakým se apříklad provádí evdece automoblů (SPZ), tj. rozděleí podle pohlaví, fukce hráčů v družstvu aj. ) Měřítko ordálí (pořadové) Je dáo sestupě ebo vzestupě seřazeým čísly do tříd. Každá ze tříd má tedy jou kvaltatví hodotu, kterou ovšem ejsme schop přesě vymezt. Sousedí třídy se mohou avzájem lšt o estejě velký terval. Pořadové měřítko vyjadřuje pouze kvattatví vztahy (větší, meší, rový). Jak vyplývá z ázvu, důležté je pořadí. Příkladem jsou sportoví výsledky ve formě růzých rakgových pořadí, žebříčků ebo pořadí podle úspěšost v Iowa Brace testu. Do této kategore spadají svou povahou školí zámky. V prax je však s těmto daty akládáo eodpovídajícím způsobem, evhodým pro eparametrcká data (počítáí průměrů). 3) Měřítko metrcké 3. Měřítko tervalové Posu v dokoalost oprot předchozí stupc je zde zajště kostatí jedotkou měřeí. Mez sousedím třídam jsou stejé tervaly. Kromě pořadí tedy můžeme určt rozdíl mez jedotlvým daty. Nulový bod je urče dohodou. Příkladem je měřeí teploty ve º C, ebo určováí času (hoda, de). Dalším příkladem může být měřeí skoku dalekého od místa odrazu. 3. Měřítko ekvtervalové (poměrové) Oprot tervalové stupc má tato stupce avíc ještě absolutí, přrozeý ulový bod. Používá se př měřeí, kde je možé využít všechy matematcké operace, apříklad měřeí skoku dalekého od břeva podle pravdel atletky. 4

Tabulka. Hlaví typy měrých škál a popsá statstka MĚRNÁ ŠKÁLA ZÁKL. OPERACE RELACE CHARAKTERISTIKA PŘÍKLAD POPISNÁ STATISTIKA Nomálí Klasfkace umerzace, jako pojmeováí objektů Ordálí Posuzováí < > staoveí pořadí, bez jedotky měřeí Muž žea 0 plavec eplavec 0 Lyžařský kurs -družstva dle výkoost četost, modus, proceta, Četost, modus, medá, Metrcká tervalová Metrcká poměrová Měřeí Měřeí rovost tervalů rovost vztahů ulový bod dohodou, kostatí jedotka měřeí přrozeý ulový bod. kost. jedotka měřeí motorcký věk měřeí dálky, výšky síly Míry polohy: artmetcký průměr x modus xˆ ebo Mo (ejvyšší četost) meda x ~ ebo Me (prostředí čle varačí řady) Míry varablty: směrodatá odchylka s rozptyl s ebo var x (odráží varac všech zaků) varačí rozpětí R Tabulka. Vybraé testy závslých a ezávslých souborů Nezávslé Závslé Parametrcká data Neparametrcká data Parametrcká data Neparametrcká data - χ test o ezávslost Testováí dvou výběrových % hodot - χ test dobré shody, Zamékový test McNemarův test F-test Ma Whtey test t-test pro párové Wlcoxoův test t-test hodoty Aova test Kruskall Wallsův test Součová korelace Pořadová korelace 5

Tabulka 3. Přehled testů u ezávslých souborů N O M Parametrcká data Neparametrcká data N O M N O M F test, - - T test, Aova - - F test, T test, Aova F test, T test, Aova F test, T test, Aova χ test o ezávslost, Testováí dvou výběrových % hodot χ test o ezávslost, Testováí dvou výběrových % hodot χ test o ezávslost, Testováí dvou výběrových % hodot χ test o ezávslost, Testováí dvou výběrových % hodot Ma Whtey test, Kruskall Wallsův test Ma Whtey test, Kruskall Wallsův test - - - - Legeda: N omálí měřítko, O ordálí měřítko, M metrcké měřítko Tabulka 4. Přehled testů u závslých souborů N Parametrcká data Neparametrcká data N O M N O M T-test pro McNemarův Wlcoxoův - - párové test - test hodoty O - - - - - - M T-test pro párové hodoty - Součová korelace Wlcoxoův test - Legeda: N omálí měřítko, O ordálí měřítko, M metrcké měřítko Pořadová korelace. Četost: Počet hodot dosažeých v určtém zaku ozačujeme jako četost zpravdla jako absolutí četost. absolutí ( ) - četost daé hodoty zaku x N - ačítáme-l postupě absolutí četost kumulatví absolutí ( ) relatví ( f ) vyjadřujeme v procetech - vypočítaá podle vzorce součet absolutích četostí ( ) kumulatví relatví ( ) F - ačítáme-l postupě relatví četost f f *00, kde je 6

Zobrazíme-l statstcké údaje v soustavě souřadc pomocí bodů (sloupců), vzke bodový (sloupcový) graf. Sloupcový graf zázorňuje vztah mez hodotam statstckého zaku a absolutím četostm..3 Normálí rozložeí Normálí rozložeí četostí se vyzačuje tím, že začá část hodot se soustřeďuje kolem průměré hodoty a a obě stray od í jsou hodoty stálé, méě časté, přčemž extrémí hodoty se vyskytují ojeděle. Tuto emprckou zákotost vyjadřujeme grafcky tzv. Gaussovou křvkou (Obrázek č..). Gaussova křvka má tyto zaky: je symetrcká podle osy má stejoměrý zvoovtý tvar vrchol křvky je totožý se středí hodotou (EX), Modem (Mo) a Medáem (Me) varačí rozpětí R & 6s v tervalu EX ± s leží přblžě /3 všech hodot, tj. 68,7 % všech případů v tervalu EX ± s leží přblžě 9/0 všech hodot, tj. 95,4 % všech případů v tervalu EX ± 3s leží praktcky všechy hodoty, tj. 99,73 % všech případů Řada statstckých procedur byla odvozea od ormálího rozděleí, a proto je jejch použtí podmíěo ormálím rozděleím dat testovaé proměé. Exstuje řada postupů, jak ohodott ormálí rozděleí dat (apř. test špčatost, resp. škmost, který vyjadřuje kocetrac, resp. symetr dat kolem středí hodoty; pro ormálí rozděleí vychází přblžě špčatost3 a škmost0), posouzeí z hstogramu a samozřejmě posouzeí výpočtem. Normálí rozložeí četostí je jedím z předpokladů použtí parametrckých statstckých metod a postupů. Obrázek. Normálí rozděleí četostí Převzato Havel, Hízdl (008) 7

PŘÍKLAD a) Měřeím testu sedy - lehy za jedu mutu u studetů. ročíku studjího programu TVS jsme získal tyto hodoty: 70, 48, 68, 49, 56, 5, 44, 76, 6, 64, 7, 55, 80, 54, 56, 58, 5, 6, 40, 54, 54, 57, 57, 63, 66, 37, 57, 54, 48, 60, 58, 4, 54, 4, 48, 64, 54, 43, 7, 55, 60, 55, 47, 65, 49, 53, 55, 63, 58, 40, 57, 60, 55, 50, 5, 49, 4, 45, 68. Vypočítejte absolutí, relatví a kumulatví četost. Sestrojte sloupcový graf. Tabulka 5. Absolutí, relatví a kumulatví četost testu sedy - lehy. Hračí hodota x Četost absolutí relatví N F Kumulatví četost absolutí relatví N F 40 3 5,08 % 3 5,08 % 46 6 0,7 % 9 5,5 % 5 8,63 % 0 33,90 % 58 35,58 % 4 69,49 % 64 9 5,5 % 50 84,75 % 70 5 8,47 % 55 93, % 76 3 5,08 % 58 98,3 % 8,74 % 59 00,00 % 59 00,00 % Obrázek. Sloupcový graf testu sedy - lehy. 5 0 Četost 5 0 5 0 40 46 5 58 64 70 76 8 Třídy 8

b) Hodoceím Iowa Brace testu u studetů. ročíku studjího programu TVS jsme získal tyto hodoty: 3, 4, 6, 9, 4, 7, 4, 6, 6, 7, 5, 5, 7, 5, 7, 7,,, 5, 3, 4, 8, 3, 4, 3, 6,, 4, 4, 3, 3, 0, 4,,, 3, 7, 8, 3, 0, 6, 6, 5, 6, 3,, 9, 5, 5,, 6, 8, 5, 5, 4,,, 5, 6. Vypočítejte absolutí, relatví a kumulatví četost. Sestrojte sloupcový graf. Tabulka 6. Absolutí, relatví a kumulatví četost Iowa Brace testu. Hračí hodota x Četost absolutí N relatví F Kumulatví četost absolutí relatví N F 0 3,39 % 3,39 % 9 5,5 % 8,64 % 4 8 30,5 % 9 49,5 % 6 9 3,0 % 48 8,36 % 8 9 5,5 % 57 96,6 % 0 3,39 % 59 00,00 % 59 00,00 % Obrázek 3. Sloupcový graf Iowa Brace testu. 0 5 Četost 0 5 0 0 4 6 8 0 Třídy Oba grafy zhruba kopírují křvku ormálí rozložeí četostí. Hodoty testu sedy lehy jsou v měřítku ekvtervalovém (poměrovém), hodoty Iowa Brace testu v měřítku ordálím (pořadovém). U hodot Iowa Brace testu použjeme tedy eparametrcké postupy. Výpočet četostí a vytvořeí sloupcového grafu v Excelu: Zadáme Nástroje Aalýza dat Hstogram OK Vytvořt graf popřípadě Kumulatví procetuálí podíl Vstupí oblast Výstupí oblast - OK 9

. 4 Míry polohy Velm důležtým charakterstkam jsou ty, které zevšeobecňují velkost hodot sledovaého zaku všech statstckých jedotek daého souboru tak, aby bylo možé jm ahradt jedotlvé hodoty. Tato čísla ozačujeme za míry polohy. Jejch výzam spočívá v tom, že umožňují přehledé a jedoduché srováváí úrově téhož zkoumaého zaku u ěkolka souborů. artmetcký průměr x modus xˆ ebo Mo meda x ~ ebo Me Artmetcký průměr je úhrem hodot zaku v souboru děleý rozsahem souboru. U hodot v měřítku omálím (klasfkačím) a v měřítku ordálím (pořadovém) se artmetcký průměr epočítá. Modus je ejčetější hodotou zaku ve zkoumaém souboru, která odpovídá vrcholu rozděleí četostí. Charakterzuje typckou hodotu zaku (tato míra polohy eí jedozačě defováa, eboť v souboru se může vyskytovat ěkolk ejčetějších růzých hodot zaku.) Medá je prostředí hodota varačí řady - řady hodot uspořádaých podle velkost. Medá zameá hodotu, jež dělí řadu podle velkost seřazeých výsledků a dvě stejě početé polovy. Pokud je počet hodot souboru sudý, je medá průměrem ze dvou prostředích hodot Je to charakterstka míry, která se používá u ordálích dat. Na rozdíl od artmetckého průměru je medá málo ctlvý k odlehlým hodotám. Příklad k procvčeí: Hodoceím Iowa Brace testu studetů. ročíku studjího programu TVS jsme získal tyto hodoty:, 3, 8, 5, 9, 0, 4, 6, 0, 8, 8, 0, 5, 6, 4, 8, 9, 7, 5, 0,, 6, 4, 7, 0,, 3, 4, 5, 6, 5, 7, 0, 5, 4, 9, 4, 0,,, 0, 8, 7, 9. Vypočítejte modus a medá. Vypočítejte absolutí, relatví a kumulatví četost. Sestrojte hstogram. Výpočet modu a medáu v Excelu: a) Zadáme Nástroje Aalýza dat Popsá charakterstka OK Vstupí oblast Výstupí oblast OK b) Zadáme Vložt Fukce Statstcké Mode respektve Meda Číslo - OK. 5 Staoveí pořadí v ordálím měřítku U řady testů musíme staovt pořadí. Hodoty uspořádáme podle velkost a staovíme pořadí. V případě shodých dat přřazujeme tzv. průměrá pořadí. Tabulka 7. Vzestupě uspořádaá data a jejch průměrá pořadí: Uspořádaá data -3 0 3 3 3 4 8 0 0 Průměrá pořadí 3,5 3,5 5 7 7 7 9 0,5,5 0

Kaptola 3 Nezávslé soubory 3. Parametrcká data F test, dvou výběrový t -test (testováí statstckých hypotéz) a) testováí hypotéz o rozptylu: F - test b) testováí hypotéz středí hodoty. t test pro ezávslé výběry, jestlže σ σ. t test pro ezávslé výběry, jestlže σ σ Postup výpočtu statstcké výzamost s F (v čtatel je vždy vyšší hodota) s Staovíme počet stupňů volost v a v, který je dá rozsahem výběru ( ) a ( ). Srováme vypočítaou hodotu F s hodotou tabulkovou F 0, 05. Nastává případ, ebol vypočteá hodota je větší, rozptyl mez výběry je statstcky výzamý ( σ σ ). Pro výpočet testovacího krtera t použjeme vzorce x x t s s σ σ tj. V případě, že astává druhý případ, vypočteá hodota je meší ež tabulková, rozptyly se tedy rovají ( σ σ ). Pro výpočet testovacího krtéra t použjeme vzorec x x ( σ σ * ( ) ), tj. t s s Výpočet F - testu, Dvouvýběrového t - testu v Excelu: a) F test Zadáme Nástroje (Data) Aalýza dat Dvouvýběrový F-test pro rozptyl OK Vstupí oblast Výstupí oblast OK b) Dvouvýběrový t test Zadáme Nástroje (Data) Aalýza dat Dvouvýběrový t - test s rovostí rozptylů ebo s erovostí rozptylů OK Vstupí oblast Výstupí oblast OK

3.. Neparametrcká data 3.. Čtyřpolí tabulka, testy ezávslost - χ Test využjeme v případech, kdy rozhodujeme, zda exstuje závslost (souvslost) mez dvěma jevy zjštěým pomocí omálího ebo ordálího měřítka. H 0 Předpokládáme, že závslost (souvslost) mez dvěma zaky eexstuje. Tabulka 8. Čtyřpolí tabulka Skupa Jev astal Jev eastal Σ (A 0 ) (B 0 ) A B A B (C 0 ) (D 0 ) CD C D Σ AC BD očekávaé četost: A 0 ( A B) * ( A C) B 0 ( A B) * ( B D) C 0 ( A C) * ( C D) D 0 ( B D) * ( C D) Testovací krterum A A0 B B χ A B ( ) ( ) ( C C ) ( D D ) 0 0 0 Počet stupňů volost (sv) je pro čtyřpolí tabulku vždy. C 0 0 D PŘÍKLAD Požadavky z Metodologe odboré práce ezvládl v prvím roce studa ásledující studet a studetky. Je mez m rozdíl? Je úspěšost v Metodolog odboré práce ovlvěa pohlavím? Tabulka 9. Čtyřpolí tabulka výpočet 0 0.roč. SP Zvládl Nezvládl Σ TVS Žey 45 (47,) 8 (5,89) 53 Muž 3 (8,89) 4 (6,) 45 Σ 76 98

a) Postup výpočtu statstcké výzamost 76*53 *53 A 0 47, B 0 5, 89 98 98 76*45 * 45 C 0 8, 89 D 0 6, 98 98 (45 47,) χ² 47, (8 5,89) 5,89 (3 8,89) 8,89 (4 6,) 6,,6 χ²,6 Krtcká hodota odečteá z tabulky A pro sv je χ 3, 84 0,05 Protože je ám vypočítaá hodota žší ež krtcká hodota, emůžeme zamítout ulovou hypotézu. Rozdíl mez studety a studetkam eí statstcky výzamý, úspěšost v Metodologe odboré práce tedy eí ovlvěa pohlavím. Věcá výzamost se epočítá! Příklad pouze k procvčeí: b) Postup výpočtu věcé výzamost (effect sze) Cramerovo φ se hodotí ásledově: φ 0,0 0,9...malý efekt φ 0,30 0,49... středí efekt φ 0,50 a více...velký efekt Vypočítaou hodotu φ ásobíme 00 a uvádíme j tak v % vypočítá se podle vzorce pro parcálí korelac χ vypočítaá hodota rozsah souboru χ φ,6 0,077 98 Výsledek je meší ež 0,0 a proto je sledovaý rozdíl věcě evýzamý. PŘÍKLAD Čtyřpolí tabulka pro malé četost přchází v úvahu, jestlže v ěkterém políčku je četost meší ežl 5, ebo jestlže je celkové meší ež 0. Provádíme pak úpravu emprckých četostí tak, že k ejmeší hodotě přčteme 0,5 a ostatí četost upravíme tak, aby součty zůstaly ezměěy (Tabulky 0 a ). Výpočet je shodý s předcházejícím příkladem. 3

Tabulka 0. - výpočet s meším daty, úprava tabulky..postup.postup Σ Udělal 0 Neudělal 3 5 8 Σ 3 7 0 Tabulka. Upraveá tabulka.postup.postup Σ Udělal 9,5,5 Neudělal 3,5 4,5 8 Σ 3 7 0 a) Postup výpočtu statstcké výzamost Výpočet: A 0 7,8 B 0 4, C 0 5, D 0,8 χ ( A A ) ( B B ) ( C C ) ( D D ) A 0 0 B 0 0 C 0 0 D 0 0 χ,65 χ 3, 84 0,05 Rozdíl je statstcky evýzamý př hladě výzamost α 0, 05. Věcá výzamost se epočítá. Příklad k procvčeí Posuďte, který ze studjích oborů lépe zvládl zkoušku z Atropomotorky, jestlže v roce 0 zkoušku udělal je určtý počet studetů. (Řešte statstckou věcou výzamost.) Hodoty jsou uvedey v tabulce. Tabulka. Zkouška z atropomotorky KÓD SO Zvládl Nezvládl Σ 6 6 0398 8 4 Σ 3.. Kotgečí tabulka a) Testovací krterum r s ( pj oj ) χ o j Kde p j pozorovaá četost -té kategore, o j očekávaá četost -té kategore Počet stupňů volost: sv (r-) * (s-), kde r počet řádků tabulky, s počet sloupců tabulky j 4

PŘÍKLAD Zajímá ás, zda jsou zámky ze zkoušky z Atropomotorky u jedotlvých studjích oborů shodě rozložeé ( H 0 ). Tabulka 3. Kotgečí tabulka - výpočet Kód oboru/ zámka 0398 603 640 6 Výborě Velm dobře Dobře Nevyhověl Σ (,66) 4 (,0) 0 (,09) (,05) 0 (7,33) 8 (5,9) 4 (4,78) 8 (4,60) (0,33) 7 (7,45) 8 (6,73) 7 (6,48) 9 (3,66) 4 43 (7,06) 9 3 (5,4) 8 (4,86) 6 7 Σ 5 3 7 9 a) Postup výpočtu statstcké výzamost j * j okrajový součet -tého řádku okrajový součet j-tého sloupce j celkový součet všech případů Vzorec: r s ( pj oj ) χ o j j χ ( 4,66 ) ( 8 7,33) ( 7 0,33) ( 4 3,66) ( 0,0) ( 4 5,9),66 ( 8 7,45) ( 9 7,06) (,09) ( 8 4,78) ( 7 6,73) ( 5,4) 7,45 7,33 7,06 0,33,09 3,66 4,78,0 6,73 5,9 5,4 (0,05),05 ( 4,60) 4,60 (9 6,48) 6,48 (6 4,86) 4,86,73 ( ) * ( 4 ) 9 6, 9 sv χ - krtcká hodota pro α 0, 05 z tabulky A 4 0, 05 5

Vypočteá hodota je meší ež tabulková krtcká a elze zamítout ulovou hypotézu. Zjšťujeme, že zámky z Atropomotorky u jedotlvých studjích oborů jsou shodě rozložeé, věcá výzamost se epočítá. Příklad vychází z praxe, proto jsme zachoval četost podle skutečost. Př postupu však doporučujeme sloučeí kategorí zámek výborě a velm dobře do jedé kategore. Příklad pouze k procvčeí: b) Postup výpočtu věcé výzamost (effect sze) Postup výpočtu věcé výzamost (effect sze) v tomto případě η χ vypočítá se podle vzorce pro parcálí korelac : η ( sv) χ vypočítaá hodota rozsah souboru sv stupě volost η (eta) se hodotí ásledově: η 0,0 0,059...malý efekt η 0,06 0,39 středí efekt η 0,4 a více velký efekt,73 0,00 9*9 Výsledek se blíží hodotě 0,0 a proto lze hovořt o malém efektu. Příklad pro procvčeí: Zajímá ás, zda počet studetů, kteří evyhověl ze zkoušky z Atropomotorky u jedotlvých studjích oborů, je shodě rozložeý ( H 0 ). Tabulka 4. Hodoceí zkoušky z Atropomotorky Kód oboru/ zámka Nevyhověl Vyhověl Σ 0398 4 9 603 9 640 6 6 6 Σ 6

3.. 3 Početí postupy s procety Předpokladem je, že je větší ež 0 (je zřejmé, že procetí počet získaý z šetřeí méě ež 0-t osob je espolehlvým údajem). b p v * 00 b část souboru, kterou chceme vyjádřt v procetech Iterval spolehlvost pro procetový údaj: Výpočet provádíme z hodot výběrového proceta, který chceme zevšeobect, a z rozsahu výběru. V úvahu bereme pravděpodobost, se kterou budeme šíř tervalu posuzovat. Iterval spolehlvost je dá vztahem: IS(%) p v ± t p ( 00 p ) v v p * v p výběrové proceto stadardzovaého ormálího rozděleí a hodoty t p odpovídají stadardzovaému ormálímu rozděleí (tj. př α0,05 je 0, 05 t,96, resp. př α0,0 je t 0, 0,58) PŘÍKLAD Praktckou přjímací zkoušku z Tělesé výchovy spllo 0 uchazečů o studum studjího oboru TVS (40). Zajímá ás kolk je to procet? p 0 v * 00 78,57 % 40 Vypočítal jsme tedy, že praktckou přjímací zkoušku z Tělesé výchovy spllo 78,57 % uchazečů o studum studjího oboru TVS. Chceme zjstt terval, ve kterém se alézá ezámé proceto všech uchazečů o studum studjího oboru TVS (základího souboru). IS(78,57 %) ( 00 78,57 ) 78,57 78,57 ±,96 * 78,57 ±,07 40 S 95% spolehlvostí je v populac uchazečů 66,543 % až 90,597 % těch, kteří splí praktckou přjímací zkoušku. Testováí dvou výběrových procetových hodot Testováí dvou výběrových procetových hodot je obdobou testováí výzamost dvou výběrových průměrů, eboť používáme stejého prcpu stejého testovacího krtéra. Zajímá ás, zda rozdíl mez procetuálím hodotam je áhodý č kolv? 7

Výpočet testovacího krtéra t je dá vztahem: p p * t * p ( 00 p ) S s kde rozsah prvího výběru rozsah druhého výběru p proceto prvího výběru p proceto druhého výběru p s odhad ezámé hodoty proceta základího souboru, kterou vypočteme podle vzorce p m m *00 S Symboly m m ozačují část souboru a, které testujeme (v absolutích číslech) PŘÍKLAD Praktckou přjímací zkoušku z Tělesé výchovy v roce 0 spllo 0, tj. 78,57 % uchazečů o studum studjího oboru TVS (40). V roce 00 to bylo 40 uchazečů o studum (00), tj. 70 %. Zajímá ás, zda rozdíl mez procetuálím hodotam je áhodý č kolv. a) Postup výpočtu statstcké výzamost p S 0 40 *00 40 00 50 *00 73,53 340 t 78,57 70 * 73,53(00 73,53) 40 * 00 40 00 8,55 44, *9,07,76 Srováím vypočteé hodoty t,76 s hodotou tabulkovou, kde t,96, kostatujeme, že ulovou hypotézu H 0 elze zamítout. Věcá výzamost se v tomto případě epočítá (testovaí byl vybráí a základě radomzovaého výběru). b) Postup výpočtu věcé výzamost (effect sze) Pro posouzeí věcé výzamost máme k dspozc mmálě tř dostupé ástroje:. Statstckou výzamost a určeé hladě výzamost, zpravdla α 0,05. Logcký úsudek, kdy předem staovíme mmálí hodotu velkost v jedotkách měřeí 3. Staoveí proceta velkost účku effect sze Zpracováo volě dle Blahuše, (000) 8

Postup výpočtu výzamost (effect sze) t vypočítá se podle vzorce: ω t t vypočítaá hodota t testu, rozsah souborů a Krtéra hodoceí: ω 0, sledovaý vztah je výzamý ω * 00 procetuálí hodota Příklad k procvčeí: V roce 0 dosáhlo v prvím roce studa v Iowa Brace testu 80 studetů. ročíku studjího programu TVS hodoceí 6 bodů a více, což bylo 40 % ( 00). Rok předtím to bylo 60 studetů. ročíku studjího programu TVS, což bylo 50 % ( 0). Zajímá ás, zda rozdíl mez procetuálím hodotam je áhodý č kolv. 3.. 4 Ma Whtey U test (dále je Ma Whtey) Jak jž bylo zmíěo, za ezávslé soubory považujeme apříklad porováváí výkoů ve skoku do dálky z místa u chlapců a dívek, tedy dvou růzých skup probadů. Pro volbu testu je důležté s uvědomt, jaké zaky porováváme. Pokud porováváme omálí (ěkdy ordálí) zaky, používáme pro prokázáí procetuálích rozdílů χ². V případě, že zjšťujeme rozdíly ve výkou ve vrhu koulí u skupy a skupy, tedy dvou růzých souborů používáme Ma Whtey U test. V případě, že je třeba porovat více ež dva soubory, používáme Kruskall-Wallsův test. Neí podmíkou, aby byly oba soubory početě vyrovaé. Pokud by byly výkoy ve vrhu koulí ormálě rozděleé, použl bychom pro prokázáí rozdílů t-test. Nelze-l však usuzovat a ormálí rozděleí výkoů, používáme právě Ma Whtey test. Test porovává medáy ve dvou ezávslých souborech. Testovaé hypotézy jsou ásledující: H 0 : Medáy obou souborů se rovají. H : Medáy obou souborů jsou odlšé. Postup výpočtu v programu STATISTICA eparametrcké testy vybrat soubory a proměou vypočítat (hodota p vyjadřuje pravděpodobost chyby př zamítutí ulové hypotézy). 9

Tabulka 5. Výkoy ve vrhu koulí v cm Skupa Skupa 886 776 99 547 997 887 857 993 654 569 534 449 765 943 458 659 99 499 667 668 994 865 995 599 Postup př výpočtu je ásledující. Pokud ejsou soubory početě vyrovaé, tak je soubor s větším rozsahem ozače jako, soubor s meším rozsahem jako soubor. Ke každému výkou je přřazeo pořadí bez ohledu a příslušost souboru. Sečtou se všecha pořadí hodot ze souboru, a tuto hodotu ozačíme jako S.V ašem případě jsme ke každému výkou přřadl pořadí. Pořadí je uvedeo v tabulce 6. Tabulka 6. Výkoy ve vrhu koulí a staoveé pořadí Skupa Celkové pořadí Skupa Celkové pořadí 886 6 776 3 99 0 547 5 997 4 887 7 857 4 993 654 8 569 6 534 4 449 765 943 8 458 659 9 99 9 499 3 667 0 668 994 865 5 995 3 599 7 Postup př výpočtu je ásledující: Sečteme pořadí zvlášť pro závodíků ze skupy a skupy. Skupa : součet pořadí S 74, rozsah výběru. Skupa : součet pořadí S 6, rozsah výběru. 0

Vypočítáme testové statstky U a U, kde U U S S ( ) *3 74 ( ) *3 6 96 48 Zvolíme hladu výzamost α 0, 05 a v tabulce A alezeme krtckou hodotu pro aše rozsahy výběrů a. Nulovou hypotézu zamíteme, pokud meší z čísel U a U je meší ež krtcká hodota. V ašem případě je alezeá krtcká hodota 37 ( a, α 0, 05 ; tabulka A ) a meší z čísel U a U je U 48. Protože je krtcká hodota žší ež U (37<48), emůžeme zamítat ulovou hypotézu. Závěr je, že jsme u těchto dvou skup ealezl statstcky výzamý rozdíl. Příklad k procvčeí: Zjstěte, zda exstuje statstcky výzamý rozdíl mez skupou a skupou v době tráveé pohybovou aktvtou (dále je PA za měsíc). Skupa uvádí tyto hodoty PA za měsíc: 3, 4, 6, 9, 4, 7, 4, 6, 6, 7, 5, 5, 7, 5, 7, 7,,, 5, 3, 4, 8, 3, 4, 3, 6,, 4, 4, 3. Skupa uvádí tyto hodoty PA za měsíc: 3, 0, 4,,, 3, 7, 8, 3, 0, 6, 6, 5, 6, 3,, 9, 5, 5,, 6, 8, 5, 5, 4,,, 5, 6. 3.. 5 Kruskal - Wallsův test V případě, že je třeba porovat více ež dva soubory a elze usuzovat a ormálí rozděleí, použjeme pro prokázáí rozdílů v jedotlvých skupách Kruskall Walllsův test. Test je eparametrckou aalogí jedofaktorové aalýzy rozptylu, a právě proto se mu ěkdy přezdívá eparametrcká ANOVA. Základí podmíky použtí: Měrá stupce je přejmeším ordálí Všechy hodoty jsou zjštěy u áhodých výběrů 3 Normalta eí vyžadováa Testovým krtérem je hodota H, která se vypočítá podle R vzorce H 3( ) ( ) ), kde: celková četost všech hodot R součet pořadí v jedotlvých skupách četost hodot v jedotlvých skupách