FBI VŠB-TUO 28. března 2014
4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y = f (x) a jejími derivacemi do řádu n. Definice 4.2. Řádem diferenciální rovnice nazýváme řád nejvyšší derivace hledané funkce v dané rovnici. Definice 4.3. Řešením diferenciální rovnice nazýváme každou funkci, která vyhovuje dané rovnici. Definice 4.4. Graf konkrétního řešení se nazývá integrální křivka.
4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y = f (x) a jejími derivacemi do řádu n. Definice 4.2. Řádem diferenciální rovnice nazýváme řád nejvyšší derivace hledané funkce v dané rovnici. Definice 4.3. Řešením diferenciální rovnice nazýváme každou funkci, která vyhovuje dané rovnici. Definice 4.4. Graf konkrétního řešení se nazývá integrální křivka.
4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y = f (x) a jejími derivacemi do řádu n. Definice 4.2. Řádem diferenciální rovnice nazýváme řád nejvyšší derivace hledané funkce v dané rovnici. Definice 4.3. Řešením diferenciální rovnice nazýváme každou funkci, která vyhovuje dané rovnici. Definice 4.4. Graf konkrétního řešení se nazývá integrální křivka.
4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y = f (x) a jejími derivacemi do řádu n. Definice 4.2. Řádem diferenciální rovnice nazýváme řád nejvyšší derivace hledané funkce v dané rovnici. Definice 4.3. Řešením diferenciální rovnice nazýváme každou funkci, která vyhovuje dané rovnici. Definice 4.4. Graf konkrétního řešení se nazývá integrální křivka.
Druhy řešení diferenciální rovnice n-tého řádu Mějme obyčejnou diferenciální rovnici n-tého řádu ve tvaru F (x, y, y, y,..., y (n) ) = 0. 1 Obecným řešením diferenciální rovnice nazýváme funkci, která může být v implicitním tvaru φ(x, y, C 1, C 2,..., C n) = 0 nebo explicitním tvaru y = ϕ(x, C 1, C 2,..., C n). Čísla C 1, C 2,..., C n jsou obecné integrační konstanty. 2 Partikulárním řešením diferenciální rovnice nazýváme řešení, které dostaneme z obecného, jestliže za konstanty dosadíme určitá reálná čísla nebo když všechny konstanty vypočteme z daných podmínek, tzv. počáteční (Cauchyho) úlohy. 3 Singulárním řešením diferenciální rovnice nazýváme takové řešení rovnice, které není obsaženo v obecném řešení, i když za konstanty C 1, C 2,..., C n dosadíme jakákoli čísla.
Druhy řešení diferenciální rovnice n-tého řádu Mějme obyčejnou diferenciální rovnici n-tého řádu ve tvaru F (x, y, y, y,..., y (n) ) = 0. 1 Obecným řešením diferenciální rovnice nazýváme funkci, která může být v implicitním tvaru φ(x, y, C 1, C 2,..., C n) = 0 nebo explicitním tvaru y = ϕ(x, C 1, C 2,..., C n). Čísla C 1, C 2,..., C n jsou obecné integrační konstanty. 2 Partikulárním řešením diferenciální rovnice nazýváme řešení, které dostaneme z obecného, jestliže za konstanty dosadíme určitá reálná čísla nebo když všechny konstanty vypočteme z daných podmínek, tzv. počáteční (Cauchyho) úlohy. 3 Singulárním řešením diferenciální rovnice nazýváme takové řešení rovnice, které není obsaženo v obecném řešení, i když za konstanty C 1, C 2,..., C n dosadíme jakákoli čísla.
Druhy řešení diferenciální rovnice n-tého řádu Mějme obyčejnou diferenciální rovnici n-tého řádu ve tvaru F (x, y, y, y,..., y (n) ) = 0. 1 Obecným řešením diferenciální rovnice nazýváme funkci, která může být v implicitním tvaru φ(x, y, C 1, C 2,..., C n) = 0 nebo explicitním tvaru y = ϕ(x, C 1, C 2,..., C n). Čísla C 1, C 2,..., C n jsou obecné integrační konstanty. 2 Partikulárním řešením diferenciální rovnice nazýváme řešení, které dostaneme z obecného, jestliže za konstanty dosadíme určitá reálná čísla nebo když všechny konstanty vypočteme z daných podmínek, tzv. počáteční (Cauchyho) úlohy. 3 Singulárním řešením diferenciální rovnice nazýváme takové řešení rovnice, které není obsaženo v obecném řešení, i když za konstanty C 1, C 2,..., C n dosadíme jakákoli čísla.
Druhy řešení diferenciální rovnice n-tého řádu Příklad 4.1. Určete obecné řešení diferenciální rovnice y = x. Určete partikulární řešení diferenciální rovnice y = x za podmínky y(0) = 0, y (0) = 10. Řešte diferenciální rovnici (y x)y = (y x) sin x. V našem kurzu se budeme zabývat pouze obecným a partikulárním řešením diferenciálních rovnic.
Druhy řešení diferenciální rovnice n-tého řádu Příklad 4.1. Určete obecné řešení diferenciální rovnice y = x. Určete partikulární řešení diferenciální rovnice y = x za podmínky y(0) = 0, y (0) = 10. Řešte diferenciální rovnici (y x)y = (y x) sin x. V našem kurzu se budeme zabývat pouze obecným a partikulárním řešením diferenciálních rovnic.
Druhy řešení diferenciální rovnice n-tého řádu Příklad 4.1. Určete obecné řešení diferenciální rovnice y = x. Určete partikulární řešení diferenciální rovnice y = x za podmínky y(0) = 0, y (0) = 10. Řešte diferenciální rovnici (y x)y = (y x) sin x. V našem kurzu se budeme zabývat pouze obecným a partikulárním řešením diferenciálních rovnic.
Druhy řešení diferenciální rovnice n-tého řádu Příklad 4.1. Určete obecné řešení diferenciální rovnice y = x. Určete partikulární řešení diferenciální rovnice y = x za podmínky y(0) = 0, y (0) = 10. Řešte diferenciální rovnici (y x)y = (y x) sin x. V našem kurzu se budeme zabývat pouze obecným a partikulárním řešením diferenciálních rovnic.
4.2. Diferenciální rovnice prvního řádu Diferenciální rovnice prvního řádu má tvar F (x, y, y ) = 0 nebo y = f (x, y). Obecné řešení: funkce jedné proměnné v explicitním tvaru y = φ(x, C) nebo implicitně φ(x, y, C) = 0. Graficky je řešením systém integrálních křivek. Volbou za konstantu C dostáváme konkrétní integrální křivku. Příklad 4.2. Určete systém integrálních křivek diferenciální rovnice y = 2x a partikulární řešení při počáteční podmínce y(1) = 2.
4.2. Diferenciální rovnice prvního řádu Diferenciální rovnice prvního řádu má tvar F (x, y, y ) = 0 nebo y = f (x, y). Obecné řešení: funkce jedné proměnné v explicitním tvaru y = φ(x, C) nebo implicitně φ(x, y, C) = 0. Graficky je řešením systém integrálních křivek. Volbou za konstantu C dostáváme konkrétní integrální křivku. Příklad 4.2. Určete systém integrálních křivek diferenciální rovnice y = 2x a partikulární řešení při počáteční podmínce y(1) = 2.
4.2. Diferenciální rovnice prvního řádu Diferenciální rovnice prvního řádu má tvar F (x, y, y ) = 0 nebo y = f (x, y). Obecné řešení: funkce jedné proměnné v explicitním tvaru y = φ(x, C) nebo implicitně φ(x, y, C) = 0. Graficky je řešením systém integrálních křivek. Volbou za konstantu C dostáváme konkrétní integrální křivku. Příklad 4.2. Určete systém integrálních křivek diferenciální rovnice y = 2x a partikulární řešení při počáteční podmínce y(1) = 2.
4.2. Diferenciální rovnice prvního řádu Diferenciální rovnice prvního řádu má tvar F (x, y, y ) = 0 nebo y = f (x, y). Obecné řešení: funkce jedné proměnné v explicitním tvaru y = φ(x, C) nebo implicitně φ(x, y, C) = 0. Graficky je řešením systém integrálních křivek. Volbou za konstantu C dostáváme konkrétní integrální křivku. Příklad 4.2. Určete systém integrálních křivek diferenciální rovnice y = 2x a partikulární řešení při počáteční podmínce y(1) = 2.
4.3. Separovatelná diferenciální rovnice Definice 4.5. Diferenciální rovnice ve tvaru P(x) + Q(y)y = 0 se nazývá separovatelná diferenciální rovnice. Separovatelná diferenciální rovnice se často píše ve tvaru P(x)dx + Q(y)dy = 0. Věta 4.1. Necht P(x), Q(y) jsou spojité funkce. Potom každé řešení separovatelné rovnice má tvar P(x)dx + Q(y)dy = C. Poznámka Vypočítané obecné řešení někdy upravujeme, zejména když integrací vznikla logaritmická funkce. Integrační konstantu často uvažujeme ve tvaru ln C.
4.3. Separovatelná diferenciální rovnice Definice 4.5. Diferenciální rovnice ve tvaru P(x) + Q(y)y = 0 se nazývá separovatelná diferenciální rovnice. Separovatelná diferenciální rovnice se často píše ve tvaru P(x)dx + Q(y)dy = 0. Věta 4.1. Necht P(x), Q(y) jsou spojité funkce. Potom každé řešení separovatelné rovnice má tvar P(x)dx + Q(y)dy = C. Poznámka Vypočítané obecné řešení někdy upravujeme, zejména když integrací vznikla logaritmická funkce. Integrační konstantu často uvažujeme ve tvaru ln C.
4.3. Separovatelná diferenciální rovnice Příklad 4.3. Určete obecné řešení diferenciální rovnice x 2 + 1 + y cos y = 0. Určete obecné řešení diferenciální rovnice 1 y 2 2xyy = 0. Určete partikulární řešení diferenciální rovnice y + y cotg x = 0 za podmínky y( π 2 ) = 1.
4.3. Separovatelná diferenciální rovnice Příklad 4.3. Určete obecné řešení diferenciální rovnice x 2 + 1 + y cos y = 0. Určete obecné řešení diferenciální rovnice 1 y 2 2xyy = 0. Určete partikulární řešení diferenciální rovnice y + y cotg x = 0 za podmínky y( π 2 ) = 1.
4.3. Separovatelná diferenciální rovnice Příklad 4.3. Určete obecné řešení diferenciální rovnice x 2 + 1 + y cos y = 0. Určete obecné řešení diferenciální rovnice 1 y 2 2xyy = 0. Určete partikulární řešení diferenciální rovnice y + y cotg x = 0 za podmínky y( π 2 ) = 1.
4.4. Homogenní diferenciální rovnice Definice 4.6. Necht je dána funkce dvou proměnných f (x, y). Tuto funkci nazýváme homogenní funkcí k-tého stupně, jestliže pro ni platí f (tx, ty) = t k f (x, y). Příklad 4.4. Zjistěte, zda jsou homogenní funkce: f (x, y) = x 3 + xy 2, f (x, y) = x 2 + y. Definice 4.7. Diferenciální rovnici ve tvaru M(x, y)dx + N(x, y)dy = 0 nazýváme homogenní diferenciální rovnicí, jestliže M(x, y), N(x, y) jsou homogenní funkce stejného stupně. Poznámka Homogenní rovnici můžeme vidět i ve tvaru y = F (x,y) G(x,y), kde F (x, y), G(x, y) jsou homogenní funkce, nebo y = f ( y x ).
4.4. Homogenní diferenciální rovnice Definice 4.6. Necht je dána funkce dvou proměnných f (x, y). Tuto funkci nazýváme homogenní funkcí k-tého stupně, jestliže pro ni platí f (tx, ty) = t k f (x, y). Příklad 4.4. Zjistěte, zda jsou homogenní funkce: f (x, y) = x 3 + xy 2, f (x, y) = x 2 + y. Definice 4.7. Diferenciální rovnici ve tvaru M(x, y)dx + N(x, y)dy = 0 nazýváme homogenní diferenciální rovnicí, jestliže M(x, y), N(x, y) jsou homogenní funkce stejného stupně. Poznámka Homogenní rovnici můžeme vidět i ve tvaru y = F (x,y) G(x,y), kde F (x, y), G(x, y) jsou homogenní funkce, nebo y = f ( y x ).
4.4. Homogenní diferenciální rovnice Definice 4.6. Necht je dána funkce dvou proměnných f (x, y). Tuto funkci nazýváme homogenní funkcí k-tého stupně, jestliže pro ni platí f (tx, ty) = t k f (x, y). Příklad 4.4. Zjistěte, zda jsou homogenní funkce: f (x, y) = x 3 + xy 2, f (x, y) = x 2 + y. Definice 4.7. Diferenciální rovnici ve tvaru M(x, y)dx + N(x, y)dy = 0 nazýváme homogenní diferenciální rovnicí, jestliže M(x, y), N(x, y) jsou homogenní funkce stejného stupně. Poznámka Homogenní rovnici můžeme vidět i ve tvaru y = F (x,y) G(x,y), kde F (x, y), G(x, y) jsou homogenní funkce, nebo y = f ( y x ).
4.4. Homogenní diferenciální rovnice Definice 4.6. Necht je dána funkce dvou proměnných f (x, y). Tuto funkci nazýváme homogenní funkcí k-tého stupně, jestliže pro ni platí f (tx, ty) = t k f (x, y). Příklad 4.4. Zjistěte, zda jsou homogenní funkce: f (x, y) = x 3 + xy 2, f (x, y) = x 2 + y. Definice 4.7. Diferenciální rovnici ve tvaru M(x, y)dx + N(x, y)dy = 0 nazýváme homogenní diferenciální rovnicí, jestliže M(x, y), N(x, y) jsou homogenní funkce stejného stupně. Poznámka Homogenní rovnici můžeme vidět i ve tvaru y = F (x,y) G(x,y), kde F (x, y), G(x, y) jsou homogenní funkce, nebo y = f ( y x ).
4.4. Homogenní diferenciální rovnice Řešení: Homogenní diferenciální rovnici řešíme substitucí. Zavádíme novou funkci z = y x y = zx y = z x + z. Po dosazení dostaneme rovnici pro neznámou funkci z(x), která je separovatelná. Po vyřešení rovnice a nalezení obecného řešení separovatelné rovnice dosadíme zpět podíl z = y x a dopočítáme. Příklad 4.5. Určete obecné řešení diferenciálních rovnic: xy = y ln y x, y = 2xy x 2 y 2.
4.4. Homogenní diferenciální rovnice Řešení: Homogenní diferenciální rovnici řešíme substitucí. Zavádíme novou funkci z = y x y = zx y = z x + z. Po dosazení dostaneme rovnici pro neznámou funkci z(x), která je separovatelná. Po vyřešení rovnice a nalezení obecného řešení separovatelné rovnice dosadíme zpět podíl z = y x a dopočítáme. Příklad 4.5. Určete obecné řešení diferenciálních rovnic: xy = y ln y x, y = 2xy x 2 y 2.
4.4. Homogenní diferenciální rovnice Řešení: Homogenní diferenciální rovnici řešíme substitucí. Zavádíme novou funkci z = y x y = zx y = z x + z. Po dosazení dostaneme rovnici pro neznámou funkci z(x), která je separovatelná. Po vyřešení rovnice a nalezení obecného řešení separovatelné rovnice dosadíme zpět podíl z = y x a dopočítáme. Příklad 4.5. Určete obecné řešení diferenciálních rovnic: xy = y ln y x, y = 2xy x 2 y 2.
4.5. Lineární diferenciální rovnice 1. řádu Definice 4.8. Lineární diferenciální rovnicí 1. řádu nazýváme rovnici tvaru y + p(x)y = q(x), kde p(x), q(x) jsou spojité funkce proměnné x na intervalu I. Je-li q(x) = 0, pak rovnici y + p(x)y = 0 nazýváme zkrácenou lineární diferenciální rovnicí 1. řádu.
Postup řešení - metoda variace konstanty 1 Řešíme zkrácenou rovnici, která je vždy rovnicí separovatelnou a řešení napíšeme ve tvaru y = Cu(x), kde u(x) = e p(x)dx. 2 Ve funkci y = Cu(x) provedeme změnu (variaci) konstanty C na funkci C(x) proměnné x a obecné řešení hledáme ve tvaru y = C(x)u(x). 3 Dosazením funkce y = C(x)u(x) a její derivace y = C (x)u(x) + C(x)u (x) do zadané lineární diferenciální rovnice získáme rovnici pro derivaci neznámé funkce C (x). Členy obsahující C(x) se vzájemně odečtou. 4 Integrujeme a vypočítanou funkci C(x) dosadíme do řešení zkrácené rovnice. Výsledkem je obecné řešení lineární diferenciální rovnice. Příklad 4.6. Určete obecné řešení rovnice (1 + x 2 )y 2xy = (1 + x 2 ) 2. Určete obecné řešení rovnice xy 3y = x 2. Určete partikulární řešení rovnice 1 y xy = x při počáteční podmínce 2 y(0) = 7. Určete partikulární řešení rovnice y y tg x = 1 při počáteční cos x podmínce y(0) = 0.
Postup řešení - metoda variace konstanty 1 Řešíme zkrácenou rovnici, která je vždy rovnicí separovatelnou a řešení napíšeme ve tvaru y = Cu(x), kde u(x) = e p(x)dx. 2 Ve funkci y = Cu(x) provedeme změnu (variaci) konstanty C na funkci C(x) proměnné x a obecné řešení hledáme ve tvaru y = C(x)u(x). 3 Dosazením funkce y = C(x)u(x) a její derivace y = C (x)u(x) + C(x)u (x) do zadané lineární diferenciální rovnice získáme rovnici pro derivaci neznámé funkce C (x). Členy obsahující C(x) se vzájemně odečtou. 4 Integrujeme a vypočítanou funkci C(x) dosadíme do řešení zkrácené rovnice. Výsledkem je obecné řešení lineární diferenciální rovnice. Příklad 4.6. Určete obecné řešení rovnice (1 + x 2 )y 2xy = (1 + x 2 ) 2. Určete obecné řešení rovnice xy 3y = x 2. Určete partikulární řešení rovnice 1 y xy = x při počáteční podmínce 2 y(0) = 7. Určete partikulární řešení rovnice y y tg x = 1 při počáteční cos x podmínce y(0) = 0.
Postup řešení - metoda variace konstanty 1 Řešíme zkrácenou rovnici, která je vždy rovnicí separovatelnou a řešení napíšeme ve tvaru y = Cu(x), kde u(x) = e p(x)dx. 2 Ve funkci y = Cu(x) provedeme změnu (variaci) konstanty C na funkci C(x) proměnné x a obecné řešení hledáme ve tvaru y = C(x)u(x). 3 Dosazením funkce y = C(x)u(x) a její derivace y = C (x)u(x) + C(x)u (x) do zadané lineární diferenciální rovnice získáme rovnici pro derivaci neznámé funkce C (x). Členy obsahující C(x) se vzájemně odečtou. 4 Integrujeme a vypočítanou funkci C(x) dosadíme do řešení zkrácené rovnice. Výsledkem je obecné řešení lineární diferenciální rovnice. Příklad 4.6. Určete obecné řešení rovnice (1 + x 2 )y 2xy = (1 + x 2 ) 2. Určete obecné řešení rovnice xy 3y = x 2. Určete partikulární řešení rovnice 1 y xy = x při počáteční podmínce 2 y(0) = 7. Určete partikulární řešení rovnice y y tg x = 1 při počáteční cos x podmínce y(0) = 0.
Postup řešení - metoda variace konstanty 1 Řešíme zkrácenou rovnici, která je vždy rovnicí separovatelnou a řešení napíšeme ve tvaru y = Cu(x), kde u(x) = e p(x)dx. 2 Ve funkci y = Cu(x) provedeme změnu (variaci) konstanty C na funkci C(x) proměnné x a obecné řešení hledáme ve tvaru y = C(x)u(x). 3 Dosazením funkce y = C(x)u(x) a její derivace y = C (x)u(x) + C(x)u (x) do zadané lineární diferenciální rovnice získáme rovnici pro derivaci neznámé funkce C (x). Členy obsahující C(x) se vzájemně odečtou. 4 Integrujeme a vypočítanou funkci C(x) dosadíme do řešení zkrácené rovnice. Výsledkem je obecné řešení lineární diferenciální rovnice. Příklad 4.6. Určete obecné řešení rovnice (1 + x 2 )y 2xy = (1 + x 2 ) 2. Určete obecné řešení rovnice xy 3y = x 2. Určete partikulární řešení rovnice 1 y xy = x při počáteční podmínce 2 y(0) = 7. Určete partikulární řešení rovnice y y tg x = 1 při počáteční cos x podmínce y(0) = 0.
Postup řešení - metoda variace konstanty 1 Řešíme zkrácenou rovnici, která je vždy rovnicí separovatelnou a řešení napíšeme ve tvaru y = Cu(x), kde u(x) = e p(x)dx. 2 Ve funkci y = Cu(x) provedeme změnu (variaci) konstanty C na funkci C(x) proměnné x a obecné řešení hledáme ve tvaru y = C(x)u(x). 3 Dosazením funkce y = C(x)u(x) a její derivace y = C (x)u(x) + C(x)u (x) do zadané lineární diferenciální rovnice získáme rovnici pro derivaci neznámé funkce C (x). Členy obsahující C(x) se vzájemně odečtou. 4 Integrujeme a vypočítanou funkci C(x) dosadíme do řešení zkrácené rovnice. Výsledkem je obecné řešení lineární diferenciální rovnice. Příklad 4.6. Určete obecné řešení rovnice (1 + x 2 )y 2xy = (1 + x 2 ) 2. Určete obecné řešení rovnice xy 3y = x 2. Určete partikulární řešení rovnice 1 y xy = x při počáteční podmínce 2 y(0) = 7. Určete partikulární řešení rovnice y y tg x = 1 při počáteční cos x podmínce y(0) = 0.
Postup řešení - metoda variace konstanty 1 Řešíme zkrácenou rovnici, která je vždy rovnicí separovatelnou a řešení napíšeme ve tvaru y = Cu(x), kde u(x) = e p(x)dx. 2 Ve funkci y = Cu(x) provedeme změnu (variaci) konstanty C na funkci C(x) proměnné x a obecné řešení hledáme ve tvaru y = C(x)u(x). 3 Dosazením funkce y = C(x)u(x) a její derivace y = C (x)u(x) + C(x)u (x) do zadané lineární diferenciální rovnice získáme rovnici pro derivaci neznámé funkce C (x). Členy obsahující C(x) se vzájemně odečtou. 4 Integrujeme a vypočítanou funkci C(x) dosadíme do řešení zkrácené rovnice. Výsledkem je obecné řešení lineární diferenciální rovnice. Příklad 4.6. Určete obecné řešení rovnice (1 + x 2 )y 2xy = (1 + x 2 ) 2. Určete obecné řešení rovnice xy 3y = x 2. Určete partikulární řešení rovnice 1 y xy = x při počáteční podmínce 2 y(0) = 7. Určete partikulární řešení rovnice y y tg x = 1 při počáteční cos x podmínce y(0) = 0.
Postup řešení - metoda variace konstanty 1 Řešíme zkrácenou rovnici, která je vždy rovnicí separovatelnou a řešení napíšeme ve tvaru y = Cu(x), kde u(x) = e p(x)dx. 2 Ve funkci y = Cu(x) provedeme změnu (variaci) konstanty C na funkci C(x) proměnné x a obecné řešení hledáme ve tvaru y = C(x)u(x). 3 Dosazením funkce y = C(x)u(x) a její derivace y = C (x)u(x) + C(x)u (x) do zadané lineární diferenciální rovnice získáme rovnici pro derivaci neznámé funkce C (x). Členy obsahující C(x) se vzájemně odečtou. 4 Integrujeme a vypočítanou funkci C(x) dosadíme do řešení zkrácené rovnice. Výsledkem je obecné řešení lineární diferenciální rovnice. Příklad 4.6. Určete obecné řešení rovnice (1 + x 2 )y 2xy = (1 + x 2 ) 2. Určete obecné řešení rovnice xy 3y = x 2. Určete partikulární řešení rovnice 1 y xy = x při počáteční podmínce 2 y(0) = 7. Určete partikulární řešení rovnice y y tg x = 1 při počáteční cos x podmínce y(0) = 0.
Postup řešení - metoda variace konstanty 1 Řešíme zkrácenou rovnici, která je vždy rovnicí separovatelnou a řešení napíšeme ve tvaru y = Cu(x), kde u(x) = e p(x)dx. 2 Ve funkci y = Cu(x) provedeme změnu (variaci) konstanty C na funkci C(x) proměnné x a obecné řešení hledáme ve tvaru y = C(x)u(x). 3 Dosazením funkce y = C(x)u(x) a její derivace y = C (x)u(x) + C(x)u (x) do zadané lineární diferenciální rovnice získáme rovnici pro derivaci neznámé funkce C (x). Členy obsahující C(x) se vzájemně odečtou. 4 Integrujeme a vypočítanou funkci C(x) dosadíme do řešení zkrácené rovnice. Výsledkem je obecné řešení lineární diferenciální rovnice. Příklad 4.6. Určete obecné řešení rovnice (1 + x 2 )y 2xy = (1 + x 2 ) 2. Určete obecné řešení rovnice xy 3y = x 2. Určete partikulární řešení rovnice 1 y xy = x při počáteční podmínce 2 y(0) = 7. Určete partikulární řešení rovnice y y tg x = 1 při počáteční cos x podmínce y(0) = 0.
4.6. Lineární diferenciální rovnice 2. řádu s konstantními koeficienty Definice 4.9. Lineární diferenciální rovnicí 2. řádu s konstantními koeficienty nazýváme rovnici ve tvaru a 2 y + a 1 y + a 0 y = f (x), kde a 2, a 1, a 0 jsou konstanty a funkce f (x) je spojitá na intervalu I. Je-li f (x) = 0, mluvíme o zkrácené lineární diferenciální rovnicí 2. řádu s konstantními koeficienty.
4.6. Lineární diferenciální rovnice 2. řádu s konstantními koeficienty Definice 4.9. Lineární diferenciální rovnicí 2. řádu s konstantními koeficienty nazýváme rovnici ve tvaru a 2 y + a 1 y + a 0 y = f (x), kde a 2, a 1, a 0 jsou konstanty a funkce f (x) je spojitá na intervalu I. Je-li f (x) = 0, mluvíme o zkrácené lineární diferenciální rovnicí 2. řádu s konstantními koeficienty.
Řešení zkrácené lineární diferenciální rovnice 2. řádu Definice 4.10. Algebraickou rovnici a 2 k 2 + a 1 k + a 0 = 0 nazýváme charakteristickou rovnicí zkrácené lineární diferenciální rovnice. Věta 4.2. Necht zkrácená lineární diferenciální rovnice a 2 y + a 1 y + a 0 y = 0 má charakteristickou rovnici a 2 k 2 + a 1 k + a 0 = 0, jejíž kořeny jsou k 1, k 2. Pak obecné řešení zkrácené diferenciální rovnice je ve tvaru: 1 y = C 1 e k 1x + C 2 e k 2x, jestliže k 1, k 2 jsou reálné různé kořeny, 2 y = C 1 e kx + C 2 xe kx, jestliže k = k 1 = k 2 je dvojnásobný reálný kořen, 3 y = e ax (C 1 cos bx + C 2 sin bx), jestliže k 1, k 2 jsou komplexně sdružená čísla k 1,2 = a ± ib. Příklad 4.7. Určete obecné řešení rovnice y y 6y = 0, y 4y + 4y = 0, y + 6y + 13y = 0.
Řešení zkrácené lineární diferenciální rovnice 2. řádu Definice 4.10. Algebraickou rovnici a 2 k 2 + a 1 k + a 0 = 0 nazýváme charakteristickou rovnicí zkrácené lineární diferenciální rovnice. Věta 4.2. Necht zkrácená lineární diferenciální rovnice a 2 y + a 1 y + a 0 y = 0 má charakteristickou rovnici a 2 k 2 + a 1 k + a 0 = 0, jejíž kořeny jsou k 1, k 2. Pak obecné řešení zkrácené diferenciální rovnice je ve tvaru: 1 y = C 1 e k 1x + C 2 e k 2x, jestliže k 1, k 2 jsou reálné různé kořeny, 2 y = C 1 e kx + C 2 xe kx, jestliže k = k 1 = k 2 je dvojnásobný reálný kořen, 3 y = e ax (C 1 cos bx + C 2 sin bx), jestliže k 1, k 2 jsou komplexně sdružená čísla k 1,2 = a ± ib. Příklad 4.7. Určete obecné řešení rovnice y y 6y = 0, y 4y + 4y = 0, y + 6y + 13y = 0.
Řešení zkrácené lineární diferenciální rovnice 2. řádu Definice 4.10. Algebraickou rovnici a 2 k 2 + a 1 k + a 0 = 0 nazýváme charakteristickou rovnicí zkrácené lineární diferenciální rovnice. Věta 4.2. Necht zkrácená lineární diferenciální rovnice a 2 y + a 1 y + a 0 y = 0 má charakteristickou rovnici a 2 k 2 + a 1 k + a 0 = 0, jejíž kořeny jsou k 1, k 2. Pak obecné řešení zkrácené diferenciální rovnice je ve tvaru: 1 y = C 1 e k 1x + C 2 e k 2x, jestliže k 1, k 2 jsou reálné různé kořeny, 2 y = C 1 e kx + C 2 xe kx, jestliže k = k 1 = k 2 je dvojnásobný reálný kořen, 3 y = e ax (C 1 cos bx + C 2 sin bx), jestliže k 1, k 2 jsou komplexně sdružená čísla k 1,2 = a ± ib. Příklad 4.7. Určete obecné řešení rovnice y y 6y = 0, y 4y + 4y = 0, y + 6y + 13y = 0.
Řešení zkrácené lineární diferenciální rovnice 2. řádu Definice 4.10. Algebraickou rovnici a 2 k 2 + a 1 k + a 0 = 0 nazýváme charakteristickou rovnicí zkrácené lineární diferenciální rovnice. Věta 4.2. Necht zkrácená lineární diferenciální rovnice a 2 y + a 1 y + a 0 y = 0 má charakteristickou rovnici a 2 k 2 + a 1 k + a 0 = 0, jejíž kořeny jsou k 1, k 2. Pak obecné řešení zkrácené diferenciální rovnice je ve tvaru: 1 y = C 1 e k 1x + C 2 e k 2x, jestliže k 1, k 2 jsou reálné různé kořeny, 2 y = C 1 e kx + C 2 xe kx, jestliže k = k 1 = k 2 je dvojnásobný reálný kořen, 3 y = e ax (C 1 cos bx + C 2 sin bx), jestliže k 1, k 2 jsou komplexně sdružená čísla k 1,2 = a ± ib. Příklad 4.7. Určete obecné řešení rovnice y y 6y = 0, y 4y + 4y = 0, y + 6y + 13y = 0.
Řešení úplné lineární diferenciální rovnice 2. řádu Věta 4.3. Obecné řešení rovnice a 2 y + a 1 y + a 0 y = f (x) lze psát ve tvaru y = y 0 + ŷ, kde y 0 je obecné řešení zkrácené rovnice a ŷ(x) je partikulární řešení úplné rovnice příslušné pravé straně f (x). Poznámka Tvar partikulárního řešení ŷ(x) závisí na funkci f (x) a na kořenech charakteristické rovnice.
Řešení úplné lineární diferenciální rovnice 2. řádu Věta 4.3. Obecné řešení rovnice a 2 y + a 1 y + a 0 y = f (x) lze psát ve tvaru y = y 0 + ŷ, kde y 0 je obecné řešení zkrácené rovnice a ŷ(x) je partikulární řešení úplné rovnice příslušné pravé straně f (x). Poznámka Tvar partikulárního řešení ŷ(x) závisí na funkci f (x) a na kořenech charakteristické rovnice.
Speciální případy: 1. funkce f (x) = P(x) je polynom n-tého stupně 1 Pokud číslo p = 0 není kořenem charakteristické rovnice, pak partikulární řešení je ŷ = Q(x). 2 Je-li číslo p = 0 r-násobným (r = 1, 2) kořenem charakteristické rovnice, pak partikulární řešení je ŷ = x r Q(x). Funkce Q(x) = A 0 x n + A 1 x n 1 + A 2 x n 2 + + A n je polynom n-tého stupně. Koeficienty A 0, A 1, A 2,..., A n vypočteme po dosazení partikulárního řešení ŷ a jeho derivací ŷ, ŷ do dané rovnice a porovnáním koeficientů u mocnin x. Příklad 4.8. Určete obecné řešení rovnice y + y 2y = 6x 2, y + 3y = 9x.
Speciální případy: 1. funkce f (x) = P(x) je polynom n-tého stupně 1 Pokud číslo p = 0 není kořenem charakteristické rovnice, pak partikulární řešení je ŷ = Q(x). 2 Je-li číslo p = 0 r-násobným (r = 1, 2) kořenem charakteristické rovnice, pak partikulární řešení je ŷ = x r Q(x). Funkce Q(x) = A 0 x n + A 1 x n 1 + A 2 x n 2 + + A n je polynom n-tého stupně. Koeficienty A 0, A 1, A 2,..., A n vypočteme po dosazení partikulárního řešení ŷ a jeho derivací ŷ, ŷ do dané rovnice a porovnáním koeficientů u mocnin x. Příklad 4.8. Určete obecné řešení rovnice y + y 2y = 6x 2, y + 3y = 9x.
Speciální případy: 2. funkce f (x) = me px, kde m, p jsou konstanty 1 Není-li číslo p kořenem charakteristické rovnice, pak partikulární řešení má tvar ŷ = Ae px. 2 Je-li číslo p kořenem charakteristické rovnice s násobností r = 1, 2, pak partikulární řešení má tvar ŷ = Ax r e px. Konstantu A vypočteme po dosazení partikulárního řešení ŷ a jeho derivací ŷ, ŷ do dané rovnice. Příklad 4.9. Určete obecné řešení rovnice y 2y + y = e x, y y = e x.
Speciální případy: 2. funkce f (x) = me px, kde m, p jsou konstanty 1 Není-li číslo p kořenem charakteristické rovnice, pak partikulární řešení má tvar ŷ = Ae px. 2 Je-li číslo p kořenem charakteristické rovnice s násobností r = 1, 2, pak partikulární řešení má tvar ŷ = Ax r e px. Konstantu A vypočteme po dosazení partikulárního řešení ŷ a jeho derivací ŷ, ŷ do dané rovnice. Příklad 4.9. Určete obecné řešení rovnice y 2y + y = e x, y y = e x.
Speciální případy: 3. funkce f (x) = m cos qx + n sin qx, kde m, n, q jsou konstanty 1 Není-li číslo qi komplexním kořenem charakteristické rovnice, pak ŷ = A cos qx + B sin qx. 2 Je-li číslo qi komplexním kořenem charakteristické rovnice, pak ŷ = x(a cos qx + B sin qx). Podobně jako v předchozích situacích určíme konstanty A, B po dosazení partikulárního řešení ŷ a jeho derivací ŷ, ŷ do dané rovnice porovnáním koeficientů u členů cos qx, sin qx. Příklad 4.10. Určete obecné řešení rovnice y 3y + 2y = 5 sin 2x, y + y = 4 cos x 2 sin x.
Speciální případy: 3. funkce f (x) = m cos qx + n sin qx, kde m, n, q jsou konstanty 1 Není-li číslo qi komplexním kořenem charakteristické rovnice, pak ŷ = A cos qx + B sin qx. 2 Je-li číslo qi komplexním kořenem charakteristické rovnice, pak ŷ = x(a cos qx + B sin qx). Podobně jako v předchozích situacích určíme konstanty A, B po dosazení partikulárního řešení ŷ a jeho derivací ŷ, ŷ do dané rovnice porovnáním koeficientů u členů cos qx, sin qx. Příklad 4.10. Určete obecné řešení rovnice y 3y + 2y = 5 sin 2x, y + y = 4 cos x 2 sin x.