Posloupnosti a jejich konvergence POSLOUPNOSTI



Podobné dokumenty
Posloupnosti a jejich konvergence

PŘEDNÁŠKA 2 POSLOUPNOSTI

Požadavky k ústní části zkoušky Matematická analýza 1 ZS 2014/15

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

1 Topologie roviny a prostoru

Matematická analýza III.

1 Posloupnosti a řady.

1. Posloupnosti čísel

Matematická analýza pro informatiky I. Limita posloupnosti (I)

Posloupnosti a jejich konvergence POSLOUPNOSTI

Spojitost funkce. Spojitost je nejdůležitější obecná vlastnost funkcí. Umožňuje aproximace různých řešení.

To je samozřejmě základní pojem konvergence, ale v mnoha případech je příliš obecný a nestačí na dokazování některých užitečných tvrzení.

OBECNOSTI KONVERGENCE V R N

Vztah limity k aritmetickým operacím a uspořádání

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

Číselné posloupnosti

LEKCE10-RAD Otázky

Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital

Aplikovaná matematika I, NMAF071

KOMPLEXNÍ ČÍSLA A FUNKCE MNOŽINA KOMPLEXNÍCH ČÍSEL C. Alternativní popis komplexních čísel

Zavedení a vlastnosti reálných čísel

Přednáška 6, 6. listopadu 2013

Použití derivací L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT. Monotónie. Konvexita. V této části budou uvedena některá použití derivací.

Limita posloupnosti, limita funkce, spojitost. May 26, 2018

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

TEORIE MÍRY V některých předchozích kapitolách jste se setkali s měřením velikostí množin a víte, jaké byly těžkosti s měřením množin i na reálné ose.

Kapitola 1: Reálné funkce 1/20

Projekty - Úvod do funkcionální analýzy

Kapitola 1: Reálné funkce 1/13

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Reálné posloupnosti 1. Reálné posloupnosti

1 Množiny, výroky a číselné obory

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část

17. Posloupnosti a řady funkcí

Posloupnosti a řady. 28. listopadu 2015

11. Číselné a mocninné řady

MATEMATICKÁ ANALÝZA 1 - ZIMNÍ SEMESTR PŘEDNÁŠKA

Kapitola 1: Reálné funkce 1/13

MATEMATICKÁ ANALÝZA 1, NMMA101, ZIMNÍ SEMESTR POPIS PŘEDMĚTU A INFORMACE K ZÁPOČTU A KE ZKOUŠCE

Limita posloupnosti a funkce

Derivace funkce DERIVACE A SPOJITOST DERIVACE A KONSTRUKCE FUNKCÍ. Aritmetické operace

2. přednáška 8. října 2007

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Definice. Na množině R je dána relace ( R R), operace sčítání +, operace násobení a množina R obsahuje prvky 0 a 1 tak, že platí

FUNKCE POJEM, VLASTNOSTI, GRAF

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.

Funkce a základní pojmy popisující jejich chování

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2

Derivace funkce Otázky

Význam a výpočet derivace funkce a její užití

Číselné posloupnosti. H (å) a. a å

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina

Matematická analýza 1

Zimní semestr akademického roku 2014/ prosince 2014

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ

ŘADY KOMPLEXNÍCH FUNKCÍ

Limita a spojitost funkce

Matematická funkce. Kartézský součin. Zobrazení. Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí:

Kapitola 4: Průběh funkce 1/11

DEFINICE,VĚTYADŮKAZYKÚSTNÍZKOUŠCEZMAT.ANALÝZY 1a

Nekonečné číselné řady. January 21, 2015

Maturitní témata z matematiky

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.

9. Vícerozměrná integrace

Matematická analýza I Martin Klazar (Diferenciální počet funkcí jedné reálné proměnné)

Matematická analýza. L. Pick a J. Spurný

Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál

MATEMATIKA A Metodický list č. 1

K oddílu I.1 základní pojmy, normy, normované prostory

Doporučené příklady k Teorii množin, LS 2018/2019

Riemannův určitý integrál

Bakalářská matematika I

Michal Fusek. 10. přednáška z AMA1. Ústav matematiky FEKT VUT, Michal Fusek 1 / 62

Základy teorie množin

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183

Kapitola 4: Průběh funkce 1/11

Základy matematiky pro FEK

Teoretická informatika Tomáš Foltýnek Teorie čísel Nekonečno

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

Matematická analýza ve Vesmíru. Jiří Bouchala

Přednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce

Spojitost a limita funkce

STEJNOMĚRNÁ KONVERGENCE

Přednáška 6, 7. listopadu 2014

METRICKÉ A NORMOVANÉ PROSTORY

Funkce - pro třídu 1EB

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

9. Vícerozměrná integrace

2. FUNKCE JEDNÉ PROMĚNNÉ

MATURITNÍ TÉMATA Z MATEMATIKY

RNDr. Blanka Šedivá, PhD. Katedra matematiky FAV Západočeská univerzita v Plzni.

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že

Zobecněný Riemannův integrál

Očekávaný výstup Pracovní list se skládá ze dvou částí teoretické, kde si žák připomene vlastnosti funkcí a praktické, kde tyto funkce určuje.

INTEGRÁLY S PARAMETREM

Aplikovaná matematika 1 NMAF071, ZS

Transkript:

Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace, integrály. Těch daných hodnot musí být teoreticky) nekonečně mnoho a nejjednodušší případ je samozřejmě pro spočetně mnoho takových hodnot konvergence v tomto případě se pak nazývá konvergence posloupnosti. POSLOUPNOSTI Spočetné množiny se poznají tak, že se dají všechny její prvky přiřadit přirozeným číslům, každému číslu jeden prvek. Protože se s přirozenými čísly dobře pracuje, je vhodné za posloupnosti brát rovnou prvky indexované těmito čísly, DEFINICE. tj., pokudposloupnost se pracuje např. v množině v R, každému X nebo přirozenému posloupnost číslu prvků n se množiny přiřadí nějaké X) jereálné soubor číslo {xx n n } n N. prvků X indexovaný přirozenými čísly, tj. posloupnost {x n } n N je zobrazení f : N X, kde fn) = x n. Někdy se posloupnost značí jako {x n } n=1 nebo {x n} n nebo jen {x n } např. { n} n N, resp. { n} N, nebo { n}, je-li zřejmé, pro která čísla n se odmocniny berou); v některých případech většinou konkrétních) se píše i {x 1, x 2, x 3,...} např. posloupnost sudých přirozených čísel {2, 4, 6, 8,...}). Není-li uvedeno přesné indexování, vždy se chápou indexy z N. DEFINICE. Podposloupnost posloupnosti {x n } n N je posloupnost {x kn } n N, kde {k n } je nějaká posloupnost přirozených čísel s vlastností k 1 < k 2 < k 3 < k 4 <... Poznámky 1 Příklady 1 Otázky 1 VLASTNOSTI POSLOUPNOSTÍ DEFINICE. Posloupnost {x n } reálných čísel se nazývá konstantní, jestliže k n x k = x n ). prostá, jestliže k n x k x n ). omezená resp. shora omezená nebo zdola omezená), jestliže množina všech bodů x n má uvedenou vlastnost jako podmnožina R. rostoucí resp. klesající), jestliže k < n x k < x n ), resp. k < n x k > x n )). neklesající resp. nerostoucí), jestliže k < n x k x n ), resp. k < n x k x n )). Posloupnost, která je bud rostoucí nebo klesající nebo nerostoucí nebo neklesající, se nazývá monotónní. Posloupnost se nazývá ryze monotónní, jestliže je bud rostoucí nebo klesající. Je-li P nějaká vlastnost posloupností, pak výrok posloupnost {x n } n=1 má skoro P znamená, že existuje k N tak, že posloupnost {x n } n=k má P. Podobně budeme říkat, že množina obsahuje skoro všechny prvky posloupnosti, když obsahuje prvky posloupnosti od určitého indexu. Poznámky 2 Příklady 2 Otázky 2 1

KONVERGENCE POSLOUPNOSTÍ Jak bylo popsáno na začátku této části, hlavním důvodem práce s posloupnostmi je jejich použití např. k aproximaci řešení rovnic nebo k definicím či charakterizacím nových pojmů jako jsou spojitost a derivace. K tomu je potřeba mít zaveden pojem konvergence posloupností. Při grafickém znázornění některých posloupností v předchozích příkladech bylo vidět, že se příslušné body přibližují k nějaké hodnotě. Např. u {1 n 1 } se při znázornění na přímce přibližovaly body k číslu 1, při znázornění v rovině se graf DEFINICE. přibližoval k přímce Posloupnost y = 1 {x n potom } v R se konverguje říká, že posloupnost k bodu a {1 R nebo n 1 } konverguje má za limitu k 1. bod a), jestliže každé okolí U bodu a obsahuje skoro všechny prvky posloupnosti. Značí se lim n x n = a nebo x n a pro n. Je-li zřejmé, že se jedná o limitu posloupnosti, je možné použít značení lim n x n = a nebo dokonce lim x n = a, jsou-li i indexy zřejmé. Poznámky 3 Příklady 3 Otázky 3 Obecné vlastnosti limity posloupnosti Následující tvrzení jsou snadná a budou se používat bez odkazu snad jen pro první vlastnost rada: dva různé body z R mají disjunktní okolí). POZOROVÁNÍ. Necht {x n } je posloupnost reálných čísel. Platí: 1. {x n } má nejvýše jednu limitu; 2. je-li posloupnost {x n } konstantní, x n =a, pak lim x n =a; 3. jestliže lim x n = a, pak lim x kn = a pro každou podposloupnost {x kn } posloupnosti {x n }; 4. jestliže z každé podposloupnosti {x n } lze vybrat podposloupnost konvergující k a, pak {x n } konverguje k a. 5. jestliže {x n } konverguje v R, pak {x n } je omezená posloupnost. Dvě další tvrzení jsou sice jednoduchá z hlediska důkazu, ale důležitá z hlediska uvědomění si různých možností přístupu ke konvergenci. Následující podmínky pro posloupnost {x n } reálných čísel a bod a R jsou ekvivalentní: 1. lim x n = a; 2. limx n a) = 0; 3. lim x n a = 0; 4. ε > 0 n 0 N n > n 0 x n a < ε); 5. sup inf x ) ) n = inf sup x n = a. k N n k k N n k 2

DŮSLEDEK. lim x n = 0 lim x n = 0. POZNÁMKA. Je možné dodat obdobu vlastnosti 4) pro nevlastní body dokažte): lim x n = + resp. ) právě když p R n 0 n > n 0 x n > p) resp. x n < p). Ekvivalence 1) a 5) předchozího tvrzení a ekvivalence 1) a 3) následujícího tvrzení) platí i pro nevlastní a. Následující podmínky pro posloupnost {x n } reálných čísel jsou ekvivalentní: 1. {x n } konverguje v R; 2. ε > 0 n 0 N n, k > n 0 x n x k < ε); 3. sup inf x ) ) n = inf sup x n R. k N n k k N n k Podmínka 2 ε > 0 n 0 N n, k > n 0 x n x k < ε)) se nazývá Bolzanova Cauchyova podmínka posloupnost splňující tuto podmínku se nazývá cauchyovská. Bolzanova Cauchyova podmínka bude často použíta v situacích, kdy bude potřeba ukázat, že posloupnost např. integrálů, funkcí) konverguje, aniž je možné nebo nutné zjistit její limitu. a Poznámky 4 Příklady 4 Otázky 4 Limita a aritmetické operace Následující tvrzení ukazuje, že se limita posloupností chová přirozeně k aritmetickým operacím reálných čísel. Součet, součin a podíl posloupností se definuje po indexech, tj., např. pro součet, {x n } + {y n } = {x n + y n }. Necht {x n }, {y n } jsou posloupnosti reálných čísel. Pak platí 1. limx n + y n ) = lim x n + lim y n, pokud má pravá strana smysl; 2. limx n y n ) = lim x n lim y n, pokud má pravá strana smysl; 3. lim xn lim xn y n = lim y n, pokud má pravá strana smysl; Poznámky 5 Příklady 5 Otázky 5 Limita a uspořádání Tato část ukazuje chování konvergence posloupností k uspořádání na reálných číslech a existenci limity monotónních posloupností. 3

Necht {x n }, {y n } jsou posloupnosti reálných čísel. 1. Jestliže lim x n < lim y n, potom je x n < y n pro skoro všechna n. 2. Jestliže x n y n pro skoro všechna n, potom lim x n lim y n pokud obě limity existují. DŮSLEDEK. Necht {x {x n }}, je{a omezená n }, {y n } posloupnost jsou posloupnosti a {y n } reálných konverguje čísel k 0. a Potom x n alim n x y nn y n pro = skoro 0 všechna n. Jestliže existují lim x n, lim y n a rovnají se, pak existuje i lim a n a rovná se předchozím limitám. Necht {x n } je monotónní posloupnost reálných čísel. 1. Je-li {x n } neklesající, pak lim x n = sup x n. 2. Je-li {x n } nerostoucí, pak lim x n = inf x n. DŮSLEDEK. Monotónní posloupnost má vždy limitu. Omezená monotónní posloupnost vždy konverguje v R. Poznámky 6 Příklady 6 Otázky 6 66 HROMADNÝ BOD Posloupnost {x n } nemusí konvergovat, ale některé její podposloupnosti konvergovat mohou. Jejich limity nazývané hromadné body) mohou někdy nahrazovat neexistující limitu celé posloupnosti. Protože každá nekonečná množina obsahuje prosté posloupnosti, lze definovat hromadné body množiny i nespočetné) jako hromadné body těchto posloupností. Jsou to body, které jsou k dané množině velmi blízko. Hromadný bod posloupnosti Okolí limity musí obsahovat skoro všechny členy posloupnosti. U hromadného bodu je podmínka zeslabena na nekonečně mnoho členů posloupnosti. DEFINICE. Prvek a z R se nazývá hromadný bod posloupnosti {x n }, jestliže každé okolí U bodu a obsahuje nekonečně mnoho členů posloupnosti {x n } tj., existuje nekonečná podmnožina S N tak, že x n U pro s S). 1. Prvek a z R je hromadným bodem posloupnosti {x n }, právě když existuje její podposloupnost {x kn }, která konverguje k bodu a. 2. Hodnota sup inf x ) n = limk inf x ) n ) je nejmenším hromadným bodem posloupnosti {xn } značí se k N n k n k lim inf x n nebo lim x n a čte se limes inferior). ) 3. Hodnota inf sup x n = limk k N n k lim sup x n nebo lim x n a čte se limes superior). ) sup x n ) je největším hromadným bodem posloupnosti {xn } značí se n k DŮSLEDEK. 1. Každá posloupnost má hromadný bod. 2. Posloupnost má limitu právě když má jediný hromadný bod. 4

Následují dvě důležitá tvrzení. To první je jednoduchým důsledkem předchozího důsledku 1) a tvrzení 1) předchozí věty pro omezené posloupnosti, ale vzhledem k jeho významu je uvedeno znovu. Důkaz druhého tvrzení je složitější a ukazuje princip používaný často pro důkaz existence. 1. Bolzanova Weierstrassova věta) Z každé omezené posloupnosti lze vybrat podposloupnost konvergující v R. 2. Cantorova věta) Je-li K n klesající posloupnost uzavřených omezených intervalů na R, pak K n. k=1 Jestliže navíc délky intervalů K n konvergují k 0, je K n jednobodový. k=1 Poznámky 7 Příklady 7 Otázky 7 Hromadný bod množiny Jednoduchou modifikací hromadného bodu posloupnosti se dostane hromadný bod množiny: DEFINICE. Prvek a z R se nazývá hromadný bod množiny A R, jestliže každé okolí bodu a obsahuje nekonečně mnoho prvků množiny A. Prvek a A, který není hromadným bodem množiny A se nazývá izolovaný bod množiny A. POZOROVÁNÍ. 1. Prvek a z R je hromadný bod množiny A R právě když každé okolí bodu a obsahuje aspoň jeden bod množiny A různý od a. 2. Bod + je hromadný bod množiny A R právě když A není shora omezená. Podobně pro. 3. Konečná množina nemá žádný hromadný bod. 4. Bod je hromadným bodem skoro prosté posloupnosti právě když je hromadným bodem množiny hodnot této posloupnosti. 5. Je-li a hromadným bodem množiny A a B A, je a hromadným bodem i množiny B. 6. a A je izolovaným bodem A právě když existuje okolí U bodu a takové, že U A = {a}. Předchozí vlastnost 4) ukázala vztah hromadných bodů posloupností k hromadným bodům odpovídajících spočetných množin. Následující podmínky jsou ekvivalentní pro množinu A R a bod a R : 1. a je hromadný bod množiny A; 2. existuje posloupnost v A \ {a} konvergující k a; 3. existuje prostá posloupnost v A konvergující k a; 4. existuje ryze monotónní posloupnost v A konvergující k a. DŮSLEDEK. Každá nekonečná podmnožina v R má hromadný bod a každá omezená nekonečná podmnožina v R má vlastní hromadný bod. Poznámky 8 Příklady 8 Otázky 8 5