. Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními čísly lze najít bázi α takovou, že (ϕ) α,α má tzv. Jordanův kanonický tvar. Co to je? Jordanova buňka dimenze k k tvaru J k (λ) =. λ λ.. λ λ Jestliže ϕ : U U má v nějaké bázi α = (v, v 2,..., v k ) matici pak platí: (ϕ) α.α = J k (λ), ϕ(v ) = λ v ϕ(v 2 ) = v + λ v 2 ϕ(v ) = v 2 + λ v. ϕ(v k ) = v k + λ v k To lze přepsat také takto: (ϕ λ id)v = (ϕ λ id)v 2 = v (ϕ λ id)v = v 2 (ϕ λ id)v k = v k Posloupnosti v, v 2,... v n říkáme řetězec pro vlastní číslo λ operátoru ϕ, nebot v v 2. v v k v k. Obráceně, najdeme-li řetězec pro vlastní číslo λ a operátor ϕ : U U délky dim U, pak vektory řetězce jsou lineárně nezávislé a v bázi jimi tvořené je (ϕ) α,α = J k (λ).
2 Důkaz lineární nezávislosti indukcí: Necht v v 2 v j jsou lineárně nezávislé. Necht j+ a i v i = /(ϕ λ id) i= j+ a i (ϕ λ id)v i = i= j+ a i v i = a 2 = a = = a j+ =. i=2 Z a i v i = plyne a =. Charakteristický polynom Jordanovy buňky J k (λ ) je (λ λ) k. Jordanův kanonický tvar Matice je v Jordanově kanonickém tvaru, jestliže je blokově diagonální s bloky, které jsou Jordanovými buňkami J k (λ ) J k2 (λ 2 ) J = J k (λ )... J kl (λ l) Věta o Jordanově kanonickém tvaru. Necht U je vektorový prostor nad K dimenze n a necht ϕ : U U je lineární operátor, jehož charakteristický polynom má n kořenů včetně násobnosti. Potom existuje báze α v U taková, že (ϕ) α,α je matice v Jordanově kanonickém tvaru. Tento Jordanův kanonický tvar je určen jednoznačně až na pořadí buněk. Věta o Jordanově kanonickém tvaru pro komplexní prostory. Necht U je komplexní vektorový prostor a ϕ : U U lineární operátor. Potom v U existuje báze α taková, že matice (ϕ) α,α je v Jordanově kanonickém tvaru. Maticová verze Jordanovy věty. Každá komplexní matice je podobná matici v Jordanově kanonickém tvaru. Tato matice je určena jednoznačně až na pořadí Jordanových bloků. VÝPOČET JORDANOVA KANONICKÉHO TVARU () Na úhlopříčce Jordanova kanonického tvaru jsou vlastní čísla lineárního operátoru - každé tolikrát, kolik činí jeho algebraické násobnost.
Jordanův kanonický tvar Příklad a. 4 9 5 5 A λe = (2 λ)( λ) 2 pro vlastní číslo λ = 2 je vlastní vektor v = (,, ) T pro vlastní číslo λ = je vlastní vektor v 2 = (,, 8) T pro vlastní číslo λ = je vlastní vektor v = (,, ) T [ϕ] α,α = 2 α = (v, v 2, v ) Příklad b. 2 2 A λe = (2 λ)( λ) 2 pro vlastní číslo λ = 2 je vlastní vektor v = (,, ) T pro vlastní číslo λ = je vlastní vektor v 2 = (,, ) T (2) Jordanův kanonický tvar má tolik buněk, kolik existuje lineárně nezávislých vlastních vektorů. Jordanův kanonický tvar má dvě buňky, musí tedy být: J = 2 Hledáme vektor v tak, aby v bázi α = (v, v 2, v ) bylo Musí platit tedy Řešíme tuto rovnici: [ϕ] α,α = J. Av = 2v (A 2E)v = Av 2 = v 2 (A E)v 2 = Av = v 2 + v, (A E)v = v 2. (Řetězec v v = A E A E v 2.) Dostáváme v = (, p, ). Matice A má Jordanův kanonický tvar J v bázi (v, v 2, v ).
4 Příklad 2. 8 4 8 4 A λe = (2 λ) pro vlastní číslo λ = 2 je vlastní vektor u = (2,, 2) T Jordanův kanonický tvar má tedy jedinou buňku J = 2 2 2 Najdeme u 2, u příslušné báze Řešením těchto rovnic dostaneme Au 2 = u + 2u 2 (A 2E)u 2 = u Au = u 2 + 2u (A 2E)u = u 2 u 2 = (5, 2, ) T u = (,, ) T Hádáním : Zvolíme u a spočítáme u 2 = (A 2E)u, pokud u 2 =, změníme u. Pokud u 2, spočítáme u = (AE)u 2. Pokud u =, změníme u, pokud u, jsme hotovi. u = AE 4 AE Hledaná báze není určena jednoznačně: zde jsou dvě možné Příklad. 2 2 5 2 4 4 4 2 4 A λe = (2 λ) pro vlastní číslo λ = 2 jsou vlastní vektory u = (2,, ) T, v = (,, ) T. Najdeme w (A 2E)w = au + bv a 2 4 2a 4 b a 2 4 2a 2a + b Soustava má řešení 2a + b =. Necht a =, b =. Potom w = (,, ) T, u 2v, w, v báze R. u 2v w v řetězce pro λ = 2
Jordanův kanonický tvar 5 Jordanův kanonický tvar je J = 2 2 2 v bázi 2 Hádáním : Zvolme u 2 =, spočítejme u = (A 2E) u 2 = 2 u = Příklad 4. A + E = 5 4 2 2 9 5 4 5 4 2 2 5 4 2 A λe = ( + λ) 4 r 4 = r 2r, h = 2 pro vlastní číslo λ = jsou vlastní vektory u = (,,, ) T, v = (,,, ) T Najdeme w (A + E) = au + bv. Soustava má řešení pro libovolná a,b. Řešení (A + E)u = u (A + E)v = v u = (,,, ) T, v = (,,, 5) T. A, příslušná báze 5 Hádáním: u = v = u 2 = v 2 = 5 2
Příklad 5. 4 2 9 4 8 4 4 9 9 8 A λe = ( λ) 4 pro vlastní číslo λ = jsou vlastní vektory u = (,,, ) T, v = (,,, ) T. Najdeme w (A E)w = au + bv. Soustava má řešení a + b = 2 b 2 b 8 4 8 a 4 4 b 2 a + b b 9 9 9 a a + b Zvolme a =, b =. Potom u + v = (,,, ) T. Řešením soustavy (A E)w = (,,, ) T dostaneme w = (,,, )T + a u + b v. Soustava (A E)z = w má řešení a + b = 2 2b 2 8 4 8 + a 4 4 b 2b 8 4 8 + a 4 4 b 9 9 9 a + a + b Zvolme a =, b =. Potom w = (,,, ) T ( z =,, 2, T [ u + v, v] = [u, v]. ) Tedy Hádáním: A u = u 2 = v bázi u 4 vlastní vektor nazávislý na u : u 4 = 9 u = 8 9 8 2 Metodu hádání nelze použít, pokud má matice aspoň dvě různá vlastní čísla.
Jordanův kanonický tvar 7 () Velikost největší buňky pro vlastní číslo λ je nejmenší k takové, že hodnost (A λe) k = n algebraická násobnost λ.