6. P o p i s n á s t a t i s t i k a

Save this PDF as:

Rozměr: px
Začít zobrazení ze stránky:

Download "6. P o p i s n á s t a t i s t i k a"

Transkript

1 6. P o p i s á s t a t i s t i k a 6.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme statistické jedotky. Při zkoumáí používáme dva základí druhy statistiky, popisou statistiku a iterferečí statistiku. Popisá statistika zjišťuje a sumarizuje iformace, zpracovává je ve formě grafů a tabulek a vypočítává jejich číselé charakteristiky jako průměr, rozptyl percetily, rozpětí a pod. Iterferečí statistika čií závěry a základě dat získaých z šetřeí provedeých pro vybraý soubor respodetů. Aalyzuje tyto závěry a predikuje z ich závěr pro celý soubor. (Volebí průzkum a pod.) Při statistickém šetřeí máme k dispozici: - základí soubor je soubor všech statistických jedotek; - výběrový soubor je vybraá část ze základího souboru. Rozsah základího (výběrového) souboru je počet jedotek v souboru. Při vytvářeí souboru jedotek provádíme výběr ve tvaru prostého áhodého výběru Defiice: Prostý áhodý výběr je áhodý výběr ze základího souboru vytvořeý tak, že každá statistická jedotka ze základího souboru má stejou pravděpodobost, že bude vybráa. Pokud je možé vybrat tutéž jedotku zova, mluvíme o výběru s vraceím, pokud opakovaý výběr eí možý jedá se o výběr bez vraceí. Pozámka: Jié metody výběru požívají defiovaý způsob výběru, který je posá zadaým algoritmem. Využívá se především tvrba výběru s meším rozsahem, který by podchycoval zákoitosti obsažeé v rozsáhlejším výběru. Popisá statistika Vlastosti statistických jedotek, které se pro jedotlivé jedotky měí azýváme statistické zaky příp. proměé ebo veličiy. Vyskytují se veličiy - kvatitativí, popsaé číselou hodotou (výška, váha, cea); - kvalitativí, popsaé vlastostmi (muž, žea, barva očí, dosažeé vzděláí). Kvalitativí veličiy mohou být diskrétí, abývající hodot ze zadaé koečé možiy, ebo spojité, které abývají hodot ze zadaého itervalu. Pozorovaím ebo měřeím hodot zkoumaé veličiy e ěkolika statistických jedotkách získáme vstupí data. Soubor těchto údajů azýváme datový soubor. Teto soubor je jedorozměrý, jestliže sledujeme jede zak, ebo vícerozměrý, pokud sledujeme více zaků. Při zpracováí datového souboru kvatitativích dat x, x 2,..., x potřebujeme pro ěkterá šetřeí data uspořádat podle velikosti. Dostaeme pak datový soubor tvaru x () x (2)... x (), kde x () = mi{x i ; i } a x () = max{x i ; i }. Metody zpracovaí dat 6.3. Tříděí dat je rozděleí dat do skupi provedeé tak, aby vyikly charakteristické vlastosti sledovaých jevů. Uspořádáme a zhustíme data do přehledější formy. Rozezáváme - jedostupňové tříděí, jestliže třídíme data podle změ jedoho statistického zaku; 67

2 - vícestupňové tříděí, pokud provádíme tříděí podle více zaků ajedou. Nejčastěji při jedostupňovém tříděí kvatitativích dat uspořádáme data podle velikosti a staovíme itervaly, které odpovídají jedotlivým třídám. Mluvíme pak o itervalovém tříděí. Máme-li datový soubor {x, x 2,..., x }, který obsahuje celkem prvků, pak iterval mezi ejvětší a ejmeší hodotou rozdělíme a k disjuktích itervalů, tříd, tvaru (a i, a i. Potom prvek x j patří do i té třídy, pokud je a i < x j a i. Používáme ásledujících termíů a ozačeí: - třída je část dat zařazeá do jedé skupiy, třídy, iterval (a i, a i ; - dolí hraice třídy je ejmeší hodota, při které prvek do třídy patří, hodota a i ; - horí hraice třídy je ejvětší hodota, při které prvek do třídy patří, hodota a i ; - střed třídy je průměr horí a dolí hraice třídy, y i = 2 (a i + a i ); - šířka třídy je rozdíl horí a dolí hraice třídy, hodota a i a i ; - (absolutí) četost třídy i je počet prvků souboru, které patří do třídy; - relativí četost p i = i je poměr četosti třídy ku celkovému počtu dat; - kumulativí (absolutí) četost N i = i je součet četostí třídy a četostí tříd předchozích; - kumulativí relativí četost P i = p + p p i je součet relativích četostí třídy a relativích četostí tříd předchozích. Potom platí: k i =, k p i =, i j = N i, j= i p j = P i, N k = a P k =. j= Při staoveí hraic tříd obvykle zachováváme tato dvě pravidla: - šířku třídy h volíme pro všechy itervaly shodou, s vyjímkou krajích tříd pokud tvoří eomezeé itervaly: - při staoveí šířky třídy h dodržujeme Sturgesovo pravidlo, kdy pro počet tříd k platí, že k. = + 3, 3 log k pokud jsou krají itervaly děleí eomezeé, pak za střed prví, resp. posledí třídy volíme bod, který má od koečého krajího bodu třídy stejou vzdáleost jakou má od středu sousedí třídy. Při tříděí kvalitativích dat postupujeme obdobě. Jeom místo itervalu tvoří třídu prvky, které mají stejý zak, ebo skupiu zaků Grafická zázorěí Pro větší ázorost požíváme místo tabulek zázorěí tříděí pomocí grafů. Používá se ěkolika typů. Histogram je graf kdy a vodorovou osu zázoríme třídy a a svislou osu četosti či relativí četosti. Často se používá ve tvaru, kdy se hodota odpovídající třídě zázorí jako sloupec s itervalem třídy jako základou a výška je dáa četostí. Polygo četostí a relativích četostí je graf, kdy úsečkami spojíme body (y i, i ), resp. (y i, p i ). 68

3 Bodový graf dostaeme tak, že a vodorovou osu vyeseme třídy jako body i, i k, a ve svislém směru vyášíme jedotlivé prvky třídy zázorěé jako jedotlivé body (i, j), j =, 2,... i. Sloupkový graf je podobý histogramu, ale sloupce bývají odděleé, mají stejou šířku a každý sloupec odpovídá jedé třídě. Používáme je předeším u kvalitativích dat. Kruhový (výsečový) diagram je zázorěí pomocí výsečí kruhu, kde každé třídě odpovídá jeda výseč. Velikosti obsahů výsečí odpovídají četostem třídy. Stem-ad-Leaf diagram je uspořádáí dat do tabulky, kdy prví sloupec -stem=stoek odpovídá třídě a do řádku -leaf=list vypisujeme prvky třídy. Pokud tyto prvky uspořádáme podle velikosti mluvíme o uspořádaém diagramu Příklad: Ze 7 možých výsledků jsme dostali datový soubor o 4 datech i x i Tab. 6.. Datům odpovídá tabulka četostí Tab. 6.2 a bodový graf a obrázku Obr. 6.. třída četost i Tab Obr. 6.. Polygo četostí k tabulce Tab 6.2. Histogram četostí k tabulce i Obr Obr Sloupkový graf k tabulce Tab i i Obr

4 Řada vlastostí datového souboru se dá vyčíst z tvaru histograu či polygou četostí. Ty odpovídají grafu hustoty u rozděleí pravděpodobosti áhodé veličiy. Rozlišuje se ěkolik charakteristických průběhů těchto grafů. - souměrý ve tvaru zvou, trojúhelíku či rovoměrý; - esouměré ve tvaru J, obráceého J, vpravo či vlevo protažeé; - podle počtu vrcholů jedo-, dvou-, či vícevrcholové Charakteristiky (míry) polohy. Nejzámější a ejčastěji používaou charakteristkou polohy je aritmetický průměr hodot souboru. Průměr datového souboru {x, x 2,..., x } je defiová vztahem x = x k. Pokud jsou {z, z k,..., z m } růzé hodoty souboru s četostmi j, j =, 2,..., m, a s relativími četostmi p j, pak k= x = m m z j j = z j p j. j= j= Věta. Vlastosti průměru Pro průměr datového souboru platí:. Součet odchylek hodot souboru od průměru je rove ule, t.j. (x i x) = Přičteme-li k hodotám souboru kostatu a, pak průměr ového souboru (x i + a) = x + a. 3. Násobíme-li hodoty souboru číslem b, ásobí se průměr také b. Průměr datového souboru je citlivý a hrubé chyby, kdy jeda chybá hodota může výrazě změit hodotu průměru. Používámě ěkdy tzv. robustích charakteristik, které jsou méě citlivé a zadáí chybé hodoty. Mezi ě patří mediá x, který je pro datový soubor x, x 2,... x defiová vztahem x = 2 x (m), ) pro = 2m, (x (m) + x (m+), pro = 2m. Další z robustích charakteristik je modus ˆx, který je defiová jako hodota souboru s ejvětší četostí, tedy ˆx = z j, j i, i m. Pozameejme, že modus emusí být jedozačě urče, může abývat ěklika hodot. Pro podrobější popis rozděleí hodot datového souboru používáme kvatily. Kvatil datového souboru rozděluje soubor a dvě části. V jedé jsou hodoty souboru, které jsou meší či ejvýše rovy kvatilu a ve druhé jsou hodoty větší ež kvatil. Defiujeme pro p, 0 < p <, p kvatil, resp. 00p%kvatil, jako tu hodotu x 00p ze souboru {x, x 2,..., x }, pro kterou je přibližě 00p% hodot ze souboru meších a 00( p)% hodot je větších ež x 00p. Nejjemější používaé rozděleí souboru je pomocí percetilů x, x 2,..., x 99. Často se využívají decily x 0, x 20,..., x 90. Speciálí ázvy mají kvatily: - x 50 je mediá; - x 25 dolí kvartil; - x 75 horí kvartil. Jako mezikvartilové rozpětí se defiuje rozdíl x 75 x

5 Jsou-li x () x (2)... x () hodoty souboru uspořádaé podle velikosti pak 00p% kvatil určíme podle vzorce x x 00p = ([p]+), pokud p eí celé číslo, 2 (x (p) + x (p)+ ) pro p celé, kde [p] je celá část čísla, tedy celé číslo, které je ejbližší meší. Jié průměrové charakteristiky polohy. Pro ěkteré soubory dat používáme jié průměry. Jsou to: Geometrický průměr x G, který je pro soubor x, x 2,..., x kladých dat defiová vztahem x g = x x 2... x. Pro taková data popisují hodoty i = x x 0, i 2 = x 2 x,..., i = x x, x 0 =, přírůstek, apř. v ekoomice ročí árust produkce, ce a pod. Je pak x k = x 0 i i 2... i k a x = x 0 (i G ). Věta 2. Pro soubor s kladými daty je x G x a rovost astae jediě pro x = x 2 =... = x. Důkaz: Fukce f(x) = l x je kovexí a tedy pro x a h je f(x) f(h) + f (h)(x h). Jestliže zvolíme x = x i a h = x, pak pro i platí erovice ( ) l x i l x + (x i x)f (x). Sečteím dostaeme erovici protože podle věty je (x i x) = 0. Dále je Je tedy l x i l x + f (x) (x i x) = l x, l x G = l( x x 2... x ) = l x i. l x G l x x G x, eboť je fukce l x rostoucí. Rovost ve vztahu ( ) astae jediě pro x i = x, tedy pokud je x = x 2 =... = x. Harmoický průměr x H, který je pro soubor kladých dat defiová vztahem x H = x + x x. Pozámka: Využívá se, kde má vypovídací hodotu převráceá hodota k původí. Nejčastěji je to v případech, kdy hodota x i odpovídá době uté k provedeí ějakého 7

6 pracovího úkou. Převráceá hodota pak uvádí, jakou část pracovího úkou je splěa za jedotku času. Věta 3. Pro soubor s kladými daty je x H x G x, přičmž rovost astae pouze pro x = x 2 =... = x. Důkaz: Z defiice harmoického průměru vyplývá vztah x H = x i. což je aritmetický průměr souboru x i. Podle věty 2 je ale x H = x x x x = i Rovost platí pouze v případě, že x = x 2 =... = x. Kvadratický průměr x K je defiová vztahem x K = x 2 i. = x H x G. x x 2... x x G Věta 4. Je x x K a rovost platí poze v případě, že x = x 2 =... x. Důkaz: Fukce f(x) = x 2 je kokáví a tedy je x 2 h 2 + f (h)(x h). Jestliže položíme x = x i a h = x, pak x 2 i (x) 2 + f (x)(x i x) x 2 i (x) 2 + f (x)(x i x) (x K ) 2 (x) 2 x K x. Rovost astae pouze pro x i = x, tedy pro x = x 2 =... = x. Věta 5. Pro soubory kladých dat je x () x H x G x x K x () a rovost astae pouze v případě, že x = x 2 =... = x Charakteristiky (míry) rozptýleosti. Rozpětí datového souboru je hodota R = x max x mi. Je to hodota, která se sado spočítá, ale její hodota je citlivá a extrémí hodoty. Vychází pouze ze dvou hodot a igoruje iformaci z ostatích hodot souboru. V ěkterých případech používáme jako charakteristiku tohoto druhu hodotu x 90 x 0. Současě provedeme ořezáí souboru, kde vyecháme hodoty meší ež x 0 a větší ež x 90. Odstraíme tím případé extrémí hodoty, které mohou být způsobey jiými vlivy. Podobou charakteristikou je mezikvartilové rozpětí IQR = x 75 x 25. Výběrový rozptyl je průměr čtverců odchylek od průměru a je defiová vztahem s 2 = (x i x) 2. 72

7 Hodotu s azýváme výběrovou směrodatou odchylkou. Věta 6. Vlastosti rozptylu a vzorec pro výpočet.. Je s 2 = (x i x) 2 = x 2 i 2x x i + (x) 2 = x 2 i 2x x i + x x i = = x 2 i (x) 2 s 2 = x 2 i (x) Je-li y i = bx i + a, i, pak s 2 y = b 2 s 2 x, s y = b s x. Věta 7. Fukce S(a) = (x i a) 2 abývá svého miima s 2 pro a = x. Důkaz: Je S (a) = 2(x i a)( ) = 0 (x i a) = 0 x = a. Pomocé tvrzeí: Pro tice čísel (a, a 2,..., a k ) a (b, b 2,..., b k ) je ( k ) 2 ( k ) ( k ) a i b i a 2 i b 2 i. Jestliže iterpretujeme tice čísel jako aritmetické vektory v R k, pak lze uvedeou erovici přepsat do tvaru ( a. b) 2 a 2. b 2. Ta ale platí, eboť pro skarálí souči dvou vektorů je a. b = a. b. cos ( a, b). Protože je fukce kosius omezeá jedičkou, uvedeá erovice platí. Věta 8. Pro soubor x i, i platí max{ x i x ; i } s. Důkaz: Položme v tvrzeí pomocé věty a = (x x,..., x i x, x i+ x,..., x x) a b = (,,..., ). Potom je Protože je 2 j x) ( ) j i(x j x) j i(x 2 = ( ) (x j x) 2 (x i x) 2. j= tak z předchozí erovice vyplývá, že j=(x j x) = 0 (x i x) = j i (x j x) (x i x) 2 ( ) (x j x) 2 ( )(x i x) 2 (x i x) 2 (x j x) 2 = ( )s 2. j= j= Odmocěím získáme dokazovaou erovici. Tato erovice platí pro všechy hodoty i, i, platí tudíž i pro jejich maximum. 73

8 Věta 9. Pro variačí rozpětí souboru platí s 2 R2 4. Důkaz: Ozačme m = 2 (x () + x () ). Je tedy x i x R 2. Fukce S(a) z věty 7 abývá svého miima pro a = x a tedy je s 2 = S(x) S(m) = (x i m) 2 R2 4. Variačí koeficiet je defiová vztahem V = s x. Je-li V > 0, 5 pak se jedá o esourodý soubor. Pozameejme, že soubory x i a bx i mají stejý variáčí koeficiet. Pětičíselá charakteristika souboru je pětice čísel x mi, x 25, x 50, x 75, x max. Průměrá odchylka d a od bodu a je pro soubor dat x i defiováa vztahem d a = x i a. Nejčastěji se používá průměrá odchylka od aritmetického průměru x ebo mediáu x. K tomu ás vede ásledující vlastost. Věta 0. Fukce d a abývá svého miima pro mediá a = x. Důkaz: Je-li a < x (), pak je d a = (x i a) = x a, tedy d (a) = a tudíž je fukce d a klesající v itervalu (, x (). Obdobě pro a > x () je d a = a x, tedy d (a) = a tudíž je fukce d a rostoucí v itervalu (x (), ). Nechť je x (j) < a < x (j+) pro ějaké j. Potom je d a = (a x (i) ) + (x (i) a). Je tedy i=j+ d (a) = 2j (j + ( j)( )) =. Derivace je záporá a tedy fukce je klesající pro 2j < 0 j < 2 a derivace je kladá, tedy fukce je rostoucí pro 2j > 0 j > 2. Je-li sudé číslo, pak je fukce d a kostatí a itervalu (x ( 2 ), x ( 2 +), a to je její miimum. Předěl mootoie je ovšem mediá x. Jako dalši charakteristiky používáme: koeficiet šikmosti A 3 = s 3 (x i x) 3 a koeficiet špičatosti A 4 = s 4 (x i x) 4 3 Pro data, která jsou rozložea symetricky kolem hodoty x je A 3 = 0. Hodoty A 3 blízké ule odpovídají rozděleí, které se blíží symetrickému. Je-li A 3 > 0, pak je rozložeí 74

9 dat sešikmeé vpravo, ižší hodoty jsou více ahuštěy ež velké hodoty. Pro A 3 < 0 je rozděleí sešikmeé vlevo, větší hodoty jsou více ahuštěy ež ižší hodoty. Je-li A 4 blízké ule, říkáme, že jedá o soubor s ormálí špičatostí. Při A 4 < 0 mluvíme osouborech plochých a při A 4 > 0 mluvíme o souborech špičatých. Příklad: Uvedeme výpočty uváděých charakteristik pro soubor dat z tabulky Tab. 6.. Je x = 4 44 = 3, 43, R = 7 = 6 a s2 = 3, 565, s =, 875. Pro kvatily dostaeme: x 0 = x 2 =, x 90 = x 3 = 5, x 50 = x 3 = 5, x 25 = x 4 = 2, x 75 = x = 5. Mezikvartilové rozpětí IQR = x 75 x 25 = 5 2 = 3. Variačí koeficiet V = s, 875 = = 0, 597. x 3, 43 75

11. P o p i s n á s t a t i s t i k a

11. P o p i s n á s t a t i s t i k a 11. P o p i s á s t a t i s t i k a 11.1. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

11. Popisná statistika

11. Popisná statistika . Popsá statstka.. Pozámka: Př statstckém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákotost, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme statstcké jedotky. Př

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,

Více

P2: Statistické zpracování dat

P2: Statistické zpracování dat P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí

Více

13 Popisná statistika

13 Popisná statistika 13 Popisá statistika 13.1 Jedorozměrý statistický soubor Statistický soubor je možia všech prvků, které jsou předmětem statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický

Více

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter. Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.). STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,

Více

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme

Více

Popisná statistika. Zdeněk Janák 9. prosince 2007

Popisná statistika. Zdeněk Janák 9. prosince 2007 Popisá statistika Zdeěk Jaák jaak@physics.mui.cz 9. prosice 007 Výsledkem měřeí atmosférické extikce z pozorováí komet a observatoři Skalaté Pleso jsou tyto hodoty extikčích koeficietů ve vlové délce 46

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací 3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

14. B o d o v é o d h a d y p a r a m e t r ů

14. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

vají statistické metody v biomedicíně

vají statistické metody v biomedicíně Statistika v biomedicísk ském m výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Proč se používaj vají statistické metody v biomedicíě Biomedicísk

Více

vají statistické metody v biomedicíně Literatura Statistika v biomedicínsk nském výzkumu a ve zdravotnictví

vají statistické metody v biomedicíně Literatura Statistika v biomedicínsk nském výzkumu a ve zdravotnictví Statistika v biomedicísk ském výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Literatura Edice Biomedicísk ská statistika vydáva vaá a Uiverzitě

Více

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti

Více

Pravděpodobnostní modely

Pravděpodobnostní modely Pravděpodobostí modely Meu: QCEpert Pravděpodobostí modely Modul hledá metodou maimálí věrohodosti (MLE Maimum Likelihood Estimate) statistický model (rozděleí) který ejlépe popisuje data. Je přitom k

Více

Statistika pro metrologii

Statistika pro metrologii Statistika pro metrologii T. Rössler Teto projekt je spolufiacová Evropským sociálím fodem a státím rozpočtem České republiky v rámci projektu Vzděláváí výzkumých pracovíků v Regioálím cetru pokročilých

Více

Elementární zpracování statistického souboru

Elementární zpracování statistického souboru Elemetárí zpracováí statistického souboru Obsah kapitoly 4. Elemetárí statistické zpracováí - parametrizace vhodými empirickými parametry Studijí cíle Naučit se výsledky měřeí parametrizovat vhodými empirickými

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

Intervalové odhady parametrů

Intervalové odhady parametrů Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf

Více

4. B o d o v é o d h a d y p a r a m e t r ů

4. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby. ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém

Více

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr

Více

2. Náhodná veličina. je konečná nebo spočetná množina;

2. Náhodná veličina. je konečná nebo spočetná množina; . Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

Závislost slovních znaků

Závislost slovních znaků Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem ukce, gra ukce De: Fukcí reálé proměé azýváme pravidlo, které každému reálému číslu D přiřazuje právě jedo reálé číslo y H Toto pravidlo začíme ejčastěji

Více

V. Normální rozdělení

V. Normální rozdělení V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

2 EXPLORATORNÍ ANALÝZA

2 EXPLORATORNÍ ANALÝZA Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů.

Více

Doc. Ing. Dagmar Blatná, CSc.

Doc. Ing. Dagmar Blatná, CSc. PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj

Více

Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Fukce RNDr. Yvetta Bartáková Gymázium, SOŠ a VOŠ Ledeč ad Sázavou Limita poslouposti a fukce VY INOVACE_0 9_M Gymázium, SOŠ a VOŠ Ledeč ad Sázavou A) Limita poslouposti Říkáme, že posloupost a je kovergetí,

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti

Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti Úvod Opakováí Poslouposti Příklady Matematika 1 Ivaa Pultarová Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

Kapitola 5 - Matice (nad tělesem)

Kapitola 5 - Matice (nad tělesem) Kapitola 5 - Matice (ad tělesem) 5.. Defiice matice 5... DEFINICE Nechť T je těleso, m, N. Maticí typu m, ad tělesem T rozumíme zobrazeí možiy {, 2,, m} {, 2,, } do T. 5..2. OZNAČENÍ Možiu všech matic

Více

Pravděpodobnost vs. statistika. Data. Teorie pravděpodobnosti pracuje s jednou nebo více teoretickými náhodnými

Pravděpodobnost vs. statistika. Data. Teorie pravděpodobnosti pracuje s jednou nebo více teoretickými náhodnými Pravděpodobost vs. Teorie pravděpodobosti pracuje s jedou ebo více teoretickými áhodými veličiami, jejichž je zámo odvozovali jsme y těchto atd. Šárka Hudecová Katedra pravděpodobosti a matematické Matematicko-fyzikálí

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Pravděpodobnostní model doby setrvání ministra školství ve funkci Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

Definice obecné mocniny

Definice obecné mocniny Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma

Více

České vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika

České vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika České vysoké učeí techické v Praze Fakulta dopraví Semestrálí práce Statistika Čekáí vlaku ve staicích a trase Klado Ostrovec Praha Masarykovo ádraží Zouzalová Barbora 2 35 Michálek Tomáš 2 35 sk. 2 35

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

Úloha III.S... limitní

Úloha III.S... limitní Úloha III.S... limití 10 bodů; průměr 7,81; řešilo 6 studetů a) Zkuste vlastími slovy popsat postup kostrukce itervalových odhadů středí hodoty v případě obecého rozděleí měřeých dat (postačí vlastími

Více

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13). 37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme

Více

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou

Více

1 ROVNOMĚRNOST BETONU KONSTRUKCE

1 ROVNOMĚRNOST BETONU KONSTRUKCE ROVNOMĚRNOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí rovoměrosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad... Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

2.4. INVERZNÍ MATICE

2.4. INVERZNÍ MATICE 24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:

Více

STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6

STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6 Středoškolská techika 00 Setkáí a prezetace prací středoškolských studetů a ČVUT STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6 Pavel Husa Gymázium Jiřího z Poděbrad Studetská 66/II

Více

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V Předáška 1: Vektorové prostory Vektorový prostor Pro abstraktí defiici vektorového prostoru jsou podstaté vlastosti dvou operací, sčítáí vektorů a ásobeí vektoru (reálým číslem) Tyto dvě operace musí být

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí

Více

Zhodnocení přesnosti měření

Zhodnocení přesnosti měření Zhodoceí přesosti měřeí 1. Chyby měřeí Měřeím emůžeme ikdy zjistit skutečou (pravou) hodotu s měřeé veličiy. To je způsobeo edokoalostí metod měřeí, měřicích přístrojů, lidských smyslů i proměých podmíek

Více

Petr Šedivý Šedivá matematika

Petr Šedivý  Šedivá matematika LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími

Více

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je + + + + ) + = = 0 + + Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a

Více

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvatová a statistická fyzika (Termodyamika a statistická fyzika) Boltzmaovo - Gibbsovo rozděleí - ilustračí příklad Pro ilustraci odvozeí rozděleí eergií v kaoickém asámblu uvažujme ásledující příklad.

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že

Více

Mod(x) = 2, Med(x) = = 2

Mod(x) = 2, Med(x) = = 2 Pracoví list č.. Při zjišťováí počtu ezletilých dětí ve třiceti vybraých rodiách byly získáy tyto výsledky:,,,,,,,,,,,,,,,,,,,,,,,,,,,,,. Uspořádejte získaé údaje do tabulky rozděleí četostí a vyjádřete

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a) Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a

Více

Spojitost a limita funkcí jedné reálné proměnné

Spojitost a limita funkcí jedné reálné proměnné Spojitost a limita fukcí jedé reálé proměé Pozámka Vyšetřeí spojitosti fukce je možo podle defiice převést a výpočet limity V dalším se proto soustředíme je problém výpočtu limit Pozámka Limitu fukce v

Více

Přednáška 7, 14. listopadu 2014

Přednáška 7, 14. listopadu 2014 Předáška 7, 4. listopadu 204 Uvedeme bez důkazu klasické zobecěí Leibizova kritéria (v ěmž b = ( ) + ). Tvrzeí (Dirichletovo a Abelovo kritérium). Nechť (a ), (b ) R, přičemž a a 2 a 3 0. Pak platí, že.

Více

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou 4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Vlastnosti posloupností

Vlastnosti posloupností Vlstosti posloupostí Nekoečá posloupost je fukce defiová v oboru přirozeých čísel Z toho plye, že kždá posloupost má prví čle (zčíme ), koečé poslouposti mjí i čle posledí Př Vypište prví čtyři čley poslouposti

Více

8. Odhady parametrů rozdělení pravděpodobnosti

8. Odhady parametrů rozdělení pravděpodobnosti Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z

Více

OVMT Přesnost měření a teorie chyb

OVMT Přesnost měření a teorie chyb Přesost měřeí a teorie chyb Základí pojmy Naměřeé údaje ejsou ikdy absolutě přesé, protože skutečé podmíky pro měřeí se odlišují od ideálích. Při každém měřeí vzikají odchylky od správých hodot chyby.

Více