Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Rozměr: px
Začít zobrazení ze stránky:

Download "Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti"

Transkript

1 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto koečý (rozsah ozačujeme N) i ekoečý. Iformace o populaci získáváme prostředictvím statistického výzkumu (statistických studií). Rozlišujeme dva základí typy statistických studií - pokus a šetřeí. Při pokusu pláovitě měíme faktory a sledujeme jejich vliv. Typickým příkladem je komparativí experimet (kliický pokus), kdy sledovaé prvky rozdělíme do dvou skupi áhodě a každou skupiu vystavíme vlivu jiých faktorů (tzv. kotrolovaý pokus). Pokud avíc vyhodocující experimetátor ebo vyhodocující experimetátor i sledovaý subjekt eví, ve které skupiě je zařaze, jedá se o slepý pokus resp. dvojitě slepý pokus. V rámci šetřeí je výzkumý pracovík pouze pasivím pozorovatelem, který zasahuje co ejméě do průběhu šetřeí. Parametr populace (populačí charakteristika) je číselá charakteristika sledovaé vlastosti v populaci, apříklad průměrá výška desetiletých chlapců, variabilita doba léčeí kokrétího oemocěí a území ČR a podobě. Obvykle pokládáme teto parametr za pevé číslo, které je však obecě ezámé. Parametr obecě začíme Θ, pro ěkteré parametry je zavedeo kokrétí ozačeí µ, σ 2, ϕ,.... Výběr je koečá podmožia populace, kdy sledujeme a měříme požadovaé vlastosti pouze u ěkterých prvků populace. Výběr je vždy koečý (rozsah ozačujeme ) a pokud výběr dobře odráží strukturu celého zkoumaého souboru, azýváme jej reprezetativí výběr. Podle charakteru získáváí výběru prvků z populace rozlišujeme úplé šetřeí: sledujeme zaky všech prvků základího souboru; selektiví výběr; záměrý výběr: výběr se opírá o expertí staoviska ebo je ovlivě subjektivími hledisky experimetátora, přesost zobecňujících závěrů se opírá o expertí hledisko experimetátora a ikoliv o statistickou metodologii; áhodý výběr: prvky ze základího souboru vybíráme áhodě, ezávisle a úsudku experimetátora prostý áhodý výběr (simple radom sample) : provádí se růzými techikami losováí, které musí zaručit, aby každý prvek populace měl stejou možost být zařaze do výběru. Pokud jsou prvky populace jsou očíslováy, je možo provést výběr pomocí tabulek áhodých čísel. mechaický výběr: je založe a určitém, předem daém uspořádáí prvků populace, do výběrového souboru zařadíme všechy prvky, které jsou od sebe vzdáley o zvoleý výběrový krok, přičemž prví prvek vybereme prostým áhodým výběrem. Například 1

2 z abecedě uspořádaé kartotéky pacietů u praktického lékaře vybíráme s krokem dvacet. Prví kartu vylosujeme mez prvími dvaceti kartami, třeba devátou. Musíme dát pozor, aby uspořádáí prvků esouviselo se sledovaým zakem. oblastí výběr (stratifikovaý): studovaá populace je rozdělea do dílčích oblastí. Oblasti jsou vytvořey tak, aby byly uvitř homogeí (ve sledovaých zacích se příliš eliší) a mezi sebou heterogeí (sledovaé zaky se začě liší). Při šetřeí a obyvatelstvu jsou oblasti vytvořey apř. územími celky, věkovými skupiami ebo socioekoomickým statutem. Z každé oblasti vybereme vzorek metodou prostého áhodého výběru ebo mechaického výběru. Proceto vybraých prvků z oblastí může být bud pro všechy oblasti stejé, ebo se mezi oblastmi liší. Někdy máme pádé důvody vybírat z ěkteré oblasti relativě méě prvků, apř. při zvýšeých fiačích ákladech a šetřeí ebo obtížé dostuposti údajů. Koečý výběrový soubor vytvoříme spojeím vzorků ze všech oblastí. skupiový výběr: Pro velké rozsahy populace eprovádíme áhodý výběr, tj. evybíráme jedotlivé osoby, ýbrž celé skupiy osob, které tvoří bud přirozeé ebo umělé agregáty. Tyto skupiy mohou být malé i větší (rodia, škola, závod, zdravotí obvod) ebo i začě rozsáhlé (obce, okresy). Je žádoucí, aby skupiy byly pokud možo stejě velké a osoby uvitř každé skupiy růzorodé. Dále se požaduje, aby variabilita mezi skupiami byla co ejmeší, což je tedy obráceě, ež je tomu u oblastího výběru. Když byl provede výběr skupi, lze dále pokračovat dvojím způsobem: bud vyšetříme vyčerpávajícím způsobem všechy osoby vybraých skupi, ebo zvolíme metodu vícestupňového výběru. vícestupňový výběr: je založe a existeci určitého hierarchického popisu prvků základího souboru. K těmto prvkům se postupě dostáváme přes vyšší výběrové jedotky, apříklad: města - bloky - domy - domácosti; okresy - závody - díly - zaměstaci. Každá výběrová jedotka je skupiou výběrových jedotek ižšího řádu. Postupě vybíráme jedotky prvího stupě (primárí jedotky), z ich potom jedotky druhého stupě (sekudárí jedotky), z ich jedotky třetího stupě atd., až dojdeme k základím jedotkám statistického šetřeí. Postupé výběry provádíme často metodou prostého áhodého výběru, lze však uplatit i výběr mechaický ebo oblastí. Vícestupňový výběr je vhodý v situacích, kdy úplá opora výběru eí dostupá před začátkem výběrového postupu. Jeho výhody jsou především ekoomického charakteru. cezorovaý výběr je výběr, kdy emáme k dispozici přesou hodotu sledovaé charakteristiky, ale máme iformaci, že hodota bude větší ež kokrétí číslo (cezorováí zprava) ebo meší ež kokrétí číslo (cezorováí zleva), apříklad sleduje dobu přežití a v okamžiku ukočeí experimetu víme, že paciet přežil více ež 5 let, ale evíme přesou dobu přežití. Data je souhr kokrétích číselých údajů, reálých čísel (výsledek opakovaých pokusů ebo šetřeí), které máme k dispozici. Jedá se vždy o koečý počet dat, rozsah dat je a jedotlivé údaje začíme x 1, x 2, x 3,..., x, pokud máme data seřazea podle velikosti, používáme začeí x (1), x (2), x (3),..., x (). Výběrová charakteristika (statistika) je pojem používaý pro číselou charakteristiku výběru, 2

3 apř. aritmetický průměr z aměřeých dat, výběrový rozptyl,.... Pro růzé výběry je hodota téže statistiky obvykle růzá. 1.2 Základí typy statistických dat Podle toho, jaký charakter mají zaky ve výběru ebo v populaci rozlišujeme růzé typy dat. Nejápadější je rozdíl mezi proměými vyjádřeými slově a proměými, jejichž hodoty jsou vyjádřey číselě. Tomuto odpovídá základí děleí a kvalitativí a kvatitativí data. Pro zpracováí obvykle přiřazujeme slovím proměým jejich číselý ekvivalet, pokud můžeme přiřadit číselou hodotu v libovolém pořadí, mluvíme o datech omiálích. Pokud přiřazeím čísel zároveň posloupost uspořádáme, mluvíme o ordiálích datech. kvalitativí omiálí biárí data (alterativí, dichotomická) - data abývají pouze dvou hodot typu ANO - NE ebo 0-1; kvalitativí omiálí data (víceškálové) - (kategoriálí data) data mají původě sloví charakter, při přiřazováí číselých charakteristik elze rozumým způsobem zavést do dat uspořádáí, typickým případem jsou data vyjadřující apř. bydliště, růzé barvy sledovaého objektu a podobě; kvalitativí ordiálí data - data mají původě sloví charakter a při převodu do číselé škály je přirozeým způsobem zavedeo uspořádáí, apříklad maximálí dosažeé vzděláí, hodoceí zámkami, vyjádřeí užitečosti a podobě; kvatitativí diskrétí data - itervalová stupice data mají přirozeou číselou charakteristiku, čísla zároveň vyjadřují uspořádáí v ámi zvoleém smyslu, zároveň se můžeme ptát o kolik je jede zak lepší ež druhý, svůj praktický výzam má tedy i veličia x i x j, v rámci itervalové stupice má ulová hodota pouze relativí charakter, apříklad ulová teplota; kvatitativí diskrétí data - poměrová stupice data mají přirozeou číselou charakteristiku, čísla zároveň vyjadřují uspořádáí v ámi zvoleém smyslu, zároveň se můžeme ptát kolikrát je hodota jedoho zaku jiá (lepší) ež hodota druhého zaku, svůj praktický výzam má tedy i veličia x i x j, v rámci poměrové stupice má kokrétí výzam ulová hodota, apříklad ulová hmotost, ulová rychlost, ulový počet výskytu sledovaého jevu; kvatitativí spojitá data - data mají přirozeou číselou charakteristiku, ale tato charakteristika může abývat ekoečého počtu hodot, ejčastěji vzikají tato data měřeím a vážeím objektů, zachyceím času a podobě; data s eúplou iformací - do této kategorie spadají data, o kterých víme apříklad pouze to, zda jsou pod detekčím limitem,ev. data cezorovaá časem, ev. data mající itervalový charakter (víme pouze to, že hodota proměé leží v itervalu) a podobě. 3

4 1.3 Výběrové charakteristiky pro jedorozměrá data Výběrové charakteristiky polohy aritmetický průměr x = x 1 + x x je jedoduchý, založeý a všech hodotách, lze ho lieárě trasformovat tj. pokud y i = ax i +b pro i = 1, 2,...,, pak y = ax + b aritmetický průměr x je citlivý a hrubé chyby (př. 8, 12, 15, 23, 1500 x = 311.6) V programu EXCEL používáme pro výpočet aritmetického průměru fukci PRŮMĚR(číslo1;číslo2;... ) resp. PRŮMĚR(oblast dat) v aglické verzi se jedá o fukci MEAN(oblast dat). Při použití těchto fukcí jsou buňky obsahující textové hodoty z výpočtu vyecháy. Naproti to mu fukce AVERAGEA(hodota1;hodota2;... ) vrátí aritmetický průměr hodot v sezamu argumetů (argumety musí být čísla, ázvy, matice ebo odkazy). K číslům je avíc ve výpočtu zahrut i text (vyhodoceo jako 0) a logické hodoty PRAVDA (vyhodoceo jako 1) a NEPRAVDA (vyhodoceo jako 0). Aritmetický průměr z vybraých hodot lze také vypočítat jako podíl součtu a počtu buěk odpovídající kritériu. Použijeme fukce SUMIF(oblast;kritéria;součet), kde oblast jsou buňky obsahující kriteriálí hodotu, kritéria jsou zvoleé podmíky a součet je oblast buěk, které sčítáme a pro určeí počtu použijeme fukci COUNTIF(oblast;kritérium). Př. SUMIF(A2:A5; > ;B2:B5) sečte hodoty v těch buňkách B2:B5, pro které hodota v příslušé buňce A2:A5 je větší ež geometrický průměr (pro kladé hodoty x i ) x G = x 1.x x je vhodý pro průměrou hodotu idexů i k Př.: Necht x 0, x 1,..., x udávají počet prodaých výrobků v i- tém časovém období. Vývoj prodeje charakterizujeme pomocí tzv. řetězových idexů i 1 = x 1, i 2 = x 2,..., i = x. x 0 x 1 x 1 Pak lze vyjádřit x = x 0 i 1 i 2 i. V Excelu použijeme fukci GEOMEAN(oblast dat). 4

5 harmoický průměr (pro kladé hodoty x i ) x H = x x 1 Příklad použití: Auto x 1 jede do kopce rychlosti v 1 a po stejé dráze z kopce rychlosti v 2. Jaká je jeho průměrá rychlost? Délku tratě ozačme d, dobu jízdy do kopce t 1 = d/v 1, dobu jízdy z kopce t 2 = d/v 2. 2d 2 Průměrá rychlost je = t 1 + t 2 v1 1 + v2 1 = v H V Excelu použijeme fukci HARMEAN(oblast dat). další průměry mají obecý charakter kvadratický průměr x K = průměr stupě α, pro α 0 vzájemé vztahy průměrů x x x 2 x α = ( 1 x α i ) 1/α x (1) x H x G x x K x () rovost platí právě tehdy, když jsou všechy prvky x i shodé x (1) x α x () x 1 = x H x 1 = x x 2 = x K lim x α = x G α 0 lim α x α = x (1) lim α + x α = x () mediá je taková hodota, že v případě, že uspořádáme data podle velikosti, je přesě polovia hodot meší ež mediá x a polovia hodot je větší ež mediá. Největší výhoda mediáu spočívá v jeho robustosti, pod tímto termíem rozumíme malou citlivost a odlehlá, případě chybá data. Pokud jsou data rozložea symetricky vzhledem k průměru a eobsahují odlehlá pozorováí, je mediá rove aritmetickému průměru. V Excelu použijeme fukci MEDIAN(oblast dat). 5

6 modus ejčetější hodota, tj. hodota, která se v souboru dat opakuje ejvícekrát, tato charakteristika emá výzamější uplatěí a poskytuje ám pouze doplňkové iformace o souboru dat. V Excelu použijeme fukci MODE(oblast dat). kvatily, kvartily, decily Zobecěím pojmu mediá dostaeme pojem α-procetí kvatil. α-procetí kvatil Q α je taková hodota, že v případě, že uspořádáme data podle velikosti, je α procet hodot meší ež kvatil Q α a 100 α procet hodot je větší ež kvatil. Hodotu Q 25 azýváme dolí kvartil, hodota Q 50 je mediá, hodotu Q 75 azýváme horí kvartil, aalogicky hodoty Q 10 resp.q 90 a Q 1 resp. Q 99 azýváme dolí (horí) decil a dolí (horí) percil. V Excelu použijeme fukce, které pracují s pořadím hodot buěk. Fukce RANK(číslo;oblast;pořadí) vrací hodotu pořadí číslo v rámci buěk ozačeých oblast dat, podle hodoty pořadí se jedá o pořadí ve smyslu sestupém (hodota 0 ebo ezadáo) ebo ve smyslu vzestupém (jakákoliv hodota růzá od uly). Př. RANK(A4;A1:A20;1) 3, odpovídá stavu, kdy hodota v buňce A4 vzhledem k hodotám v buňkách A1:A20 je třetí ejmeší. Pokud se v rámci dat ěkteré hodoty opakují, má hodota RANK eceločíselý charakter. Iverzí fukce k RANK jsou fukce LARGE(oblast;k) a SMALL(oblast;k), která vrací k-tou ejvětší (resp. ejmeší) hodotu z dat v oblasti dat. Speciálě LARGE(oblast;1)=SMALL(oblast;) je maximálí hodota z dat v oblasti a LARGE(oblast;)=SMALL(oblast;1) je miimálí hodota v oblasti. Pokud potřebujeme určit pořadí hodoty čísla vyjádřeé procetuálí částí oblasti, použijeme fukci PERCENTRANK(oblast;x;desetiy), kde v případě, že číslo eodpovídá žádé hodotě v oblasti, použije program iterpolaci. Hodota desetiy uvádí počet desetiých míst, které bereme v úvahu - stadardě 3. Př. PERCENTRANK(A1:A20;B4;3) 0.12, odpovídá stavu, kdy 12% hodot v buňkách A1:A20 je meší ež hodota v buňce B4. Iverzí fukcí k fukci PERCENTIL je fukce PERCENTIL(oblast;k), která vrací k-procetí kvatil (v českém Ecxelu je používá překlad percetil) z oblasti. Opět tato fukce pracuje s iterpolací. Tedy PERCENTIL(oblast,k)=Q k Př. Pokud v buňkách A1:A4 jsou hodoty 1,2,3,4, pak PERCENTIL(A1:A4;0,3) vrací hodotu 30-ti procetího kvatilu po iterpolaci, tj. PERCENTIL(A1:A4;0,3) 1.9 zameá, že 30% hodot v oblasti A1:A4 je meší ež 1.9. Speciálím případem fukce PERCENTIL je fukce QUARTIL(oblast;kvartil), 6

7 kde QUARTIL(oblast;0)=Q 0 je miimálí hodota, QUARTIL(oblast;1)=Q 25 je dolí kvartil, QUARTIL(oblast;2)=Q 50 je mediá, QUARTIL(oblast;3)=Q 75 je horí kvartil a QUARTIL(oblast;4)=Q 100 je maximálí hodota Výběrové charakteristiky variability rozptyl spočítáme pomocí vztahu σ 2 = 1 (x i x) 2, kde x je aritmetický průměr. Jedá se vlastě o průměrou kvadratickou odchylku hodot od aritmetického průměru a jeho fyzikálí rozměr je základí jedotka a druhou. Stejě jako aritmetický průměr je rozptyl citlivý a odlehlá pozorováí. výpočetí tvar rozptylu s 2 = 1 x 2 i (x) 2 echt a, b R a položme y i = ax i + b pro i = 1, 2,...,, pak s 2 y = a 2 s 2 x fukce S(a) = 1 (x i a) 2 abývá svého miima v bodě a = x Samuelsoova erovost: max x i x s 1 i s y = a s x V Excelu použijeme fukci VAR(oblast dat) případě VARPA(oblast dat), pokud chceme zahrout též buňky s logickou hodotou a buňky s textem. výběrový rozptyl výběrový rozptyl počítáme pomocí vztahu s 2 = 1 1 (x i x) 2, resp. s 2 = 1 σ2. Výběrový rozptyl má stejý výzam jako rozptyl, ale lepší statistické vlastosti, proto je v rámci dalších statistických metod používaější. V Excelu použijeme fukci VAR.VÝBĚR(oblast dat) případě VARA(oblast dat), pokud chceme zahrout též buňky s logickou hodotou a buňky s textem. 7

8 variačí rozpětí R = x () x (1) je rozdíl mezi maximálí a miimálí hodotou dat s 2 R2 4 ( ) x(1) + x () (k důkazu použiji vlastosti fukce S(x) S a 2 x i x (1) + x () 2 R 2 ) variačí rozpětí je vyjádřeo v jedotkách x i V Excelu použijeme pro alezeí maxima a miima fukce MAX(oblast dat) a MIN(oblast dat). kvartilové rozpětí je ejpoužívaější charakteristika variability, která epracuje s aritmetickým průměrem a je tedy robusí, tj. eí citlivá a odlehlá pozorováí. Kvartilové rozpětí určíme jedoduše jako rozdíl horího a dolího kvartilu R Q = Q 75 Q 25. Obdobě je defiováé decilové rozpětí R D = Q 90 Q 10 a variačí rozpětí R = Q 100 Q 0 = x () x (1) = max(x) mi(x). V Excelu použijeme pro alezeí horího kvartilu fukci QUARTIL(oblast dat;3) a pro alezeí hodot dolího kvartilu fukci QUARTIL(oblast dat;2). směrodatá odchylka a výběrová směrodatá odchylka je určea jako odmocia z rozptylu, začíme ji s. Nejčastěji je používáa výběrová směrodatá odchylka odvozeá z výběrového rozptylu. Fyzikálí rozměr směrodaté odchylky odpovídá fyzikálímu rozměru zpracovávaých dat. V Excelu použijeme fukci SMODCH(oblast dat) - odmocia z VAR, případě STDEVA(oblast dat)- odmocia z VARPA ebo ejlépe SMODCH.VÝBĚR(oblast dat) - odmocia z VAR.VÝBĚR. 8

9 variačí koeficiet použijeme pokud potřebujeme porovat variabilitu dvou souborů, které mají rozdílý aritmetický průměr. Variačí koeficiet spočítáme podle vztahu v = s x. koeficiet kvartilové variace je CQV = Q 3 Q 1 Q 3 + Q 1 průměrá absolutí odchylka je další z charakteristik variability, které zmírňuje vliv odlehlých hodot. Nejvíce používáy jsou průměrá absolutí odchylka od aritmetického průměru d x = 1 x i x a průměrá absolutí odchylka od mediáu d x = 1 x i x. V Excelu použijeme fukci PRŮMODCHYLKA(oblast dat) pro průměrou absolutí odchylku od aritmetického průměru Další výběrové charakteristiky obecé a cetrálí momety obecý momet k-tého řádu m k = 1 cetrálí momet k-tého řádu m k = 1 x k i (x i x) k momet kolem bodu a k-tého řádu m k (a) = 1 (x i a) k absolutí momet kolem bodu a k-tého řádu m abs k (a) = 1 m k = k j=0 speciálě platí ( ) k ( 1) j ( x ) j m k j j m 3 = m 3 3 m 2x + 2 ( x ) 3 x i a k m 4 = m 4 4 m 3x + 6 m 2 ( x ) 2 3 ( x ) 4 9

10 šikmost je charakteristika, která ám pomáhá rozhodout o shodě ašich dat s modelem ormálího rozděleí z hlediska symetrie kolem průměru x. Pomocí obecých mometů lze šikmost vyjádřit jako α 3 = m 3 s 3. Nejčastěji počítáme šikmost podle vztahu α 3 = ( 1)( 2) ( ) 3 xi x. s Pokud je šikmost dat kladá, jsou data vychýleá ke kladým hodotám, pokud je hodota šikmosti záporá, jsou data vychýleá k záporým hodotám. V Excelu použijeme fukci SKEW(oblast dat) Obrázek 1: Šikmost kladá a záporá špičatost je charakteristika, která se zaměřuje a strmost dat v porováí s modelem ormálího rozděleí. Pomocí obecých mometů lze špičatost vyjádřit jako a 4 = m 4 s 4 ebo počítáme koeficiet špičatosti a 4 = m 4 s 4 3. Pokud je koeficiet špičatosti dat kladý, jsou data strmější oproti ormálímu rozděleí, pokud je hodota koeficietu špičatosti záporá, mají data plošší charakter. V Excelu použijeme fukci KURT(oblast dat) 10

11 Obrázek 2: Špičatost kladá a záporá 1.4 Výběrové charakteristiky pro třídě rozděleá data V případě, že data mají itervalový charakter, mluvíme o třídě rozděleých datech. V takovýchto situacích máme k dispozici iformace o itervalech (třídách) a počtu dat z výběru, které se achází v daé třídě. Typickým příkladem je rozděleí tříd podle věku, podle dojezdové vzdáleosti a podobě. Pokud potřebujeme sami rozdělit data do jedotlivých tříd, můžeme počet tříd k určit apříklad pomocí Sturgesova pravidla k log. Ukázka třídě rozděleých dat, kde kromě četosti je k dispozici též iformace o represetatech jedotlivých tříd (průměr ve třídě) a variabilitě uvitř jedotlivých tříd (směrodatá odchylka). Třída Hraice Tabulka 1: Třídě rozděleá data Četost Rel. četost Průměr Rozptyl Sm. odchylka j p j = j / x j s 2 j s j 1 ( ; ( 2; ( 1.5; ( 1; ( 0.5; ( 0; ( 0.5; ( 1; ( 1.5; ( 2; Celkem

12 Průměr pro třídě rozděleá data spočteme podle vztahu x = k j=1 x j j = k x j p j, kde x j je reprezetat j té třídy (průměr v j té třídě), j je četost prvků v j té třídě, k = j je celkový počet prvků ve výběru, k je počet tříd. j=1 j=1 Rozptyl pro třídě rozděleá data spočteme podle vztahu ( k s 2 = 1 k ( j 1) s 2 j + j (x j x) ), 2 1 j=1 j=1 kde x j je průměr j té třídy, j je četost prvků v j té třídě, = ve výběru, s 2 j je rozptyl v j té třídě a k je počet tříd. k j je celkový počet prvků j=1 12

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

13 Popisná statistika

13 Popisná statistika 13 Popisá statistika 13.1 Jedorozměrý statistický soubor Statistický soubor je možia všech prvků, které jsou předmětem statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme

Více

vají statistické metody v biomedicíně

vají statistické metody v biomedicíně Statistika v biomedicísk ském m výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Proč se používaj vají statistické metody v biomedicíě Biomedicísk

Více

Elementární zpracování statistického souboru

Elementární zpracování statistického souboru Elemetárí zpracováí statistického souboru Obsah kapitoly 4. Elemetárí statistické zpracováí - parametrizace vhodými empirickými parametry Studijí cíle Naučit se výsledky měřeí parametrizovat vhodými empirickými

Více

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter. Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

1. Měření ve fyzice, soustava jednotek SI

1. Měření ve fyzice, soustava jednotek SI 1. Měřeí ve fyzice, soustava jedotek SI Fyzika je vědí obor, který zkoumá zákoitosti přírodích jevů. Pozámka: Získáváí pozatků ve fyzice: 1. pozorováí - sledováí určitého jevu v jeho přirozeých podmíkách,

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

2. Náhodná veličina. je konečná nebo spočetná množina;

2. Náhodná veličina. je konečná nebo spočetná množina; . Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

Úloha II.S... odhadnutelná

Úloha II.S... odhadnutelná Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý.

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý. evost a životost - Hr III EVNOT a ŽIVOTNOT Hr III Mila Růžička, Josef Jreka, Zbyěk Hrbý zbyek.hrby@fs.cvt.cz evost a životost - Hr III tatistické metody vyhodocováí dat evost a životost - Hr III 3 tatistické

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvalitěí výuky prostředictvím ICT Téma III..3, pracoví list 3 Techická měřeí v MS Ecel Průměry a četosti, odchylky změřeých hodot. Ig. Jiří Chobot

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

Přednáška VIII. Testování hypotéz o kvantitativních proměnných

Přednáška VIII. Testování hypotéz o kvantitativních proměnných Předáška VIII. Testováí hypotéz o kvatitativích proměých Úvodí pozámky Testy o parametrech rozděleí Testy o parametrech rozděleí Permutačí testy Opakováí hypotézy Co jsou to hypotézy a jak je staovujeme?

Více

Iterační výpočty projekt č. 2

Iterační výpočty projekt č. 2 Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....

Více

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá Statitická šetřeí a zpracováí dat Statitika e věda o metodách běru, zpracováí a vyhodocováí tatitických údaů. Statitika zkoumá polečeké, přírodí, techické a. evy vždy a dotatečě rozáhlém ouboru údaů. Matematická

Více

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

Zhodnocení přesnosti měření

Zhodnocení přesnosti měření Zhodoceí přesosti měřeí 1. Chyby měřeí Měřeím emůžeme ikdy zjistit skutečou (pravou) hodotu s měřeé veličiy. To je způsobeo edokoalostí metod měřeí, měřicích přístrojů, lidských smyslů i proměých podmíek

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním Lekce Itervalový odhad Itervalový odhad je jedou ze stadardích statistických techik Cílem je sestrojit iterval (kofidečí iterval, iterval spolehlivosti, který s vysokou a avíc předem daou pravděpodobostí

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

1. Číselné obory, dělitelnost, výrazy

1. Číselné obory, dělitelnost, výrazy 1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

2.4. INVERZNÍ MATICE

2.4. INVERZNÍ MATICE 24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:

Více

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( ) DSM Cv 9 Vytvořující fukce Vytvořující fukcí ekoečé poslouposti a0, a,, a, reálých čísel mííme formálí ekoečou řadu =. f a i= 0 i i Příklady: f = + = + + + + + ) Platí: (biomická věta). To zameá, že fukce

Více

4. Základní statistické pojmy.

4. Základní statistické pojmy. 4. Základí statistické pojmy. 4. Úvodí iformace Statistika je často představováa jako pouhý sběr čísel ebo jim podobých údajů. Původí výzam toho slova skutečě souvisí se sběrem iformací o státu ( z latiského

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

Přednášky část 7 Statistické metody vyhodnocování dat

Přednášky část 7 Statistické metody vyhodnocování dat DŽ ředášky část 7 tatistické metody vyhodocováí dat Mila Růžička mechaika.fs.cvt.cz mila.rzicka@fs.cvt.cz DŽ tatistické metody vyhodocováí dat Jak velké rozptyly lze očekávat mezi dosažeými pevostmi ebo

Více

Vyhledávání v tabulkách

Vyhledávání v tabulkách Vyhledáváí v tabulkách Tabulkou azveme možiu položek idetifikovatelých hodotou přístupového (idetifikačího) klíče (key, ID idetificator). Ve vodorovém směru se jedá o heterogeí pole, tz. že každá položka

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Pravděpodobnostní model doby setrvání ministra školství ve funkci Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

9. Měření závislostí ve statistice Pevná a volná závislost

9. Měření závislostí ve statistice Pevná a volná závislost Dráha [m] 9. Měřeí závislostí ve statistice Měřeí závislostí ve statistice se zabývá především zkoumáím vzájemé závislosti statistických zaků vícerozměrých souborů. Závislosti přitom mohou být apříklad

Více

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model EKONOMETRIE 9. předáška Zobecěý lieárí regresí model Porušeí základích podmíek klasického modelu Metoda zobecěých emeších čtverců Jestliže sou porušey ěkteré podmíky klasického modelu. E(u),. E (uu`) σ

Více

Pravděpodobnost a statistika - absolutní minumum

Pravděpodobnost a statistika - absolutní minumum Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky

Více

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V Předáška 1: Vektorové prostory Vektorový prostor Pro abstraktí defiici vektorového prostoru jsou podstaté vlastosti dvou operací, sčítáí vektorů a ásobeí vektoru (reálým číslem) Tyto dvě operace musí být

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad... Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

Přednáška 7, 14. listopadu 2014

Přednáška 7, 14. listopadu 2014 Předáška 7, 4. listopadu 204 Uvedeme bez důkazu klasické zobecěí Leibizova kritéria (v ěmž b = ( ) + ). Tvrzeí (Dirichletovo a Abelovo kritérium). Nechť (a ), (b ) R, přičemž a a 2 a 3 0. Pak platí, že.

Více

Náhodný výběr, statistiky a bodový odhad

Náhodný výběr, statistiky a bodový odhad Lekce Náhodý výběr, statistiky a bodový odhad Parametr rozděleí pravděpodobosti je ezámá kostata, jejíž přímé určeí eí možé. Nástrojem pro odhad ezámých parametrů je áhodý výběr a jeho charakteristiky

Více

Petr Šedivý Šedivá matematika

Petr Šedivý  Šedivá matematika LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími

Více

Iterační metody řešení soustav lineárních rovnic

Iterační metody řešení soustav lineárních rovnic Iteračí metody řešeí soustav lieárích rovic Matice je: diagoálě domiatí právě tehdy, když pozitivě defiití (symetrická matice) právě tehdy, když pro x platí x, Ax a ij Tyto vlastosti budou důležité pro

Více

1 Úvod { }.[ ] A= A A, (1.1)

1 Úvod { }.[ ] A= A A, (1.1) Obsah Obsah... Úvod... 3 Základí pojmy počtu pravděpodobosti... 7. Základí statistické pojmy... 7. Fukce áhodých veliči... 8.3 Charakteristiky áhodých veliči... 0.4 Některá rozděleí pravděpodobosti....5

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvatová a statistická fyzika (Termodyamika a statistická fyzika) Boltzmaovo - Gibbsovo rozděleí - ilustračí příklad Pro ilustraci odvozeí rozděleí eergií v kaoickém asámblu uvažujme ásledující příklad.

Více

1. JEV JISTÝ a. je jev, který nikdy nenastane b. je jev, jehož pravděpodobnost = ½ c. je jev, jehož pravděpodobnost = 0 d.

1. JEV JISTÝ a. je jev, který nikdy nenastane b. je jev, jehož pravděpodobnost = ½ c. je jev, jehož pravděpodobnost = 0 d. ZÁPOČTOVÝ TEST. JEV JISTÝ a. je jev, který ikdy eastae b. je jev, jehož pravděpodobost ½ c. je jev, jehož pravděpodobost 0 d. je jev, jehož pravděpodobost e. je jev, který astae za jistých okolostí f.

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

PE 301 Podniková ekonomika 2. Garant: Eva KISLINGEROVÁ. Téma Metody mezipodnikového srovnávání. Téma 12. Eva Kislingerová

PE 301 Podniková ekonomika 2. Garant: Eva KISLINGEROVÁ. Téma Metody mezipodnikového srovnávání. Téma 12. Eva Kislingerová PE 30 Podiková ekoomika Garat: Eva KISLINGEROVÁ Téma Metody mezipodikového srováváí Eva Kisligerová Téma Eva Kisligerová Vysoká škola ekoomická v Praze 003 - Mezipodikové srováváí Poprvé 956- koferece

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

U klasifikace podle minimální vzdálenosti je nutno zvolit:

U klasifikace podle minimální vzdálenosti je nutno zvolit: .3. Klasifikace podle miimálí vzdáleosti Tato podkapitola je věováa popisu podstaty klasifikace podle miimálí vzdáleosti, jež úzce souvisí s klasifikací pomocí etaloů klasifikačích tříd. Představíme si

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

BAKALÁŘSKÁ STA I. + II.

BAKALÁŘSKÁ STA I. + II. Statistika I. - Teorie ) Statistika - Číselé údaje o hromadých jevech. Praktická čiost - sběr, zpracováí a vyhodocováí statistických údajů - Teoretická disciplía - metody k odhalováí zákoitostí při působeí

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Statistika pro ekoomy Eduard Souček Statistika pro ekoomy VYSOKÁ ŠKOLA EKONOMIE A

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Doc. Ing. Dagmar Blatná, CSc.

Doc. Ing. Dagmar Blatná, CSc. PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj

Více

ZÁKLADY STATISTIKY (s aplikací na zdravotnictví)

ZÁKLADY STATISTIKY (s aplikací na zdravotnictví) PŘEMYSL ZÁŠKODNÝ RENATA HAVRÁNKOVÁ JIŘÍ HAVRÁNEK VLADIMÍR VURM ZÁKLADY STATISTIKY (s aplikací a zdravotictví) Vzik publikace byl ispirová myšlekami, pracemi a ávrhy výzamého sloveského vědce v oblasti

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopraví Statistika Semestrálí práce Zdražováí pohoých hmot Jméa: Martia Jelíková, Jakub Štoudek Studijí skupia: 2 37 Rok: 2012/2013 Obsah Úvod... 2 Použité

Více

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i : ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymázium, Šterberk, Horí ám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šabloa III/2 Iovace a zkvalitěí výuky prostředictvím ICT Ozačeí materiálu VY_32_INOVACE_Hor018 Vypracoval(a), de Mgr. Radek

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základy měřeí eelektrických veliči.. Měřicí řetězec Měřicí řetězec (měřicí soustava) je soubor měřicích čleů (jedotek) účelě uspořádaých tak, aby bylo ožě split požadovaý úkol měřeí, tj. získat iformaci

Více

} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy

} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy Měřeí statistické závislosti, korelace, regrese Prof. RNDr. Jaa Zvárov rová,, DrSc. MĚŘENÍZÁVISLOSTI Cílem statistické aalýzy vepidemiologii bývá eje staovit, zda oemocěí závisí a výskytu rizikového faktoru,

Více