3. POJIŠTĚNÍ OSOB (ŽIVOTNÍ POJIŠTĚNÍ)

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "3. POJIŠTĚNÍ OSOB (ŽIVOTNÍ POJIŠTĚNÍ)"

Transkript

1 3. POJIŠTĚÍ OSOB (ŽIVOTÍ POJIŠTĚÍ) 3.. EMOELOVÝ PŘÍSTUP 3... ekremeí řád vymíráí populace Úmrosí abulky a) Smr je áhodým jevem, kerý se pojišťuje pro účely ŽP sačí pracova s průměrými hodoami záko velkých čísel převzeí výsledků demografických meod pozorováí rozsáhlých populačích souborů l - poče osob ve věku, keré zůsaly a živu ze souboru l 0 současě arozeých jediců l ω - symbol ω pro posledí uvažovaou kaegorii l l l l ω 0 0 prví čle 0 l zv. koře ÚT Tvar a kosrukce ÚT : běžé ÚT vycházejí z dekremeích zkušeosí daé populace během období epřesahujícího 0 le úplé ÚT iervaly o délce roku (osoby se dělí a skupiy o sáří 0- rok, -2 roky ad.) b) popis sloupců ÚT dožié věky 0,,, ω l poče lidí z l 0 dožívajících se věku (dekremeí řád vymíráí populace) d l l + poče zemřelých ve věku ( d ω l ) q d / l pravděpodobos úmrí ve věku (pravděpodobos, že jediec, kerý je a živu ve věku zemře před dosažeím věku +) p q l + / l pravděpodobos dožií ve věku (pravděpodobos, že jediec, kerý je aživu ve věku, se dožije věku +) L l + + d /2 (l + l + )/2 (poče le prožiých osobami ve věku poče člověkoroků, keré prožije l osob) T L + L L ω... (poče zbylých le živoa osob ve věku poče ω člověkoroků keré do koce živoa prožije l osob) e T / l (průměrý poče le, kerých se ješě dožije jediec ve věku )

2 3..2. Úmrosí abulky v ŽP a) pojišťovací sazby odděleě pro muže a žey b) vyrováváí ÚT grafické s využiím počíačů aalyické meodou ejmeších čverců (de Moivre l 86 pro l 0 00 a 2 86) (Gomperz l e k g ) e (Makeham l k s g ) mechaické vyrováváí pro daý věk zprůměrováím hodo z okolí (Wisei, Specer,ad.) preaálí období q má vyšší hodoy při vsupu do pubery abs. miimum začáek 3. desíky lokáí maimum (úrazy při moorismu, maimálí kumulace sebevražd) c) věkové posuvy jako bezpečosí přirážka pojišťovy - ŽP a dožií uzavírají relaivě zdraví jedici celosáí q příliš vysoké - ŽP a úmrí zde by se aopak mělo počía s vyššími hodoami q - civilizačí choroby (AIS) použié q přesae bý po určié době akuálí způsoby věkových posuvů - ejsou-li použiy vlasí ÚT (pro vlasí pojisý kme) lze použí celosáí ÚT s věkovým posuvem (apř. q40 q4 - ÚT zesárou o rok) - lze aké použí selekčích ÚT (zohledňují i jié fakory ež věk kuřák/ekuřák, doba od počáku pojišěí ) - lze aké použí skupiové ÚT (vzažeé a skupiy osob, apř. maželé, rodiče a děi, obchodí společíci, apod.) 2

3 3.2. MOELOVÝ PŘÍSTUP (Pojisě maemaický model reprezeová sousavou komuačích čísel) a) Kombiace údajů z ÚT s úrokovým počem vede k zavedeí komuačích čísel KČ. Pojišťova abeluje svá KČ a základě používaých ÚT a pojisě echických úrokových měr b) Sousava KČ [, C ], [M, ], [R, S ] l q q + r diskoovaý poče dožívajících se věku ( + ) C d q q + r diskoovaý poče zemřelých ve věku pozámka k [, C ] - C q + r je příslušá p.. ú. míra + ω + j j 0 M ω C + j j 0 S ω + j j 0 R ω M + j j 0 pozámka k celému poj. ma. modelu - poj. ma. model ři dvojice komuačích čísel - KČ z daé dvojice vzikají jako odpovídající souče KČ z předchozí dvojice - z libovolého KČ lze vyjádři zbylých 5 ypů - pro výpoče KČ jsou výhodé programové produky (abulkové procesory) 3

4 3.3. VÝPOČET POJISTÉHO, POJISTÉ REZERVY Výpoče pojisého v ŽP Jedorázové eopojisé Pojisiel poskye klieovi buď jedorázovou poj. čásku (kapiálové pojišěí) ebo důchod (časově omezeý ebo doživoí) (důchodové pojišěí) P (eopojisé) kryje poj. plěí pojišťovy, BP (bruopojisé) P + KS + KZ Jedorázové P výpoče založe a PV(prese value) é čásky FV kerou bude muse pojišťova vyplai vzhledem k ÚT a jedu pojisou smlouvu (diskoováí se provádí podle přijaé PT úrokové míry) PV deermiisicky hodoová rovice (euplaňuje se v ŽP) sochasicky áhodý prvek q, p (uplaňuje se v ŽP) a) Pojišěí pro případ dožií (osoba se dožije věku a současě i koce sjedaé pojisé doby, jiak pojišěí zaiká) FV l l q PV FV FV FV O q l l q ( + ) O jedoková počáečí hodoa l+ pozámka: p, možos saisického přísupu l V: q - p p, 2 0 p 2 -p, q, 2 ( ) ( ) ( 0 ),, O p + p22 p, q 2 2 C p p q p q + q p q 2 j j,,,, p q q + q p q q p q σ C ,,,, 2 + 4

5 b) Pojišěí pro případ smri b) rvalé eí sjedáa doba pojišěí b2) dočasé je sjedáa doba pojišěí (dožije-li se pojišěý koce pojisé doby, pojišěí bez ároku zaiká) b) + b2) pojišťova vyplaí pozůsalým sjedaou pojisou čásku a koci oho roku, v ěmž osoba pojišěá ve věku zemře) případ b) O souče dílčích jedokových počáečích hodo pro osobu zemřelou během. roku, během 2. roku, ad. ( + ) FV d d q C Cω PV FV FV,..., PV FV ω ω q l l q C + C+ + + Cω M O případ b2) ýká se apř. i úvěrového pojišěí (úvěr a le dočasé pojišěí pro případ smri v průběhu le) C + C + + C M M O případ b) odložeé pojišěí (povios plěí se v případě smri odkládá o k le (karečí doba ižší pojisé)) C + C + + C M O + k + k+ ω + k c) Smíšeé pojišěí pojišěí pro případ smri ebo dožií (odpadá ebezpečí záiku pojišěí bez áhrady) ejprodávaější pojišěí pojišťova vyplaí pojisku pozůsalým a koci oho roku, v ěmž osoba pojišěá ve věku zemře, přičemž ejpozději k výplaě éo čásky pojišěému dojde, dožije-li se koce sjedaé pojisé doby. C + C + + C + M M + O

6 d) Pojišěí důchodu výplaa důchodu vázáa a živo pojišěého a v případě jeho smri kočí rozdíl od jisých důchodů ve fiacích d) doživoí důchod placeý předlhůě ˆ ω O ω + placeý polhůě O ˆ O O d2) dočasý důchod (rváí pojišěí je omezeo a dobu ) placeý předlhůě ˆ O placeý polhůě O ˆ O O d3) pojišěí odložeého doživoího důchodu O ˆ + k d4) pojišěí odložeého dočasého důchodu O d5) področí důchody (vyplácey m krá ročě) ˆ + k + k+ m m O m O O m O + 2m 2m ˆ ( ) ˆ m + O m O 2m aproimace pro doživoí důchody ˆ ( ) ˆ ( ) aproimace pro dočasé důchody e) alší možé ypy pojišěí ( ) O m m O + 2m + Trvalé pojišěí pro případ smri s rosoucí pojisou čáskou ypu,2, : O R R M očasé poj. pro případ smri s rosoucí p.č. O ad. (další příklady viz. Cipra) R

7 Běžé eopojisé (placeí pojisého v pravidelých splákách) Běžé pojisé P lze považova za důchod, kerý plaí pojisík pojisieli (věšiou pojišěý pojišťově) Ozačeí: P doživoí pojišěí pro případ smri P dočasé pojišěí pro případ smri, poj. dožií, smíšeé poj. kp apř. pojišěí odložeého doživoího důchodu P (m) placeí pojisého m krá ročě a) Běžé pojisé pro případ dožií z věku do věku +, keré se plaí každý rok a začáku dalšího roku pojišěí (edéle však do doby, kdy pojišěý zemře, ebo se dožije věku +) + P P P ( m) + m + m 2m + b) Běžé pojisé pro případ smri doživoí M P c) Běžé pojisé pro případ smri dočasé M M + P + d) Běžé pojisé ve smíšeém pojišěí M M P + e) Běžé pojisé pro případ odložeého doživoího důchodu + k k P + k 7

8 Bruopojisé BP P + KS + KZ a) Jedorázové BP a jedokovou poj. čásku pojišěí pro případ dožií z věku do věku + B P α β příslušé O + počáečí jedorázové áklady α + běžé správí áklady během celého rváí pojisého β O (O pro pojišěí dočasého důchodu a dobu ) b) Běžé BP a jedokovou poj. čásku pojišěí pro případ dožií z věku do věku + B P + α + β + β + γ B ( ) β + β 2 běžé S během celého rváí pojišěí běžé S během placeí pojisého B + γ ikasí áklady spojeé s ikasem pojisého aalogické vzorce lze získa pro další druhy pojišěí (časo obsahují ješě fakor δ spojeý s áklady při výplaě důchodu) 8

9 Pojisá rezerva v pojišěí osob Riziková pojišěí evyváří se rezerva (apř. úrazové pojišěí) Rezervovorá pojišěí vyváří se rezerva (při malých rezervách jsou považováa za riziková) eorezerva ezapočíávají se S eorezerva a) důvod vyvářeí pojisých rezerv pojisé vyžadovaé ve věku 30 le je éměř 20 ižší, ež ve věku 60 le ale v prai se volí spláky běžého pojisého v kosaí výši přebyky z prvích le pojišěí emohou bý rozděley jako zisk vyváří se z ich eorezerva (resp. bruorezerva) b) způsob výpoču eorezervy V (R do koce -ého roku pojišěí) rerospekiví V rozdíl mezi zúročeým pojisým vybraým do koce -ého roku a zúročeým pojisým plěím do koce -ého roku prospekiví V rozdíl mezi diskoovaým pojisým plěím očekávaým od počáku (+)-ho roku diskoovaým pojisým očekávaým od počáku (+)-ho roku rero pro pro všecha plaí rovos: V V pozámka: V R a jedokovou pojisou čásku c) -pojišěí dožií z věku do + jedorázové pojisé + V běžé pojisé V + + -pojišěí pro případ smri + běžé pojisé V + -dočasé poj. pro případ smri běžé pojisé M M M M V -smíšeé pojišěí + + běžé pojisé V + + -poj. odložeého doživoího důchodu + k + V + + k < k + k V k

10 Bruorezerva a) BR je k R ve sejém posaveí jako bruopojisé k eopojisému (opě práce s koeficiey α, β, β2, γ, δ ) b) Zillmerovaá rezerva Spláceí ákladů α je při běžém pojisém rozložeo do spláek pojisého pojišťova se sává věřielem svých pojisíků řešeí Zillmer(863) síži o eumořeou čás ákladů α právě pojisou rezervu, kerá je aopak koem pojisíka u pojišťovy ao operace se azývá zillmerováí rezervy, vziklá zillmerovaá rezerva je mezičlákem při kosrukci fiálí bruorezervy Odbyé a ěkeré další paramery a) Odbyé v případě zrušeí pojišěí k jeho saoveí slouží poj. rezerva b) Poj. rezerva pojisík může získa pojisou půjčku c) Změy v pojisých hodoách a základě ové lékařské prohlídky d) Podíl a zisku sáem předepsaý zisk 30-50% přijaého pojisého ávra k pojisíkům (PTM 4%, výosové proceo 0%) ve všeobecých podmíkách se přizává pojišěému podíl a zisku e) Bilačí rezerva: iveura pojisá bilace Pojisá rezerva k dau pojisé bilace se azývá bilačí rezerva 0

11 4. POJIŠTĚÍ MAJETKU A OPOVĚOSTI ZA ŠKOY (EŽIVOTÍ POJIŠTĚÍ) 4.. TEORIE RIZIKA V EŽIVOTÍM POJIŠTĚÍ C2 a) výše škody V, výpoče O, C 2,, σ O sředí výše škody ávrh pojisky σ oceěí chyby při přechodu ke sředí (očekávaé) hodoě Poz.: výše škod by mohla mí ormálí rozděleí λ ( λ) b) Poče pojisých ároků do času : Poissoovo rozděleí P( ) e! λ frekvece pojisých ároků celkové pojisé ároky S ( i dílčí pojisé ároky do času ) i logarimicko ormálí rozděleí i c) všeobecé pojisé podmíky - pojišěí majeku (úmyslé ebo eúmyslé případy poškozeí, zičeí ebo odcizeí věci) - pojišěí odpovědosi za škody (pojisá ochraa, v íž pojisiel hradí škodu vziklou jiému) d) arifí skupiy homogeí skupiy pojisých smluv, pro ěž je pojišěé riziko přibližě sejé ŽP arifí skupia osoby éhož pohlaví a věku ŽP apř. při pojišěí proi vichřici geografické hledisko (více či méě vichřic 2 TS), druh budovy (průmyslové ad. 5 TS)

12 e) ZÁKLAÍ UKAZATELE (počíají se pro jedolivé roky a arifí skupiy) Průměrá pojisá čáska (mea sum isured) PPČ A B celková pojisá čáska v daém roce poče pojišěí v daém roce Průměré pojisé plěí (mea fillig isured) PPP C B celkové pojisé plěí v daém roce poče pojišěí v daém roce Průměrá škoda (mea claims amou) PŠ C celkové pojisé plěí v daém roce poče pojisých událosí v daém roce Škodí frekvece (mai claims frequecy) ŠF B poče pojisých událosí v daém roce poče pojišěí v daém roce Pojisá sazba (average premium rae) PS E A celkové pojisé v daém roce celková pojisá čáska v daém roce Škodí sazba (average claims rae) ŠS C A celkové pojisé plěí v daém roce celková pojisá čáska v daém roce Škodí kvóa (average claims raio) ŠK C E celkové pojisé plěí v daém roce celkové pojisé v daém roce Škodí supeň (average claims degree) ŠS PŠ C/ CB PPČ A/B A 2

13 4.2. ETTOPOJISTÉ a) Východiska výpoču - základí ukazaelé - vzažeí pojisého k vhodě zvoleé pojisé jedoce (UOE Uie of Eposure) př. UOE: jedo auo, 0 5 Kč hodoy zařízeého byu klasická UOE: jedoková pojisá čáska O ŠS (apř. O a 0 3 Kč pojisé čásky) aleraiví UOE: jeda pojisá smlouva O PPP poz.: ŠS ŠK PS ŠS ŠF, PPP ŠF PŠ ŠS PPČ poz.: časo se kombiuje ŠS, PPP poj. jedokou je jedoková poj. čáska v rámci jedé pojisé smlouvy b) škodí abulky (ŠT, jisá paralela ÚT) používají se při kombiaci ŠS a PPP ŠT pro určiou arifí skupiu v pojišěí majeku ŠT umožňují saovi pojisé a 0 3 Kč pojisé čásky jedé pojisé smlouvy (pořebý je odhad ŠF) c) Korekce pro případ, že saoveí budoucí úrově pojisého má bý založeo a miulých daech Korekce ideováím pomocí ideu ce (apř. v roce ide ce 20, v roce 5 ide ce 54 PPP PPP 54/20 ) 5 Korekce daá správým odhadem celkového pojisého plěí, keré může bý záležiosí řady le po poj. událosi úplá ŠS, úplé PPP. Korekce daé regresí aalýzou (apř. lieárí růs úplé ŠS) 3

14 4.3. BRUTTOPOJISTÉ a) BP P + bezpečosí přirážka + KS + KZ Bezpečosí přirážka eopojisé se zvýší o poče % související se supěm miulých škodích výkyvů Teo přísup souvisí s kosrukcí iervalů spolehlivosi ve saisice, určiý ásobek σ odhadué z miulých ukazaelů. b) příklad O () z miulých 5 le jako ŠS v budoucí eopojisé ŠS pojisé čásky σ C ( ) 2 opě v z pojisé čásky bezpečosí přirážka apř. dvojásobek eopojisé (ŠS+2 σ) z pojisé čásky pořeba robusí aalýzy (apř. zaedbáí poj. plěí > 0% celkového poj. plěí v daé TS) c) celkový vzorec pro BP BP P + bezp. Přirážka + KS a poj. jedoku + KZ a poj. jedoku S z bruopojisého 4.4. SPOLUÚČAST (FRAŠÍZA) Pojišěý sdílí čás pojišěého rizika (vyloučeí ákladů spojeých s likvidací drobých škod + moivace pojišěého k zábraě škod) Typy spoluúčasi Podílová: R( ) Iegrálí: q Ecedeí R( ) 0 pro a R( ) pro > a R( ) 0 pro a R( ) a pro > a Ručeí pojisiele za prví riziko: R( ) pro a R( ) a pro > a Kosaa a: apř. u ecedeí spoluúčasi hradí pojisiel u čás škody, kerá přesáhla a, čás do výše a jde a vrub pojišěého 4

15 4.5. POJISTÉ REZERVY a) důvod zjišěí koečé výše škod může rva ěkolik le ypy rezerv v ŽP: Rezerva pro dosud eahlášeé poj. událosi (Icurred Bu o Repored - IBR) Rezerva pro hlášeé, ale dosud evyřízeé p. u. (Repored Bu o Seled - RBS) Rezerva pro vyřízeé ale dosud eproplaceé p. u. (Seled Bu o Paid - SBP) Rezervy mohou dosahova ěkolikaásobku ročího příjmu z ikasovaého pojisého! b) odhad rezerv meoda CHAI-LAER (supňová meoda) Rok poj. Celkové pojisé plěí v leech uplyulých od roku pojisé událosi událosi a 80 a 8 a 80 a 80 a 80 a 80 a 86 a a 70 a 7 a 72 a 73 a 74 a 75 a a 60 a 6 a 62 a 63 a 64 a a 50 a 5 a 52 a 53 a a 40 a 4 a 42 a a 30 a 3 a a 20 a a Součem v řádcích vzikají kumulaiví celková pojisá plěí oplí se pravá dolí polovia abulky (0) odhaduými hodoami pomocí koeficieů vývoje pojisého plěí, yo koeficiey se vhodě zprůměrují a umoží odhadou pořebé hodoy po odečeí diagoálích prvků se získá hledaý odhad rezerv 5

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic

Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic Ivesičí čios Exisují růzá pojeí ivesičí čiosi: Z pohledu ekoomické eorie Podikové pojeí ivesic Klasifikace ivesic v podiku 1) Hmoé (věcé, fyzické, kapiálové) ivesice 2) Nehmoé (emaeriálí) ivesice 3) Fiačí

Více

Úvod do analýzy časových řad

Úvod do analýzy časových řad Úvod do aalýzy časových řad Obsah Úvod... Teoreické základy pro aalýzu časových řad.... Základí pojmy..... Druhy časových řad..... Grafická aalýza.....3 Popisé charakerisiky... 4. Základí úpravy časových

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský socálí fod Praha & EU: Ivesujee do vaší budoucos Ekooka podku aedra ekooky, aažersví a huaích věd Fakula elekroechcká ČVUT v Praze Ig. učerková Blaka, 20 Úrokový poče, základy fačí aeaky (BI-EP)

Více

Úvod do analýzy časových řad

Úvod do analýzy časových řad Úvod do aalýz časových řad Doc.Ig. Jaa Hačlová, CSc. Kaedra maemaických meod v ekoomice Ig. Lubor Tvrdý Kaedra regioálí ekoomik Ekoomická fakula, VŠB-TU Osrava Osrava, 003 - - Úvod do aalýz časových řad

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

Evakuace osob v objektech zdravotnických zařízení

Evakuace osob v objektech zdravotnických zařízení Evakuace osob v objekech zdravoických zařízeí Ig. Libor Folwarczy, Ph.D., Ig. Jiří Pokorý, Ph.D. Hasičský záchraý sbor Moravskoslezského kraje, Výškovická 40, 700 0 Osrava-Zábřeh E-mail: libor.folwarczy@hzsmsk.cz,

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Výpočty populačních projekcí na katedře demografie Fakulty informatiky a statistiky VŠE. TomášFiala

Výpočty populačních projekcí na katedře demografie Fakulty informatiky a statistiky VŠE. TomášFiala Výpočy populačních projekcí na kaedře demografie Fakuly informaiky a saisiky VŠE TomášFiala 1 Komponenní meoda s migrací Zpravidla zjednodušený model migrace předpokládá se pouze imigrace na úrovni migračního

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

DIMENZOVÁNÍ KOMPOZITNÍCH PROFILŮ PREFEN

DIMENZOVÁNÍ KOMPOZITNÍCH PROFILŮ PREFEN DIMNZOVÁNÍ KOMPOZITNÍCH PROFILŮ PRFN 1 Kulkova 10/4231, 615 00 Bro el.: 541 583 208, 297, fa.: 549 254 556 e-mail: kompozi@prefa.cz hp://www.prefa-kompozi.cz DIMNZOVÁNÍ PROFILŮ Maeriálová srukura, základí

Více

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Cost benefit analýza projektu Sociální integrace vybraných skupin obyvatel v obci Ralsko, ARR Agentura regionálního rozvoje, spol. s r.o.

Cost benefit analýza projektu Sociální integrace vybraných skupin obyvatel v obci Ralsko, ARR Agentura regionálního rozvoje, spol. s r.o. Obsah Obsah...1 1. Úvod...2 Iformace o zpracovaeli, zadavaeli, realizáorovi...2 2. Podsaa projeku...3 3. Srukura beeficieů...6 3.1 Vymezeí zaieresovaých subjeků...6 4. Popis ivesičí a ulové variay...7

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

T T. Think Together 2012. Martin Flégl, Andrea Hornická THINK TOGETHER

T T. Think Together 2012. Martin Flégl, Andrea Hornická THINK TOGETHER Česká zemědělská uiverzia v Praze Provozě ekoomická fakula Dokorská vědecká koferece 6. úora T T THINK TOGETHER Thik Togeher Vývo cerifikace ISO 9 a ISO 4 a eí vliv a pravděpodobosi savů okolosí rozhodovacího

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Základy teorie chyb a zpracování fyzikálních měření Jiří Novák

Základy teorie chyb a zpracování fyzikálních měření Jiří Novák Zálad eore chb a zpracováí zálích měřeí Jří ová Teo e je zamýšle jao pomůca pro vpracováí laboraorích úloh z z Je urče pouze pro sudjí účel a jeho účelem je objas meod zpracováí měřeí Chb měřeí Druh chb

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

PENZIJNÍ PLÁN Allianz transformovaný fond, Allianz penzijní společnost, a. s.

PENZIJNÍ PLÁN Allianz transformovaný fond, Allianz penzijní společnost, a. s. PEZIJÍ PLÁ Allianz ransformovaný fond, Allianz penzijní společnos, a. s. Preambule Penzijní plán Allianz ransformovaného fondu, Allianz penzijní společnos, a. s. (dále jen Allianz ransformovaný fond ),

Více

Strukturální model nekryté úrokové parity a jeho empirická verifikace 1

Strukturální model nekryté úrokové parity a jeho empirická verifikace 1 5. meziárodí koferece Fiačí řízeí podiku a fiačích isiucí Osrava VŠB-TU Osrava, Ekoomická fakula, kaedra Fiací 7.-8. září 2005 Srukurálí model ekryé úrokové pariy a jeho empirická verifikace 1 Jaroslava

Více

SPOŘENÍ. Spoření krátkodobé

SPOŘENÍ. Spoření krátkodobé SPOŘENÍ Krátkodobé- doba spořeí epřesáhe jedo úrokové období (obvykle 1 rok). Úroky jsou přpsováy a koc doby spořeí. Jedotlvé složky jsou úročey a základě jedoduchého úročeí. Dlouhodobé doba spořeí bude

Více

POJIŠŤOVNICTVÍ. Mezi složky současného pojišťovnictví patří. ekonomie a finance, pojistné právo pojistná matematika.

POJIŠŤOVNICTVÍ. Mezi složky současného pojišťovnictví patří. ekonomie a finance, pojistné právo pojistná matematika. POJIŠŤOVNICTVÍ Pojištění se historicky považuje za formu přesunu rizika negativních dopadů nahodilostí, z ekonomického nebo jiného subjektu na speciální instituce- pojišťovnu. Jde o zvláštní odvětví ekonomiky

Více

Souhrn vzorců z finanční matematiky

Souhrn vzorců z finanční matematiky ouh zoců z fčí ey Jedoduché úočeí polhůí předlhůí loí yádřeí Výpoče úou Výpoče úou poocí úooé szby Výpoče úou poocí úooých čísel úooých dělelů Výpoče úou součoý zoce oečý pál př edoduché polhůí úočeí oečý

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

Úhrada za ústřední vytápění bytů V

Úhrada za ústřední vytápění bytů V Úhrada za úsřdí vyápěí byů V Aoa osldí z sér čláků o poměrovém měří pojdává o vzahu poměrového a zv. absoluího měří pla, a poukazuj a další, zaím méě zámou možos využí poměrovýh dkáorů VIA, krou j korola

Více

PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU

PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU Ze serveru www.czso.cz jsme sledovali sklizeň obilovin v ČR. Sklizeň z několika posledních le jsme vložili do abulky 7.1. a) Jaké plodiny paří mezi obiloviny?

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

dálniced3 a rychlostní silnice Praha x Tábor x České Budějovice x Rakousko

dálniced3 a rychlostní silnice Praha x Tábor x České Budějovice x Rakousko dáliced3 a rychlostí silice R3 Praha Tábor České Budějovice Rakousko w w obsah základí iformace 3 dálice D3 a rychlostí silice R3 PrahaTáborČeské BudějoviceRakousko 3 > základí iformace 4 > čleěí dálice

Více

Klonování, embryonální kmenové buňky, aj. proč ano a proč ne

Klonování, embryonální kmenové buňky, aj. proč ano a proč ne Kloováí, embryoálí kmeové buňky, aj. proč ao a proč e Doc. MUDr. Petr Hach, Csc., Em. předosta ústavu pro histologii a embryologii 1. lékařské fakulty Uiversity Karlovy v Praze Neí určeo k dalšímu šířeí

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE. Tomáš Hanzák

Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE. Tomáš Hanzák Uiverzia Karlova v Praze Maemaico-fziálí faula DIPLOMOVÁ PRÁCE omáš Hazá Deompozičí meod pro časové řad s epravidelě pozorovaými hodoami Kaedra pravděpodoosi a maemaicé saisi Vedoucí diplomové práce :

Více

Simulace důchodových dávek z navrhovaného příspěvkově definovaného penzijního systému v ČR

Simulace důchodových dávek z navrhovaného příspěvkově definovaného penzijního systému v ČR 3. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-TU Osrava, Ekonomická fakula, kaedra Financí 6.-7. září 006 Simulace důchodových dávek z navrhovaného příspěvkově definovaného

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

DLUHOPISY. Třídění z hlediska doby splatnosti

DLUHOPISY. Třídění z hlediska doby splatnosti DLUHOISY - dlouhodobý obchodovatelý ceý papír - má staoveou dobu splatost - vyadřue závaze emteta oblgace (dlužía) vůč matel oblgace (věřtel) Tříděí z hledsa doby splatost - rátodobé : splatost do 1 rou

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná Výročí zpráva fodů společosti Pioeer ivestičí společost, a.s. - eauditovaá Obsah 1. Účetí závěrka: Pioeer Sporokoto, Pioeer obligačí fod, Pioeer růstový fod, Pioeer dyamický fod, Pioeer akciový fod, BALANCOVANÝ

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

Úvod do analýzy časových řad

Úvod do analýzy časových řad VŠB TU OSTRAVA, FEI, KATEDRA APLIKOVANÉ MATEMATIKY Úvod do lýz čsových řd [Zdeje podiul dokueu.] Mri Lischová Popis čsových řd Čsová řd je uerická proěá, jejíž hodo podsě závisí čse, v ěž bl získá (posloupos

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

Nové indikátory hodnocení bank

Nové indikátory hodnocení bank 5. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-TU Osrava, Ekonomická fakula, kaedra Financí 8. - 9. září 2010 Nové indikáory hodnocení bank Josef Novoný 1 Absrak Příspěvek je

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

Základní pojmy kombinatoriky

Základní pojmy kombinatoriky Základí pojy kobiatoriky Začee příklade Příklad Máe rozesadit lidí kole kulatého stolu tak, aby dva z ich, osoby A a B, eseděly vedle sebe Kolika způsoby to lze učiit? Pro získáí odpovědi budee potřebovat

Více

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla Disperze světla. Spektrálí barvy v = = f T v = F(f) růzé f růzá barva rychlost světla v prostředí závisí a f = disperze světla c = = F ( f ) idex lomu daého optického prostředí závisí a frekveci světla

Více

Manuál k vyrovnávacímu nástroji pro tvorbu cen pro vodné a stočné

Manuál k vyrovnávacímu nástroji pro tvorbu cen pro vodné a stočné OPERAČNÍ PROGRAM ŽIVOTNÍ PROSTŘEDÍ EVROPSKÁ UNIE Fond soudržnosi Evropský fond pro regionální rozvoj Pro vodu, vzduch a přírodu Manuál k vyrovnávacímu násroji pro vorbu cen pro vodné a sočné MINISTERSTVO

Více

Informační systémy o platu a služebním příjmu zahrnují:

Informační systémy o platu a služebním příjmu zahrnují: Katalog datových prvků a dalších položek používaých v Iformačích systémech o platu a služebím příjmu (ISPSP) verze 2014-6 16. 4. 2014 ISPSP Iformačí systémy o platu a služebím příjmu zahrují: ISP Iformačí

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV 3 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 6-7 září 2006 Porovnání způsobů hodnocení invesičních projeků na bázi kriéria Dana Dluhošová

Více

MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA

MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA Přednáška 7 MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA A INTERAKCE S MĚNOVÝM KURZEM (navazující přednáška na přednášku na éma inflace, měnová eorie a měnová poliika) Měnová poliika

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

Prognózování vzdělanostních potřeb na období 2006 až 2010

Prognózování vzdělanostních potřeb na období 2006 až 2010 Prognózování vzdělanosních pořeb na období 2006 až 2010 Zpráva o savu a rozvoji modelu pro předvídání vzdělanosních pořeb ROA - CERGE v roce 2005 Vypracováno pro čás granového projeku Společnos vědění

Více

POJIŠŤOVNICTVÍ A POJISTNÁ MATEMATIKA

POJIŠŤOVNICTVÍ A POJISTNÁ MATEMATIKA VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA Katedra ateatiky a katedra ekooických studií POJIŠŤOVNICTVÍ A POJISTNÁ MATEMATIKA STUIJNÍ MATERIÁL LENKA LÍZALOVÁ, RAEK STOLÍN 04 Recezovali: RNr. Ig. Haa Kotoučková,

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman ASYNCHRONNÍ STROJE Obsah. Pricip čiosti asychroího motoru. Náhradí schéma asychroího motoru. Výko a momet asychroího motoru 4. Spouštěí trojfázových asychroích motorů 5. Řízeí otáček asychroích motorů

Více

Pro likvidaci uniklých látek. Příručka Pro Prevenci a HavariJní situace Při PrÁci s nebezpečnými látkami

Pro likvidaci uniklých látek. Příručka Pro Prevenci a HavariJní situace Při PrÁci s nebezpečnými látkami sorpčí ProstřeDkY a ProDuktY Pro likvidaci uiklých látek Příručka Pro Preveci a HavariJí situace Při PrÁci s ebezpečými látkami záchyté ProstřeDkY / sorbety / likvidace uiklých látek všude tam, kde jsou

Více

AMC/IEM J - HMOTNOST A VYVÁŽENÍ

AMC/IEM J - HMOTNOST A VYVÁŽENÍ ČÁST JAR-OPS 3 AMC/IEM J - HMOTNOST A VYVÁŽENÍ ACJ OPS 3.605 Hodoty hmotostí Viz JAR-OPS 3.605 V souladu s ICAO Ae 5 a s meziárodí soustavou jedotek SI, skutečé a omezující hmotosti vrtulíků, užitečé zatížeí

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s Ronoměrný poyb eliko rycloi ále ejná (konanní) základní za:. graf záiloi dráy na čae: polopřímka ycázející z počáku (pokud poyb začíná z klidu) m graf záiloi rycloi na čae: ronoběžka odoronou ou m. U poybu

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

Metodika implementace Průřezového tématu Environmentální výchova I

Metodika implementace Průřezového tématu Environmentální výchova I Elektroická publikace Metodika implemetace Průřezového tématu Evirometálí výchova I Zpracovaly: Bc. Jaroslava Rozprýmová a Mgr. Milica Sedláčková Témata: 1. Zemědělství a životí prostředí 2. Ekologické

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

ťí Ý É Č ů Č é éž š ů ú ů ů š ů é ť é ú ů é é ú é ú ů ů ú ú ú Í š ť é ů Ž Ž ú ů š ť ú ů Ž ú é é Ž é ů ú é ň é ú ž ů é ů ť ú ů žň é é é ť ž é é š šš é é ž Č š é Í Ť é é ů š é š é ú ú é ú ú ú ů Žň Ú é ú

Více

Informační systémy o platu a služebním příjmu zahrnují:

Informační systémy o platu a služebním příjmu zahrnují: Katalog datových prvků a dalších položek používaých v Iformačích systémech o platu a služebím příjmu (ISPSP) verze 2015-06 2. 3. 2015 ISPSP Iformačí systémy o platu a služebím příjmu zahrují: ISP Iformačí

Více

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu . ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se

Více

Slovní úlohy na pohyb

Slovní úlohy na pohyb VY_32_INOVACE_M-Ar 8.,9.09 Sloní úlohy na pohyb Anoace: Praconí li ukazuje žákoi poup řešení loních úloh na pohyb. Jou zde rozebrány ypy, keré mohou naa. Poupy řešení zoroých příkladů jou žákům promínuy

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

VÝNOSOVÉ KŘIVKY A JEJICH VYUŽITÍ VE FINANČNÍ PRAXI

VÝNOSOVÉ KŘIVKY A JEJICH VYUŽITÍ VE FINANČNÍ PRAXI Masarykova univerzia Přírodovědecká fakula VÝNOSOVÉ KŘIVKY A JEJICH VYUŽITÍ VE FINANČNÍ PRAXI Bakalářská práce Lucie Pečinková Vedoucí bakalářské práce: Mgr. Per ČERVINEK Brno 202 Bibliografický záznam

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

Zásady hodnocení ekonomické efektivnosti energetických projektů

Zásady hodnocení ekonomické efektivnosti energetických projektů Absrak Zásady hodnocení ekonomické efekivnosi energeických projeků Jaroslav Knápek, Oldřich Sarý, Jiří Vašíček ČVUT FEL, kaedra ekonomiky Každý energeický projek má své ekonomické souvislosi. Invesor,

Více

Á Á Í ŘÍ Í Ž Í Ť č é Ť é ť Ž Ť é č Í Í Š Ť Ť é č Í é Ž Ť č Í č Ť é é é é Č č é é č č Ť Ť Ť é é Ť Ť Í Ž é Ď Ď Í Ť č é Í Ž Í é Ť Í Ť é Ť é é Ť Ť Ž é Ť Š Ť é ň č Ť ď é č é ň č Ť ď č é Ť Š č é č é ň Ý ň Ť

Více

É č É Í Ř Á Ě ž š č č š š šť Ť Ý č č Ť Ť Ť č Ť č šť Í č č č š š ď ž Ť Á č Í Ó š Ž š Č Ť č Ť č Ť ď č š Č Ď ž ž š č č č Ú Š š Ť Č š ž š š č Ú š č š É Š š šš š Ť č č č č š č š Ť č č ž š č Ť č š Ť š č š č

Více

FAKULTA APLIKOVANÝCH VĚD

FAKULTA APLIKOVANÝCH VĚD FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÁ UNIVERZITA V PLZNI Semesrální práce z předměu KMA/MAB Téma: Schopnos úrokového rhu předvída sazby v době krize Daum: 7..009 Bc. Jan Hegeď, A08N095P Úvod Jako éma pro

Více

8 Průzkumová analýza dat

8 Průzkumová analýza dat 8 Průzkumová aalýza dat Cílem průzkumové aalýzy dat (také zámé pod zkratkou EDA - z aglického ázvu exploratory data aalysis) je alezeí zvláštostí statistického chováí dat a ověřeí jejich předpokladů pro

Více

Úvod do financí I. Základní pojmy II. Cenné papíry III. Finanční deriváty (financial derivatives) IV. Základy finanční matematiky

Úvod do financí I. Základní pojmy II. Cenné papíry III. Finanční deriváty (financial derivatives) IV. Základy finanční matematiky Úvod do fiací I. Základí ojmy.... Peíze a kaiál.... Iflace... 3 3. Kvaiaiví eorie eěz... 4 4. Ivesice... 4 5. Fiačí sysém... 5 II. Ceé aíry... 6. Charakerisiky CP... 6. CP s evým výosem (fixed icome/yield

Více

Základy vyhodnocení migračních zkoušek při ochraně životního prostředí Diplomová práce

Základy vyhodnocení migračních zkoušek při ochraně životního prostředí Diplomová práce Česká zemědělská uiverzia Fakula živoího rosředí Kaedra ekologie Základy vyhodoceí migračích zkoušek ři ochraě živoího rosředí Dilomová ráce Diloma: Bc. Pavel Šimek Vedoucí dilomové ráce: Doc. RNDr. Ig.

Více

Stochastické modelování úrokových sazeb

Stochastické modelování úrokových sazeb Sochasické modelování úrokových sazeb Michal Papež odbor řízení rizik 1 Sochasické modelování úrokových sazeb OBSAH PŘEDNÁŠKY Úvod do problemaiky sochasických procesů Brownův pohyb, Wienerův proces Ioovo

Více

Nepředvídané události v rámci kvantifikace rizika

Nepředvídané události v rámci kvantifikace rizika Nepředvídaé událost v rác kvatfkace rzka Jří Marek, ČVUT, Stavebí fakulta {r.arek}@rsk-aageet.cz Abstrakt Z hledska úspěchu vestce ohou být krtcké právě ty zdroe ebezpečí, které esou detfkováy. Vzhlede

Více

1.5.3 Výkon, účinnost

1.5.3 Výkon, účinnost 1.5. Výkon, účinnos ředpoklady: 151 ř. 1: ři výběru zahradního čerpadla mohl er vybíra ze ří čerpadel. rvní čerpadlo vyčerpá za 1 sekundu,5 l vody, druhé čerpadlo vyčerpá za minuu lirů vody a řeí vyčerpá

Více