Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic"

Transkript

1 Ivesičí čios Exisují růzá pojeí ivesičí čiosi: Z pohledu ekoomické eorie Podikové pojeí ivesic

2 Klasifikace ivesic v podiku 1) Hmoé (věcé, fyzické, kapiálové) ivesice 2) Nehmoé (emaeriálí) ivesice 3) Fiačí ivesice Vzájemě zaměielé (vylučující se) projeky Vzájemě ezaměielé projeky

3 Meody hodoceí ivesic 1) Saické meody epřihlížejí k působeí fakoru času: doba úhrady (ávraosi, spláceí), reabilia (výosos) ivesice, účeí míra výososi. 2) Dyamické meody přihlížejí k působeí fakoru času: čisá současá hodoa, viří výosové proceo, diskoovaá doba úhrady, idex reabiliy (výososi).

4 I. Doba úhrady Doba, za kerou kumulovaé příjmy uhradí celkové kapiálové výdaje a ivesici. Jsou-li příjmy v každém roce živoosi ivesice sejé, pak: T u ivesičí áklady ročí příjem (CF) [ roky] Jsou-li příjmy v každém roce jié, pak dobu úhrady zjisíme posupým ačíáím ročích čásek příjmů, až se kumulovaá čáska rová ivesičím ákladům. Pravidlo ivesováí: Ivesice je výhodá, pokud je doba úhrady kraší ež je očekávaá doba živoosi ivesice.

5 I. Reabilia ivesice Udává kolik haléřů zisku přiáší jeda ivesovaá korua. průměrý ročíčisý zisk ROI * 100 ivesičí áklady [%] Pravidlo ivesováí: Ivesice je výhodá, jesliže vypočeá reabilia je vyšší ež ivesorem požadovaá míra výososi.

6 I. Účeí míra výososi Obdoba ukazaele ROI, ale míso zisku počíá s peěžími příjmy (zisk odpisy). průměré ročí příjmy ARR * 100 ivesičí áklady [%] Pravidlo ivesováí: Ivesice je výhodá, jesliže vypočeá ARR je vyšší ež ivesorem požadovaá míra výososi.

7 Budoucí hodoa peěz K zodpovězeí oázky můžeme použí zv. úročiele Úročiel ( 1 i) kde i je úroková míra a je poče úrokovacích období Budoucí hodou ašich současých 100 Kč zjisíme ak, že je vyásobíme úročielem (pro úrokovou míru 10 % a 3 úrokovací období) BH SH úročiel i BH 100 * (10,1) 3 133,1 Kč

8 Budoucí hodoa peěz Kč úroková míra 10 % SHCF BHCF 4 BHCF * 1,1 * 1,1 * 1,1 * 1,1 BHCF * 1,1 * 1,1 * 1,1 100 * 1, *1,1 *1,1 100 * 1, * (10,1) BHCF * 1, * (10,1) * 0,1 100 * (10,1) * 1,1 100 * (10,1) 1 BHCF BHCF BHCF 3 133,1 BHCF 4 146, čas

9 Současá hodoa peěz Podobě můžeme zpěě zjisi jakou má pro ás des (edy v současosi) hodou určiá budoucí peěží čáska. Použijeme k omu odúročiele: Odúročiel SH 1 1 ( 1 i) ( i) BH odúročiel Úročiel budoucí hodoa jedorázové plaby jedokové po uplyuí úrokovacích období při úrokové míře i Odúročiel současá hodoa jedorázové plaby jedokové placeé po uplyuí úrokovacích období při úrokové míře i i

10 Současá hodoa peěz Kč Diskoí míra 10 % SHCF 4 81,96 SHCF 3 90,15 SHCF 2 99,17 SHCF 1 109,09 CF CF CF CF / (10,1)120 / (10,1) / (10,1) / (10,1) čas

11 Současá hodoa cash flow z ivesice Abychom mohli peěží oky mezi sebou sčía, je ué je ejdříve všechy převés a jede časový okamžik, ejčasěji a současou hodou. Obecě lze současou hodou peěžích oků (SHCF) vyjádři ásledově. SHCF CF CF CF CF CF ( ) ( ) ( ) ( ) ( ) i 1 i 1 i 1 i 1 i 0 ( 1 i) CF

12 Čisá současá hodoa Kč SHCF 1 109,09 SHCF 2 99,17 SHCF 3 75,13 SHCF 4 75,13 Diskoí míra 10 % 120 / (10,1)120 / (10,1) / (10,1) / (10,1) 4 - ČSH 58,52 SHCF 358,52 Ivesičí výdaj 300 CF CF CF CF čas

13 Vzorec ČSH Rok Příjmy Výdaje SHP SHV Pr íjem ( 1 i) ( 1 i) ( 1 i) ( 1 i) ( 1 i) ( i) ( 1 i) ( 1 i) ( 1 i) ( 1 i) ( 1 i) ( 1 i) 0 ( 1 i) Výdaj ČSH Příjem ( 1 i) 0 ( i) 0 1 Výdaj

14 Vzorec ČSH Rok Příjmy Výdaje NCF ČSH i ( ) ( ) ( ) ( ) ( ) ( ) i 1 i 1 i 1 i 1 i 0 ( 1 i) 50 NCF ČSH NCF ( i) 0 1

15 Pravidlo ivesováí založeé a ČSH ČSH > 0 přijmou ivesici, ČSH 0 bylo dosažeo právě požadovaé výososi, ČSH < 0 odmíou ivesici.

16 Viří výosové proceo Spočívá v alezeí diskoí míry, při keré se ČSH rová ule, ebo-li při keré se současá hodoa očekávaých příjmů z ivesice rová současé hodoě výdajů a ivesici. i 0 * C (1 * i VVP ) 0

17 Vzah mezi ČSH a VVP , , , , , , , , ,00 VVP 0, ,00 Diskoí míra (%) Čisá současá hodoa v Kč

18 Idex reabiliy Podíl diskoovaých čisých příjmů a diskoovaých ivesičích ákladů projeku. IR DČP DIN Vzah mezi ČSH a IR: ČSH 0 IR 1 ČSH > 0 IR > 1 ČSH < 0 IR < 1 DIN DIN ČSH Pravidlo ivesováí: Ivesice je výhodá, jesliže IR je věší ež 1.

Investičníčinnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic

Investičníčinnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic Investičníčinnost Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie Podnikové pojetí investic Klasifikace investic v podniku 1) Hmotné (věcné, fyzické, kapitálové) investice 2) Nehmotné

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský socálí fod Praha & EU: Ivesujee do vaší budoucos Ekooka podku aedra ekooky, aažersví a huaích věd Fakula elekroechcká ČVUT v Praze Ig. učerková Blaka, 20 Úrokový poče, základy fačí aeaky (BI-EP)

Více

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

Cost benefit analýza projektu Sociální integrace vybraných skupin obyvatel v obci Ralsko, ARR Agentura regionálního rozvoje, spol. s r.o.

Cost benefit analýza projektu Sociální integrace vybraných skupin obyvatel v obci Ralsko, ARR Agentura regionálního rozvoje, spol. s r.o. Obsah Obsah...1 1. Úvod...2 Iformace o zpracovaeli, zadavaeli, realizáorovi...2 2. Podsaa projeku...3 3. Srukura beeficieů...6 3.1 Vymezeí zaieresovaých subjeků...6 4. Popis ivesičí a ulové variay...7

Více

Jak si založit živnost?

Jak si založit živnost? Jak si založit živnost? Návštěva (centrální registrační místo) CRM a vyplnění JRF (jednotný registrační formulář Dále doložit: -výpis zrejstříku trestů ČR (nesmí být starší 3 měsíců, není-li přiložen kžádosti,

Více

Investiční činnost v podniku

Investiční činnost v podniku Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Investiční činnost v podniku Eva Štichhauerová Technická univerzita v Liberci Nauka

Více

Strukturální model nekryté úrokové parity a jeho empirická verifikace 1

Strukturální model nekryté úrokové parity a jeho empirická verifikace 1 5. meziárodí koferece Fiačí řízeí podiku a fiačích isiucí Osrava VŠB-TU Osrava, Ekoomická fakula, kaedra Fiací 7.-8. září 2005 Srukurálí model ekryé úrokové pariy a jeho empirická verifikace 1 Jaroslava

Více

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV 3 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 6-7 září 2006 Porovnání způsobů hodnocení invesičních projeků na bázi kriéria Dana Dluhošová

Více

MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA

MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA Přednáška 7 MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA A INTERAKCE S MĚNOVÝM KURZEM (navazující přednáška na přednášku na éma inflace, měnová eorie a měnová poliika) Měnová poliika

Více

3. POJIŠTĚNÍ OSOB (ŽIVOTNÍ POJIŠTĚNÍ)

3. POJIŠTĚNÍ OSOB (ŽIVOTNÍ POJIŠTĚNÍ) 3. POJIŠTĚÍ OSOB (ŽIVOTÍ POJIŠTĚÍ) 3.. EMOELOVÝ PŘÍSTUP 3... ekremeí řád vymíráí populace Úmrosí abulky a) Smr je áhodým jevem, kerý se pojišťuje pro účely ŽP sačí pracova s průměrými hodoami záko velkých

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š

Více

ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě

Více

ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů

Více

Pojem investování a druhy investic

Pojem investování a druhy investic Investiční činnost Pojem investování a druhy investic Rozhodování o investicích Zdroje financování investic Hodnocení efektivnosti investic Metody hodnocení investic Ukazatele hodnocení efektivnosti investic

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

ú é ů ú ť ů ú š ň é ň é é é ž é Ý é Ý Ý é ú ů ú ů Ý ú é é ú ú Ú ů ů š é é ž é ú Ú Í ů ů é é é ú ú ó é é é é ú é ž é é ž ž ň é é é é é é É Š é ů é Š Š ú é ž ú ú é ú é é Ú ú ú Ý ů ó Š ú ú ň ů ň š ň š é é

Více

ů Ť ě Á Ř ž ó ě Ž ž ž ž ě ě ž ě ž ž ě ě ž Č ůž ě ě ž ě ů ě ě ú ú ě ě ě ž ě ě ž ě ž Š Č ů ž ó ž ů ě ů ž ů ž ů ů ž ž ě ů ě ž ů ž ů ů ž ě ů Ž ž Ž ě ě ě Š ě ó ě ě ě ě ě ě ů ů Š ě Ó ú Ť ě ěž ž ě ú ěž úě ěž

Více

HODNOCENÍ INVESTIC. Postup hodnocení investic (investičních projektů) obvykle zahrnuje následující etapy:

HODNOCENÍ INVESTIC. Postup hodnocení investic (investičních projektů) obvykle zahrnuje následující etapy: HODNOCENÍ INVESTIC Podstatou hodnocení investic je porovnání vynaloženého kapitálu (nákladů na investici) s výnosy, které investice přinese. Jde o rozpočtování jednorázových (investičních) nákladů a ročních

Více

Á Í Ě č ě š č č ž ě ě š č ě ě ě š ů ě ě š ů č ě ě ě ě š ů ě š ě ě ě š ů ě Ž Í ě ž ň ů úč ě Č č ž š ě ě ž ň ů ů č ě ď č č č č ú š ě č č Í Š ě č ť ě ě ů š č ů č ů ů ů ů ě ů ů ě ě š ů úč č š ě č ě ě ň š ě

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

ó ý ó ě ť ě ě é ě ě é ď ú ý ů ý ů š ň ě ě é é ě ó ě é ě ú ě ý ě ý Ú é ě é ě ý ď ý ů ý ů ý ů Č é ž ý ň Ž ď é ý ú ě ý ě ý ů ě ě é ú ů ý ě é ě ý Í ě ý é ů ě ý ů ý ý ů ě ý ú ý ů Ž ú Ť ý ě ě ú ý ě ů ý ý Ů úě

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

ú é Č é ě é ě ě ď ú ě ě Í úě ě ě ú ě é ě ě ě ě ú ě é ě é ě ď ě ú é ě ěž é ú ě é ě é é é ěň ě é é ě ď š ě ě ě ó Ú é ěž ú ě ě ó š é š š ěž é ď ě ě é š ú é é ú ě Í ď Í šť é ň ě é ě ě ě ě ě ěí ě ě ě ě ě ě

Více

Stochastické modelování úrokových sazeb

Stochastické modelování úrokových sazeb Sochasické modelování úrokových sazeb Michal Papež odbor řízení rizik 1 Sochasické modelování úrokových sazeb OBSAH PŘEDNÁŠKY Úvod do problemaiky sochasických procesů Brownův pohyb, Wienerův proces Ioovo

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

DIMENZOVÁNÍ KOMPOZITNÍCH PROFILŮ PREFEN

DIMENZOVÁNÍ KOMPOZITNÍCH PROFILŮ PREFEN DIMNZOVÁNÍ KOMPOZITNÍCH PROFILŮ PRFN 1 Kulkova 10/4231, 615 00 Bro el.: 541 583 208, 297, fa.: 549 254 556 e-mail: kompozi@prefa.cz hp://www.prefa-kompozi.cz DIMNZOVÁNÍ PROFILŮ Maeriálová srukura, základí

Více

Č š Š Í š š ě š Í é ě Íý ž š Č Š š Ú ň š ř Ý ů ý ě é š ř š ý ř š ř ě ěš ý é ř ň ů ů ý ž é ž é ě é é é ý ě ž ř Č ě é ý ěý Č Č ř ř ý ý ě ý ř ěř é ř š ř é ž š ě é ý ž Ž ř ý ě é ř ů ž ř ě é ú Í Č š š ř ů é

Více

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení (). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,9 s do 6,5 s. 3. Jakou rychlosí

Více

ě ř Ú ň Č ž ěž ě Ž ř ř ě ú ř ě ě ě Ž ěř ě ř ř ě ř ň ě ř ě ů ř ř ž ž ř ůř ě ě š ř ě ě ň ěř ě ě ř ěř ů ř ů ě ů ě ě ž ů Í ř ů ž ž ř ů ř ůž ř ř ř ě ě ů Č ů ú Š Š ř ň Ť ě Ž ě Ž Í ř ěž ů ú ň ě ě ř š ě š ě Ž

Více

Ú Ú Ú š ě š ě Ú ž ů ě ž ů š ě Š Ě ú Á Ř Ř š Ě ň Ú Ú ě ě Ú ě ú ů Ú ú ě ě ú ú š Ú Ú š ě Ú Ú ú ž Ú ů ě Ú Ú š ů š ú Ú ě ž ů Ú ě ú ů ů ů ň ě ú ž ě ůú ě ú ů ů Ř Ř Ú ú ě š ě ž Ú ě š ě ě ú ě ě ú ě Ú Ú š ě ě ú

Více

Využití účetních dat pro finanční řízení

Využití účetních dat pro finanční řízení Využtí účetích dat pro fačí řízeí KAPITOLA 4 V rác této kaptoly se zaěříe a časovou hodotu peěz (a to včetě oceňováí ceých papírů), která se prolíá celý vestčí rozhodováí, dále a fačí aalýzu (vycházející

Více

SH = BH*( 1 + i) n nebo

SH = BH*( 1 + i) n nebo PEKS 2 Literatura Syek PEK 4. vydáí Faktor času v peěžím vyjádřeí Peěží jedotka Kč přijata ebo vyplacea v růzých časových okamžicích má rozdílou hodotu. Deší korua je ceější, ež korua získaá později apř.

Více

Kopie z www.dsagro-kostalov.cz

Kopie z www.dsagro-kostalov.cz é š š é ó ú Č é ř ěž é ú ó ó ú é ě ó ÚČ Ý éž é ú ň é ú é ě ě ž š Ý Á š é šť úě ó Ý É úě ž řé š ěž ó óš ú š řé é ě ě ž Ý éž ř ó ú Á Ě Éú é šť š š ř ě š ř ó š ň ó Ý š ě ě ž é ř ž ž é ř Ů ě ě ů ě ú š ů é

Více

Ý Ř Č Ě É Ř Ř ý ě ú ý ů ý ů Í ě ú ý Ž ě ě ě ý ú ú Š ó ý ó ó Ř É ě ý ý ý ú ý Í Ů Č Í ě Í ě ú Ž ý É ě ě ý ů š ý Č Š ý Č Í ú š ú Í ý ú Ó ě ý ů ý ě ý ě ý ý Í ě ý Č ě ý ě ý ú ý Č ú Í ů ú ě ýš Í ý Ů ě ě ý ý

Více

š ě ě ý ř ř ě ě ě ý ů ě ě š ř ů é ě š ř ů ý ů é Í ě ě š ř ů ř ř ú ý ů ý ů ě ě š ř ů ž ě š Í ú ř ž é ú é š ě ě é ě ř Í ř ú š ě š ě ř ř é ř ř é é ř ř š Ř Ě Ř Á Í Ř Í ř ě ř ú ř ř ě ě é ú ě ý ú ů ě ě š ř ů

Více

Zásady hodnocení ekonomické efektivnosti energetických projektů

Zásady hodnocení ekonomické efektivnosti energetických projektů Absrak Zásady hodnocení ekonomické efekivnosi energeických projeků Jaroslav Knápek, Oldřich Sarý, Jiří Vašíček ČVUT FEL, kaedra ekonomiky Každý energeický projek má své ekonomické souvislosi. Invesor,

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

Á Ě Ý ě ě ň ě ě š ř ů š ř š ě ú ě ů ě ě š ř ů é ě é ě ř ě é ě ř ě Ú ř úř ú ň ř ě Č Ť ě ě š ů ě é ě ě ř ň ř ř ě ě ě ě é ů ě ě ř ů š ú ě ň ě ě š ě š ů ě ú ě ě Č éž ě ř ě ř ě Č éž Č ú ř ě ě ř ú é ě ř ž ě

Více

ě š Ř é žď ě ř ř ě ž ň ě é ě ě š ř ů ě ě ě ě š ů ě š š é Žď ě ř ř ě Ž ň é ú Ř ě é š š é ú é š ě š é ú ú Ž ž ě é ú ř š ě é ů ř ž ř Ž ě ř ě ě é ě ů ú ú ř š ú ř ů ě é Ž ř ě ř ě ř Ž ň Ž ů é ř ď ů ž ř ů ě é

Více

Ý ÚŘ Č Ý Ý Ě Ř Ř Ř Ý ě ú ý ů ý ů ě ú ě ý š ú ú ě Č é ě Ř É ý ú Í ý ý Í ú Í ý Í ě Í Í Í Ú Í ý ý Í ý ýš ý ý ěň ů é ě ů š ý ž ú Ú ý ú Č Ú Í ú ú Í ě ý ú ě é ú ě Ú ů žň Í ý ý ý ů Í Í Ů ú ú ú Í Í ý Í ě ů ě ú

Více

É ú ě Ž ě Ú ě ě ě Ř Ř ž ž Č ú ů ů ě ě ě Ó ú ú š Č ú Ž ě ú ě š Ž ú ě Ý ě Č úě ě Ú š ž ů Ú ú Č ě ÓŘ Č ě Č Ú ě ů ú š Ú ě Ú ě ě ů Ž Ť Ť ó š š Ú ó Ú ě Ť ó ů ů Ú ě ú Ú ě ú ě ě Č Ž ě Č Ú ú ě Ú ň ě Ú ě ů ú ň ě

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

ř ě ě Š ř ů Š Ř Ž ě ú š ř é ř é é š ý ě ř é ý é Ž Ž é š ý ú ř ě Í ý ř Ž é ř é é ž ř ě ř ě Ó é ž ř Ž ž ř ž ž ř ě ř ř ž ř ř ř Ž ř ř Ž ý ý ě ž ž ý ě ř Ž Ž ř ě é ě ř Ž é ř ě ů ř Ž ě ě Í ě ě ů ů ř ž é ř ž Ž

Více

ý ú é ý Č Ř ě é ú ý ů ý ů ě ě ý ž é ů ú ú ě ě ú ý ů ý ů ý ě ý ů é é ý ý ě ý é ě ý ý ů ý š é š ě š š ýš ě é ý š š é š š ě é ýú ěš ý ý ě ý Ú ý š ý ý ú é ě é ě ď ú ě é ěž ý ú ú é Č ěž ý ú ú é ě ú é ú ěž é

Více

ů Č Č Ú ě ě ě Ž ě ě š Č ě Č Č ě ě ť ě ú ě Ž ú ú ě ě ž ú ě ě ě ž ó ú ě š ě ě Ž ě ě ú ú ě ě ú ě ú ě ž ú ě ů ň ú ě ě ú ú š ú ě ě ě ě ú ě Ž ů Č ě Ž Ž ě ž ú ů ú ě ú ě ů ú ú ů ú ů ě ú ě ú ě ě ú ů ú Ž ú ě Ž Č

Více

Ý ÚŘ Ý Ý Ě Ř Ř Č Ř Ý ú ú ú é ě ě š ů ú ů ů ě ě š ů ú é é é ě ě ě é ú é ě ů š ůž ú Č é ě ě ě é Ó é ú ů é Ů Č ě ě ú ě Ú é ň é ú Í Ý é ů ě ú é ú š š ě ě Č ÚČ Í ě ě š ů ě é é ú š ě é ú ň é ž Č š ě é é ě Č

Více

ě ě ě ěš é ú ě ěš ě ě ě ěš é ú ů ě ěš é ě ě ěš ě ú ú ě ě ě ě ď ú ů ú Ř ž Š š ě ó ú ě ú ú ů é é ě é ú ě ě ů é é é ú š ů ú ú ú ě ú ě ú ě š ě é é š ě ž é š ěž é ž š š š ě ě šť ě ě ů ů ě ě ó ě ě ě é ž ě ě

Více

Souhrn vzorců z finanční matematiky

Souhrn vzorců z finanční matematiky ouh zoců z fčí ey Jedoduché úočeí polhůí předlhůí loí yádřeí Výpoče úou Výpoče úou poocí úooé szby Výpoče úou poocí úooých čísel úooých dělelů Výpoče úou součoý zoce oečý pál př edoduché polhůí úočeí oečý

Více

í ý á ř ů ř ě í Ď ě ě ě á ě á ří ý ě í á ř ů ň á ó Š á ř ů ř ě í ě ě ě á ě á íí ý í á á ř ů ř ě í ě ě ě á ě á ří ý ě í Ó ří á ř ů ř ě í ě ě ě á ě á ří ý á ř ů ř ě í ř ý ří í á ř ů ř ě í ě ě ě á ě á ý ě

Více

ď ž Č č č ě Ů š ž Ů Ů Ů ě Ů Ů ě ů Úč ě ě š Š ů Ů ú Ů ěž Ů ě ě Ů č ě Ů ÚČ Č ě č Úč č č š ě Ů ě ě úč č š č Č č Ů č č ÚČ ž š č ů č č Ž ň ž č ě ž ÚČ Č č č č š č ě Ú úč Ů ž ě š Ů ě Ů č š Ů č Í Ů č Ů ě č č ů

Více

ě ý ú é é ě ř ý ž ý ě ú ý ěř ž Ř é ý ú é ý ě ú ř ě ř é ř ě ř é ú ě é ý š ě ů ř ýš ú ě ó ř ú ě ě ěř ž é Í ěš ř ř ř ě é ěž ř ěř é ů ěž éž Ý ř ž É ě úř é é ř é ž é é é řš ý Ě ď éž ý ěř ř é ý ě ú ř é é ř ý

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

ř ř ě ý Í Č Š ě ů Č Í Š ě ě ř ů ú ě Š ř Š ú ú Í ý ř Í ů úč ý ý ý ř Í ě ý ý ý ř ě ý ý ř ý ý ř Í Č Í ý ř Í Í ý Í ú Í ě ř ý ř Č ŠÍ ř Í ý Ž ý ě ů ý š ř ě ě ů ň ý Č Č ý ě ř Č Í ý Ž ý ě ý ř Č ř ě ú Ž ř ů Í ě

Více

Manuál k vyrovnávacímu nástroji pro tvorbu cen pro vodné a stočné

Manuál k vyrovnávacímu nástroji pro tvorbu cen pro vodné a stočné OPERAČNÍ PROGRAM ŽIVOTNÍ PROSTŘEDÍ EVROPSKÁ UNIE Fond soudržnosi Evropský fond pro regionální rozvoj Pro vodu, vzduch a přírodu Manuál k vyrovnávacímu násroji pro vorbu cen pro vodné a sočné MINISTERSTVO

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

ě ž ý ě é ž ý ě š ě ú ě ě ž ě ý ě ů š ě š ě é é ě ž ý é ý ž ě ě é ň ů Ř ě ě ž žď ů ů ů ů ě ů š ů ý ž ý ů ě ň úě ů ě ů é ů ě ů ý é ě ž ů ě é ý ů ž ě ů ý ě ě ě ů Č ě ýš ě ý ě ů é ž ě é ě š é ě ů Č ě é ý

Více

Á Š Ř ý ů ý Ž ů ý ů ý Č ý Ž ý ě ě Š ů ě ý ý ů ý ů ě ě Š ů ý ý ů ýš ý ů ý ň ý ň Ž ě ý É ý ý ž ý ň Ý Ý ů ě ě ý ě ě ý ě Ž ě ů Ý Š ě Š Ž ě ě Š ě ě Š ů ě ě ě ů ý ý ž ý ě ě Š ů ě ě ě Š ů ý ý ý ů ě ě Š ů ě ě

Více

ž ř ř č ž ř Š š š Š ý ř ř ž ř ř ž ý ú ř ž ž Š ř ž ř š ž ř ž ž ř č š ž ř č č č úč č č ř ý ž ž ž ř ě ř č Ú ž č ý š ř ž Š ž ř ž č ý Ú ř ř ě ú ýš č ž ř ž č č ě ýš č č ě ěž ž č ř ů ř Č ř ý č č ž ř ř ý ý ř ž

Více

ř é í é ří í ř ě ý ří ě Š ů ě ěř ě ý ří í í í é Ú Í ý ú í í ú í úř Ž ý ř í í é Š ě ý ý ý ě é ř í š ú ý ěř ří ě š íý ří é š í í ří í íž í Š í Š éúř ě í ě é ě í ů íř Š é ý ě ří í ž éž ě ě ř ů Č ě ů ř ě Ú

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

ý Ó Í Í ó Ě Á Í Ť ě č ý č ý ě č š ý š š ý ř Š š ý ě Š š ž ě é éž ě č ě ř ž ě č ý ú ů é ě š Ž ú ě ř ě ě ř ě ě é ž ě é ř č č é ž ř č ž ý ž ý ž é ý ž ř ě č é ř ě ž ž é ř č é ý ž ž ý š ý ž č ě ž ř č é ďš ž

Více

P(n) = n * (n - 1) * (n - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál:

P(n) = n * (n - 1) * (n - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál: PERMUTACE a VARIACE 2.1 Permutace P() = * ( - 1) * ( - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál: ( )! P = Jedá se o vzorec pro počet permutací z prvků bez opakováí. 2.2 Variace bez

Více

Úř Ú Ř Á Á Ý Ú ú Úř ř ň ě ý ř Ú Š ř Úř úř ř š ě ý ě ý úř ě š ř ž ý ě ý ř Ú ě ý ž ý š ůž ž ř ž ř ř ě úř ř ě ž ě š ý ý ř ý ě ě š ř ů ý ě ž ř ě ů ý ů Úř š ů ř ě ř ě ř ě ě ř ř ř ě ž Úř š ě ž ř ž š Ž ř ů ý

Více

Úvod do financí I. Základní pojmy II. Cenné papíry III. Finanční deriváty (financial derivatives) IV. Základy finanční matematiky

Úvod do financí I. Základní pojmy II. Cenné papíry III. Finanční deriváty (financial derivatives) IV. Základy finanční matematiky Úvod do fiací I. Základí ojmy.... Peíze a kaiál.... Iflace... 3 3. Kvaiaiví eorie eěz... 4 4. Ivesice... 4 5. Fiačí sysém... 5 II. Ceé aíry... 6. Charakerisiky CP... 6. CP s evým výosem (fixed icome/yield

Více

Pojem investování. vynakládání zdrojů podniku za účelem získání užitků které jsou očekávány v delším časovém období Investice = odložená spotřeba

Pojem investování. vynakládání zdrojů podniku za účelem získání užitků které jsou očekávány v delším časovém období Investice = odložená spotřeba Investiční činnost Pojem investování vynakládání zdrojů podniku za účelem získání užitků které jsou očekávány v delším časovém období Investice = odložená spotřeba Druhy investic 1. Hmotné investice vytvářejí

Více

Á ř ř Č é Č ř ř Č é ě ě š ř ů ř ě ě š ř ů ž ř ř ů ů ě ě š ř ů ř ř ř é ř é é ř ř ř ň š ěř ř ěř ř ě ě ě š ř ů ě ě š ř ů é ř é ř é ř ě ů ú ř ú ř ř ř ř ú úř é Č Č ř ě ř ř ě ř ř ř é ě é é é ř ě ř ř ě ě ř ů

Více

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací

Více

ýú é ě Ú Č ý ý ď ě č é ě ě ý ě é é ě ď ě ě é č ď ú ý ů ý ů ú Ř ě ý ů ě ě ď ď é ú é č úč ě ě ú é ě ý ě ý ů ý č ě ý ú ů ě ů ý č ě ú Ý ě é č ě ů ž ě ě ě ů ě ý ú ě č č Íě é ó ě č ýúč Ř ý č č ý č ů č ó ý Ř

Více

Ď ř ť Ú ř ě ý č ů ě ě ř ě č ů Ů ě Ž ě Ó ř ů ř ř ů ě ě ř Ž ř Ž Ž Ž ř Š ý č ů ě ě ěř Š ěř ř ěř č č č ř ě ř č ř ř č č ř ě Í ó ř ť Á ě č č ř č ř ř ř Š ě ú Ú Ú ř ě ó ř Ó ř Ó ř ó ř ř ě ř č ó ř Š ě ě č ř ě Ž

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper o. 1/24 ondový penzijní sysém v konvergující ekonomice Jan Kubíček ISIU PRO EKOOMICKOU A EKOLOGICKOU POLIIKU VYSOKÁ ŠKOLA EKOOMICKÁ V PRAZE AKULA ÁROOHOSPOÁŘSKÁ

Více

Á č é č č ě ěž Ř ě ě ě Í ý Ž Řč č ý ě éš č Ž Í Ů Š ÍŘ ú š é š ě é č Í é č Í Š ň Ř ě Ř ě ú Ř ě ú č ěž é é é ě ň č é Í Ř Á Ě Ž é ú Š č é Ž ý ě č Ž š é Ů é ě ý Ů ě ú Ž č Ž é ú ý Í č ú Ž ý Í Ž éí é ý ěž ý

Více

Úvod do analýzy časových řad

Úvod do analýzy časových řad Úvod do aalýzy časových řad Obsah Úvod... Teoreické základy pro aalýzu časových řad.... Základí pojmy..... Druhy časových řad..... Grafická aalýza.....3 Popisé charakerisiky... 4. Základí úpravy časových

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

ů š š Č Ě Í ř ě á ě ý š é ž ý é ú ů é á ě č ě š é Ž ý ý ť č š ý Ž á ě é š ě ě á ř é é ó ó Í Ďá é ý á Ž é é Í Ž á ř á á ť á Í é ř é é ř é á Í Í ř ó é Ó ř č é č ě č č é ě éť ř Í Í á Í á ř á á É š Í š ř á

Více

Vlastní hodnocení školy

Vlastní hodnocení školy Vlastí hodoceí školy dle vyhlášky 15/2005 Sb., v platém zěí, kterou se staoví áležitosti dlouhodobých záměrů, výročích zpráv a vlastí hodoceí školy. Škola: Základí umělecká škola Plzeň, Sokolovská 30,

Více

Č ý úř Í ř ř ř ý ř ř Č ý ř ř ě ě ř ř ě ý ř ř ě ř Í ř ě ě Ž ř ř ú ý ý ů ř úř ř ř ř ěř ý ř ř ěř ř ř ř ř ř úř ř ú ý ř ř ý ř Á Ě ř ř ř š ě ž ů ý ř ř ř ě ú ý ě ý ř ř Ů ě úč ř ě ř ř ú ř ř ý ě ý ý ý ř ě ř ř ý

Více

ú Í ŤÍ ď š ě ě ř šť Á Š É Š Ě š ě Č Č š ě é éř Í ě éč éř É šť ř é ě ý é Ž ů ů ň Č Č Č Š ř ý Ó ý š ě ý ř é ě ý Í ž š é š ě ě š ě é é ý é ě ý Ž éř Ž Š Ž ř Šť éř Í ř Č Č Č ě ý éř Í Ž ě ě ý éř Í ř šť ěř é

Více

Investiční činnost v podniku. cv. 10

Investiční činnost v podniku. cv. 10 Investiční činnost v podniku cv. 10 Investice Rozhodování o investicích jsou jedněmi z nejdůležitějších a nejobtížnějších rozhodování podnikového managementu. Dobré rozhodnutí vede podnik k rozkvětu, špatné

Více

í í ž á ů č ř í Íý ú ě é íč ě áčě ěř Í á ě čč áď ě á ý ý ěš é ú ě í é š ě í ž ří ě é šá ě ý á ě á é á ě é č Í í ě á ě ě é š Í á á Í Í ž á í á š š řě ě ř á Ž ě Í í í čí š á š ě ý ží č á ě í í š ě í ý á

Více

FAKULTA APLIKOVANÝCH VĚD

FAKULTA APLIKOVANÝCH VĚD FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÁ UNIVERZITA V PLZNI Semesrální práce z předměu KMA/MAB Téma: Schopnos úrokového rhu předvída sazby v době krize Daum: 7..009 Bc. Jan Hegeď, A08N095P Úvod Jako éma pro

Více

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná Výročí zpráva fodů společosti Pioeer ivestičí společost, a.s. - eauditovaá Obsah 1. Účetí závěrka: Pioeer Sporokoto, Pioeer obligačí fod, Pioeer růstový fod, Pioeer dyamický fod, Pioeer akciový fod, BALANCOVANÝ

Více

ř č Á ú Ě Í š é é ř Ž Č č ř ě é Š ž č é ž č č é Č š ě ůš š Č š ě ůš š Ť é Č ř ň ř ě ž úč ě Ů úč ž ř ž ř é š é ů ž č ů ř ě ř ě ů č ů ě Š é ř ě é Š š Č ř č ě š č ř ů š ě é ř Á úč ř ě é Š ž é ž č é Š ž č

Více

Č ř ř Í ř ě ř Ť ú ů ů ř ř ř ěř ť ř ěř ř ď ř ď é ř é úř é ř ř ř ú ú ě úř é Č Í Č ř ě ř ř ě ř ď ú é é ř ď ě ě ů ř ě ř ř ú ů é ř ů ě ú ř é ř ř ď ř ř ě ď Í ů žň ř ě ď ř ě ě ú ů é ě ž š ř é ú ě ě ú é ě ě ú

Více

Č Ž Á Í ž é é ě ě ú ů ů ě ě š ů Ť é ě é ě š ě š ě ě š ů é ú é ě ž ě ě š ů ú ú ě é ú ě ě š ů ě ů ů ě ěž ů ž ěž ů é ú ěž ž ů ě ě ú é ů ů ú š ó ě ú ů ů ů ů ů ů š ú ž ú é ň ú ů ů š ě ě ě ú ú é ú ě ů ě ú ů

Více

Á Á É ú ř ř ř ž ř š ó ú ú ř ž ú ř ú ž ú š ú ú ú ú ř ř Ž ú š ř š ú ž ř ž ž ř ř Ž ú ř ú ú ú ú ř ř ú ř ú ř ú Ž Ž ú ř ř ú ú ř Ž ř š š ú ř ú ř ú ú ř ú ž š ú ř ú ř Ž ž ř ř ř ž Ž ž ž ř ú š ř š ú ř ž ř ř ř ř š

Více

Úhrada za ústřední vytápění bytů V

Úhrada za ústřední vytápění bytů V Úhrada za úsřdí vyápěí byů V Aoa osldí z sér čláků o poměrovém měří pojdává o vzahu poměrového a zv. absoluího měří pla, a poukazuj a další, zaím méě zámou možos využí poměrovýh dkáorů VIA, krou j korola

Více

V EKONOMETRICKÉM MODELU

V EKONOMETRICKÉM MODELU J. Arl, Š. Radkovský ANALÝZA ZPOŽDĚNÍ V EKONOMETRICKÉM MODELU VP č. Praha Auoři: doc. Ing. Josef Arl, CSc. Ing. Šěpán Radkovský Názor a sanoviska v éo sudii jsou názor auorů a nemusí nuně odpovída názorům

Více

Ý úř ř é Č ó ř ř Á ř ě ř ď ú ů ů ř ě é ř ěř ř ř ř ř ř ř ú ř ě ř ě ř ď ú ů ů ř ě ů ř é ř é ť Í Ž ř ě ě š ř ť ů ěž é ú ů ř ř é é é ó é é é ě ú ě ú Í Ú ř ď ě é ú Ť ě ě ř Ú Ú š Ť š é ěž é ú é ž ě ž ě ěž é

Více

Č ě é ú Ž Č Č ř ěř ú ě ž é ý é ý ě ý ý ú ě é ěř ý ý ú ě ěř ý ž ů Č é ž ěř ř ěř ž ž é ý ě é ř úě é ě ž š ý ý ú ě ř ě ž é ěř ř ěř ý ř ý ž é ů ř ý ý ř é ý ě é é ý é š ý ý ýš ú ě Ý Ž Č ý ř é ě ý ž Č Ž ř ř

Více

Č š ř ý š ř ř š ď ř šš é é ě š ý ě ě š ř ů ě ě ě š ř ů ř é ě ě ě ě ý ů ě ě š ř ů é ď š Š ě Š Š ě Č ř ě ř š ě Š ě š Š ě Š Š ě é ř ě ž ř ů é ě š ý ž ř ž ř ů ý š š ý Ť Ť ý ý š é ě š é ř ý Č éš š š ě ž ř ů

Více

Laboratorní práce č. 4: Úlohy z paprskové optiky

Laboratorní práce č. 4: Úlohy z paprskové optiky Přírodí ědy moderě a iteraktiě FYZKA 4. ročík šestiletého a. ročík čtyřletého studia Laboratorí práce č. 4: Úlohy z paprskoé optiky G Gymázium Hraice Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého

Více

Č Č Č Č ř ř ď ěř ř ú ě ě ů ú ě ů ů ř ň ř ř ř ř ř ú š ě Č ň Č ě Č ěř ě Č É Ě Ř Ě Ý ě ú ě ěř ř ú ě ť Č Č Í ř ÚČ ř ě ř ěž Í ě ÚČ Í Č ť ě ř ú ě ě ú ú ě ú ě ú ř ť ť ě Š ť ě ú ě Ó ů ň ÚČ ě ř ěř ú ě šú ě ÚČ ě

Více

Kinematika hmotného bodu

Kinematika hmotného bodu DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3

Více

š ě ě ů ů ě š ů ě š š ě ž š ú ě ě š ě ě š ů ě ě š ů ú ě ě ú ě ě š ů ě ů ů ě ěž ů ž ěž ů ú ěž ž ů ě ú ě ů ů ú š ů ů ů ů ů ů š ú ž ú ň ú ů ů š ě ě ě ú ú ú ě ů ě ú ů ě ů ě ú ě ú ž ň ú ě ě ž š ú ě ě ě ú ú

Více

Ekonomika lesního hospodářství. Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.

Ekonomika lesního hospodářství. Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28. Ekonomika lesního hospodářství Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Ekonomika lesního hospodářství (EKLH) Připravil: Ing. Tomáš

Více