Lineární a adaptivní zpracovní dat. 4. Lineární filtrace II: FIR, IIR

Rozměr: px
Začít zobrazení ze stránky:

Download "Lineární a adaptivní zpracovní dat. 4. Lineární filtrace II: FIR, IIR"

Transkript

1 Leárí a adaptví zpracoví dat 4 Leárí fltrace II: FIR, IIR Dael Schwarz Ivestce do rozvoje vzděláváí

2 Opakováí 2 Co je to fltrace? Co je to fltr? A jak ho popsujeme? Jaký je vztah Z trasformace a Fourerovy trasformace? Jak je defováa přeosová fukce dskrétího systému? Jaký je vztah mez přeosovou fukcí systému a jeho frekvečí charakterstkou? Co jsou to ulové ody a póly přeosové fukce a jak je vypočítáme? Popšte, co je to stalta systému Jaká pravdla platí pro mpulsí charakterstku a přeosovou fukc stalího dskrétího systému? B44 Isttute of Bostatstcs ad Aalyses

3 B44 Isttute of Bostatstcs ad Aalyses Pops dskrétí soustavy s Z-trasformací ějme LTI systém s přeosovou fukcí ve tvaru racoálě lomeé fukce: kde A /a, z jsou? a p jsou? 3 ( ) ( ) ( ) ( ) ( ) L L L p z z z A z a z z X z Y z H

4 B44 Isttute of Bostatstcs ad Aalyses Pops dskrétí soustavy s Z-trasformací ějme LTI systém s přeosovou fukcí ve tvaru racoálě lomeé fukce: kde A /a, z jsou uly a p jsou póly racoálě lomeé fukce zpětá Z-trasformace, věta o leartě a posuu, a z - a z - L y a y 4 ( ) ( ) ( ) ( ) ( ) L L L p z z z A z a z z X z Y z H

5 B44 Isttute of Bostatstcs ad Aalyses Pops dskrétí soustavy s Z-trasformací Iterpretace rovce: dskrétí soustava / systém uchovává v pamět starší vzorky vstupího výstupího sgálu L y a y 5

6 B44 Isttute of Bostatstcs ad Aalyses Pops dskrétí soustavy s Z-trasformací?? Iterpretace rovce: dskrétí soustava / systém uchovává v pamět starší vzorky vstupího výstupího sgálu L y a y 6

7 Pops dskrétí soustavy s Z-trasformací 7 y L a y Iterpretace rovce: dskrétí soustava / systém uchovává v pamět starší vzorky vstupího výstupího sgálu Klouzavý průměr A Autoregresí čle AR B44 Isttute of Bostatstcs ad Aalyses

8 Pops dskrétí soustavy s Z-trasformací 8 y L a y Iterpretace rovce: dskrétí soustava / systém uchovává v pamět starší vzorky vstupího výstupího sgálu Klouzavý průměr A Autoregresí čle AR Ovlvňuje rychlost odezvy, charakter jejího zakáí, staltu soustavy B44 Isttute of Bostatstcs ad Aalyses

9 B44 Isttute of Bostatstcs ad Aalyses Pops dskrétí soustavy s Z-trasformací Realzace soustavy / fltru / programu přímou formou: L y a y 2 - -a L -a L- -a 9

10 Pops dskrétí soustavy s Z-trasformací y L a y Realzace soustavy / fltru / programu přímou formou: Zpožděí o jede vzorek 2 - -a L -a L- -a B44 Isttute of Bostatstcs ad Aalyses

11 Pops dskrétí soustavy s Z-trasformací Další formy realzace fltru / soustavy/ programu: Kaskádí: B44 Isttute of Bostatstcs ad Aalyses

12 Pops dskrétí soustavy s Z-trasformací 2 Další formy realzace fltru / soustavy/ programu: Paralelí: B44 Isttute of Bostatstcs ad Aalyses

13 Systémy s koečou mpulsí charakterstkou 3 FIR fte mpulse respose L y a y pouze čle A (movg average) erekurzví realzace (většou, ale emusí vždy) B44 Isttute of Bostatstcs ad Aalyses

14 Systémy s koečou mpulsí charakterstkou 4 FIR PŘÍKLAD: hraový detektor h [] { δ [ ] 2δ [] + δ [ + ] } - FIR PŘÍKLAD: vyhlazovací systém B44 Isttute of Bostatstcs ad Aalyses

15 B44 Isttute of Bostatstcs ad Aalyses Systémy s koečou mpulsí charakterstkou FIR fte mpulse respose z -k 5 - ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) : sust 2 2 h h k y k k k

16 B44 Isttute of Bostatstcs ad Aalyses Systémy s koečou mpulsí charakterstkou FIR fte mpulse respose z -k Počet pólů přeosové fukce:?, kde?? Počet ulových odů přeosové fukce:?, kde?? 6 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) : sust 2 2 h h k y k k k

17 B44 Isttute of Bostatstcs ad Aalyses Systémy s koečou mpulsí charakterstkou FIR fte mpulse respose z -k Počet pólů přeosové fukce:, kde?? Počet ulových odů přeosové fukce:, kde?? 7 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) : sust 2 2 h h k y k k k

18 B44 Isttute of Bostatstcs ad Aalyses Systémy s koečou mpulsí charakterstkou FIR fte mpulse respose z -k Počet pólů přeosové fukce:, kde? V odě z (ásoý pól v počátku, který vyjadřuje je fázový posu uto vyjádřt H(z) v kladých mocách z) Počet ulových odů přeosové fukce:, kde? Kdekol v rově z 8 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) : sust 2 2 h h k y k k k

19 Fltry s koečou mpulsí charakterstkou 9 FIR fltry mohou mít přesě leárí fáz, a to platí-l: ( ) ± h( ),,, 2,, h - osová eo odová souměrost mpulsí charakterstky - tj mpulsí charakterstka je symetrcká eo atsymetrcká Fltry s leárí fází mají specálí kofgurac ulových odů orazového přeosu: Je-l H( ), je také H(/ ) Pokud má systém reálé koefcety, platí také: H( *)H(/ ) Nulové ody se vyskytují ve čtveřcích B44 Isttute of Bostatstcs ad Aalyses

20 Fltry s koečou mpulsí charakterstkou 2 FIR fltry mohou mít přesě leárí fáz, a to platí-l: ( ) ± h( ),,, 2,, h - osová eo odová souměrost mpulsí charakterstky - tj mpulsí charakterstka je symetrcká eo atsymetrcká B44 Isttute of Bostatstcs ad Aalyses

21 Fltry s koečou mpulsí charakterstkou 2 FIR fltry mohou mít přesě leárí fáz, a to platí-l: ( ) ± h( ),,, 2,, h - osová eo odová souměrost mpulsí charakterstky - tj mpulsí charakterstka je symetrcká eo atsymetrcká B44 Isttute of Bostatstcs ad Aalyses

22 Fltry s koečou mpulsí charakterstkou 22 FIR fltry vlastost: - jsou vždy stalí, eoť všechy póly leží v ule (pokud ejsou záměrě realzováy rekurzvím systémem se zpětou vazou) -většou erekurzví realzace - možost leárí fázové charakterstky -relatvě sadá programová (hardwarová) realzace - pro dosažeí strmých charakterstk je třea použít vyšší stupeň fltru ež u IIR fltrů - s rostoucím řádem roste zpožděí - ávrh FIR fltru: -vzorkováí frekvečí charakterstky - váhováí mpulsí charakterstky B44 Isttute of Bostatstcs ad Aalyses

23 Fltry s koečou mpulsí charakterstkou 23 Návrh FIR fltru vzorkováím frekvečí charakterstky Zadávají se jedotlvé ody (vzorky) ampltudové frekvečí charakterstky 2 mo vzorkovací ody se předpokládá chováí lovolé (zakmtáváí) 3 Impulsí charakterstka se vypočítá pomocí verzí DFT 4 Fázová charakterstka se zadává ulová, výsledá mpulsí odezva se kauzalzuje pomocí přerováí vzorků (fftshft) B44 Isttute of Bostatstcs ad Aalyses

24 Fltry s koečou mpulsí charakterstkou 24 Návrh FIR fltru vzorkováím frekvečí charakterstky Zadávají se jedotlvé ody (vzorky) ampltudové frekvečí charakterstky 2 mo vzorkovací ody se předpokládá chováí lovolé (zakmtáváí) 3 Impulsí charakterstka se vypočítá pomocí verzí DFT 4 Fázová charakterstka se zadává ulová, výsledá mpulsí odezva se kauzalzuje pomocí přerováí vzorků (fftshft) 4 2 G(ω) B ω Isttute of Bostatstcs ad Aalyses

25 Systémy s ekoečou mpulsí charakterstkou 25 IIR fte mpulse respose Autoregresí čle AR y L a y Klouzavý průměr A vždy rekurzví realzace B44 Isttute of Bostatstcs ad Aalyses

26 Systémy s ekoečou mpulsí charakterstkou 26 IIR PŘÍKLAD: vyhlazovací systém z - H(z) az/(z-a) Pro a> je fltr estalí B44 Isttute of Bostatstcs ad Aalyses

27 Systémy s ekoečou mpulsí charakterstkou 27 IIR PŘÍKLAD: vyhlazovací systém z - H(z) az/(z-a) Pro a> je fltr estalí Tp: co lze získat tzv dlouhým děleím polyomů? B44 Isttute of Bostatstcs ad Aalyses

28 Systémy s ekoečou mpulsí charakterstkou 28 IIR : - vyžadují alespoň jedu zpětovazeí smyčku, jsou vždy rekurzví -přeosová fukce podíl polyomů B44 Isttute of Bostatstcs ad Aalyses

29 Fltry s ekoečou mpulsí charakterstkou 29 IIR fltry vlastost: - s fltry IIR lze dosáhout velm strmé přechody mez propustým a epropustým pásmem, a to př malém řádu fltru - fltr je vždy rekurzví (se zpětým vazam), může ýt estalí (pro ampltudově omezeý vstupí sgál y geeroval sgál s eustále rostoucím ampltudam) - Fltr IIR ude stalí, pokud všechy jeho póly leží uvtř jedotkové kružce - Fltry IIR emají leárí průěh fázové charakterstky - poměrě složtý a méě tutví ávrh: -rozmsťováí ulových odů a pólů - optmalzačí ávrhy podle frekvečí charakterstky (vedou a řešeí soustavy eleárích rovc) -přístupy založeé a podoost s aalogovým systémy B44 Isttute of Bostatstcs ad Aalyses

30 Fltry s ekoečou mpulsí charakterstkou 3 IIR fltry příklad: B44 Isttute of Bostatstcs ad Aalyses

31 Termologe: IIR, FIR, A, AR 3 y L a y FIR fltry: a, pro všecha Ozačováy také jako movg average eo all-zero fltry IIR fltry: a <>, pro alespoň jedo Zahrují: autoregresví (AR) fltry movg-average, autoregresví (ARA) fltry B44 Isttute of Bostatstcs ad Aalyses

32 Termologe: IIR, FIR, A, AR 32 y L a y FIR fltry: a, pro všecha Ozačováy také jako movg average eo all-zero fltry IIR fltry: a <>, pro alespoň jedo Zahrují: autoregresví (AR) fltry movg-average, autoregresví (ARA) fltry AR fltry:, kromě Výstup závsí pouze a? B44 Isttute of Bostatstcs ad Aalyses

33 Termologe: IIR, FIR, A, AR 33 y L a y FIR fltry: a, pro všecha Ozačováy také jako movg average eo all-zero fltry IIR fltry: a <>, pro alespoň jedo Zahrují: autoregresví (AR) fltry movg-average, autoregresví (ARA) fltry AR fltry:, kromě Výstup závsí pouze a aktuálí hodotě a vstupu a a koečém počtu starších vzorků výstupího sgálu Ozačováy také jako: all-pole, purely recursve, autoregressve B44 Isttute of Bostatstcs ad Aalyses

34 Termologe: IIR, FIR, A, AR 34 y L a y FIR fltry: a, pro všecha Ozačováy také jako movg average eo all-zero fltry IIR fltry: a <>, pro alespoň jedo Zahrují: autoregresví (AR) fltry movg-average, autoregresví (ARA) fltry ARA fltry: a, eulové Ozačováy také jako: pole-zero, autoregressve, movg-average B44 Isttute of Bostatstcs ad Aalyses

35 Termologe: IIR, FIR, A, AR 35 y L a y DOPORUČENÍ: pro fltry a leárí systémy používat ozačeí FIR, IIR ozačeí AR, A, ARA používat pro pops č modely stochastckých procesů, které geerují data áhodé povahy B44 Isttute of Bostatstcs ad Aalyses

36 4 cvčeí 36 Je dá systém s přeosovou fukcí Nakreslete rozložeí ulových odů a pólů Odhaděte modulovou frekvečí charakterstku Zjstěte dferečí rovc systému Zjstěte mpulsí charakterstku systému Na závěr vše ověřte v ATLABu (fvtool, freqz) O jaký fltr jde (FIR, IIR)? O jaký fltr jde (HP, DP, PP)? B44 Isttute of Bostatstcs ad Aalyses

37 4 cvčeí 37 2 Dskrétí soustava má přeosovou fukc H(z): /(-5z - ) Určete dferečí rovc systému B44 Isttute of Bostatstcs ad Aalyses

38 4 cvčeí 38 3 Navrhěte FIR fltr pro odstraěí rušvých složek v časové řadě reprezetující sěr údajů o kocetrac tocké látky v říčím toku Sěr dat proíhá s hodovou vzorkovací perodou Změy v kocetracích jsou pozvolé, odehrávají se v týdeím rytmu (provoz chemcké farky) Rušvé složky, které je potřea potlačt, souvsejí se stochastckým procesem (počasí, tj zejméa srážky, ale teplota), který geeruje sgálové kompoety s ejvyšší perodou okolo 6 h Zkotrolujte správost vzorkováí v epermetu a pro ávrh fltru volte metodu vzorkováí frekvečí charakterstky Volte fltr s 9 vzorky mpulsí charakterstky B44 Isttute of Bostatstcs ad Aalyses

39 4 cvčeí 39 B44 Isttute of Bostatstcs ad Aalyses

40 4 cvčeí 4 B44 Isttute of Bostatstcs ad Aalyses

41 4 cvčeí 4 B44 Isttute of Bostatstcs ad Aalyses

42 4 cvčeí 3 příklad - farka 42 Harmocké kompoety užtečé složky sgálu: f_uzteca_aroud/(7*24*36) Hz Harmocké kompoety rušvé složky sgálu: f_rusva_m/(6*36) Hz Vzorkovací frekvece: fs/36 Hz Vzorkovací věta je splěa, eoť platí, že fs>2*f_rusva 4 G(f) π/2 f AX Od 9 vzorku se cha perodcky opakuje ( 2 B44 π/ vzorků char-ky a frekvečí ose Isttute of Bostatstcs ad Aalyses

43 4 cvčeí 3 příklad - farka 43 Harmocké kompoety užtečé složky sgálu: f_uzteca_aroud/(7*24*36) Hz Harmocké kompoety rušvé složky sgálu: f_rusva_m/(6*36) Hz Vzorkovací frekvece: fs/36 Hz Vzorkovací věta je splěa, eoť platí, že fs>2*f_rusva 4 B44 π/3 G(f) f AX Vzhledem k perodctě frekvečí charakterstky jsou hodoty G d (ω π/2 k ) totožé pro k a pro kn Řád výsledého FIR fltru získaého po N-odové verzí DFT ude N Od 9 vzorku se cha perodcky opakuje ( 9 vzorků a frekvečí ose Isttute of Bostatstcs ad Aalyses

44 4 cvčeí 3 příklad - farka 44 G zeros(,9); % vzorky jsou v porad N- F(:3)oes(,3); % ATLAB deuje od F(8:9)oes(,2); % symetrcká ampltudová frekv char-ka h fft(f); % verzí dskrétí fourerova trasformace stem([:8],h); % mpulsí charakterstka stem([-9:9],h); % mpulsí charakterstka po přerováí B44 Isttute of Bostatstcs ad Aalyses

45 4 cvčeí 3 příklad - farka 45 freqz(h,) agtude (db) Normalzed Frequecy ( π rad/sample) Neleárí průěh freqz(fftshft(h),) Phase (degrees) Normalzed Frequecy ( π rad/sample) 5 agtude (db) Normalzed Frequecy ( π rad/sample) B44 Leárí průěh Phase (degrees) Normalzed Frequecy ( π rad/sample) Isttute of Bostatstcs ad Aalyses

46 ffgf Otázky? 46 B44 Isttute of Bostatstcs ad Aalyses

Lineární a adaptivní zpracovní dat. 5. Lineární filtrace: FIR, IIR

Lineární a adaptivní zpracovní dat. 5. Lineární filtrace: FIR, IIR Leárí a adaptví zpracoví dat 5. Leárí fltrace: FIR, IIR Dael Schwarz Ivestce do rozvoje vzděláváí Opakováí 2 Co je to fltrace? Co je to fltr? A jak ho popsujeme? Jaký je vztah Z trasformace a Fourerovy

Více

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů Číslicová filtrace Použití : Separace sigálů Restaurace sigálů Číslicové filtry Aalogové x číslicové filtry : Aalogové Číslicové: + levé + rychlé + velký dyamický rozsah (v amplitudě i frekveci) - evhodé

Více

Investice do rozvoje vzdělávání

Investice do rozvoje vzdělávání Lieárí systémy a modely časových řad Daiel Schwarz Ivestice do rozvoje vzděláváí Cíl, motivace Popis a idetifikace systémů Lieárí systémy a modely časových řad Istitute of Biostatistics ad Aalyses Cíl,

Více

Digitální filtrace a signálové procesory

Digitální filtrace a signálové procesory Dgtálí fltrace a sgálové procesory Petr Skalcký Praha 995 Teto text byl uvolě pouze pro potřeby studetů v předmětech KN a ASP a katedře Radoelektroky ČVUT v Praze pro rok jako doplňující lteratura. Text

Více

Lineární a adaptivní zpracování dat. 9. Modely časových řad II.

Lineární a adaptivní zpracování dat. 9. Modely časových řad II. Lieárí a adaptiví zpracováí dat 9. Modely časových řad II. Daiel Schwarz Ivestice do rozvoje vzděláváí Opakováí K čemu je dobré vytvářet modely procesů geerující časové řady? Dekompozice časový řad: jaké

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroky, formatky a meoborových studí Číslcové měřcí systémy Číslcové fltry Učebí text Iva Jaksch Lberec 2012 Materál vkl v rámc projektu ESF (CZ.1.07/2.2.00/07.0247)

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,

Více

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC 5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém

Více

IV. MKP vynucené kmitání

IV. MKP vynucené kmitání Jří Máca - katedra mechaky - B35 - tel. 435 4500 maca@fsv.cvut.cz IV. MKP vyuceé kmtáí. Rovce vyuceého kmtáí. Modálí aalýza rozklad do vlastích tvarů 3. Přímá tegrace pohybových rovc 3. Metoda cetrálích

Více

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme

Více

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v

Více

5 - Identifikace. Michael Šebek Automatické řízení

5 - Identifikace. Michael Šebek Automatické řízení 5 - Idetfce Mchel Šee Automtcé řízeí 08 6-3-8 Automtcé řízeí - Kyeret root Idetfce Zísáí modelu systému z dt ( jeho vldce jých dtech) whte ox (víme vše): ze záldích prcpů (fyz-chem-o- ) grey ox (víme ěco):

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DA prof. Ig. Jří Holčík, CSc. INVESICE Isttut DO bostatstky ROZVOJE VZDĚLÁVÁNÍ a aalýz IV. LINEÁRNÍ KLASIFIKACE pokračováí Isttut bostatstky a aalýz (SUPPOR VECOR MACHINE SVM) SEPARABILNÍ

Více

Analýza a zpracování signálů. 4. Diskrétní systémy,výpočet impulsní odezvy, konvoluce, korelace

Analýza a zpracování signálů. 4. Diskrétní systémy,výpočet impulsní odezvy, konvoluce, korelace Aalýza a zpracováí sigálů 4. Diskrétí systémy,výpočet impulsí odezvy, kovoluce, korelace Diskrétí systémy Diskrétí sytém - zpracovává časově diskrétí vstupí sigál ] a produkuje časově diskrétí výstupí

Více

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt

Více

4. KRUHOVÁ KONVOLUCE, RYCHLÁ FOURIEROVA TRANSFORMACE (FFT) A SPEKTRÁLNÍ ANALÝZA SIGNÁLŮ

4. KRUHOVÁ KONVOLUCE, RYCHLÁ FOURIEROVA TRANSFORMACE (FFT) A SPEKTRÁLNÍ ANALÝZA SIGNÁLŮ 4. KRUHOVÁ KOVOLUCE, RYCHLÁ FOURIEROVA TRASFORMACE FFT A SEKTRÁLÍ AALÝZA SIGÁLŮ Kruová cylcá ovoluce Ryclá Fourerova trasformace Aplace DFT a aalogové sgály, frevečí aalýza perodcýc aalogovýc sgálů s využtím

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor SP Náhodý vektor Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu eho výsledek a

Více

Analýza a zpracování signálů. 3. Číselné řady, jejich vlastnosti a základní operace, náhodné signály

Analýza a zpracování signálů. 3. Číselné řady, jejich vlastnosti a základní operace, náhodné signály Aalýza a zpracováí sigálů 3. Číselé řady, jejich vlastosti a základí operace, áhodé sigály Diskrétí sigál fukce ezávislé proměé.!!! Pozor!!!! : sigáleí defiová mezi dvěma ásledujícími vzorky ( a eí tam

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

popsat činnost základních zapojení převodníků U-f a f-u samostatně změřit zadanou úlohu

popsat činnost základních zapojení převodníků U-f a f-u samostatně změřit zadanou úlohu 7. Převodníky - f, f - Čas ke studu: 5 mnut Cíl Po prostudování tohoto odstavce budete umět popsat čnnost základních zapojení převodníků -f a f- samostatně změřt zadanou úlohu Výklad 7.. Převodníky - f

Více

Autoři: Jan Krákora,, David Šebek, Quido Herzeq; ČVUT FELK Praha; Dne:

Autoři: Jan Krákora,, David Šebek, Quido Herzeq; ČVUT FELK Praha; Dne: NÁZEV EXPERIMENTU: NÁVRH, ŘÍZENÍ A PLÁNOVÁNÍ ROBOTU Autoři: Ja Krákora,, David Šeek, Quido Herzeq; ČVUT FELK Praha; De: 6.. Astrakt Optimálí řízeí rootu eí jedoduché, zvlášť pokud o pozici pracoví plochy

Více

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě.

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě. 3. Hodoceí přesost měřeí a vytyčováí. Odchylky a tolerace ve výstavbě. 3.1 Úvod o měřeí obecě 3.2 Chyby měřeí a jejch děleí 3.2.1 Omyly a hrubé chyby 3.2.2 Systematcké chyby 3.2.3 Náhodé chyby 3.3 Výpočet

Více

3 - Póly, nuly a odezvy

3 - Póly, nuly a odezvy 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 5 3--5 Automatické řízeí - Kyberetika a robotika Póly přeosu jsou kořey jmeovatele pro gs () = bs () as () jsou to komplexí čísla si: as ( i) = pokud

Více

Příklady k přednášce 9 - Zpětná vazba

Příklady k přednášce 9 - Zpětná vazba Příklady k předášce 9 - Zpětá vazba Michael Šebek Automatické řízeí 205 6--5 Příklad: Přibližá iverze tak průřezu s výškou hladiy y(t), přítokem u(t) a odtokem dy() t dt + 2 yt () = ut () Cíl řízeí: sledovat

Více

Generování dvojrozměrných rozdělení pomocí copulí

Generování dvojrozměrných rozdělení pomocí copulí Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta

Více

S1P Popisná statistika. Popisná statistika. Libor Žák

S1P Popisná statistika. Popisná statistika. Libor Žák SP Popsá statstka Popsá statstka Lbor Žák SP Popsá statstka Lbor Žák Základí zdroje : skrpta Mateatka IV - doc. RNDr. Z. Karpíšek, CSc. ateatka o le - http://athole.fe.vutbr.cz/ Základ ateatcké statstk

Více

1.3. ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE

1.3. ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE V této kaptole se dozvíte: jak je oecě defováa kolmost (ortogoalta) vektorů; co rozumíme ortogoálí a ortoormálí ází; co jsou to tzv relace ortoormalty a Croeckerovo delta;

Více

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i : ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru

Více

Petr Šedivý Šedivá matematika

Petr Šedivý  Šedivá matematika LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími

Více

Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2

Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2 Iterpolace pomocí sple křvky dáo: bodů v rově úkol: alézt takovou křvku, která daým body prochází y f f 2 f 0 f x0 x... x 2 x x Iterpolace pomocí sple křvky evýhodou polyomálí terpolace změa ěkterého z

Více

Obr Lineární diskrétní systém

Obr Lineární diskrétní systém Mtetcé odel Uvžue leárí dsrétí ssté (or.. ). Or.. Leárí dsrétí ssté Steě u spotýc sstéů t u dsrétíc sstéů exstue ěol ožostí půsou věšío popsu cováí, teré vdřuí vt e výstupí velčou ( ) dsrétí vstupí velčou

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( ) DSM Cv 9 Vytvořující fukce Vytvořující fukcí ekoečé poslouposti a0, a,, a, reálých čísel mííme formálí ekoečou řadu =. f a i= 0 i i Příklady: f = + = + + + + + ) Platí: (biomická věta). To zameá, že fukce

Více

Lineární a adaptivní zpracování dat. 8. Modely časových řad I.

Lineární a adaptivní zpracování dat. 8. Modely časových řad I. Lieárí a adaptiví zpracováí dat 8. Modely časových řad I. Daiel Schwarz Ivestice do rozvoje vzděláváí Cíl, motivace Popis a idetifikace systémů BLACK BOX Cíl, motivace Popis a idetifikace systémů BLACK

Více

8. Zákony velkých čísel

8. Zákony velkých čísel 8 Zákoy velkých čísel V této část budeme studovat velm často užívaá tvrzeí o součtech posloupost áhodých velč Nedříve budeme vyšetřovat tvrzeí azývaá souhrě ako slabé zákoy velkých čísel Veškeré úvahy

Více

Spolehlivost a diagnostika

Spolehlivost a diagnostika Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

Cvičení 2: Rozhodovací stromy, RBF sítě, vlastní algoritmy v RapidMineru

Cvičení 2: Rozhodovací stromy, RBF sítě, vlastní algoritmy v RapidMineru České vysoké učeí techcké v Praze Fakulta formačích techologí Katedra teoretcké formatky Evropský socálí fod Praha & EU: Ivestujeme do vaší budoucost MI-ADM Algortmy data mgu 2010/2011 Cvčeí 2: Rozhodovací

Více

Číslicové zpracování a analýza signálů (BCZA) Spektrální analýza signálů

Číslicové zpracování a analýza signálů (BCZA) Spektrální analýza signálů Číslcové zpracování a analýza sgnálů (BCZA) Spektrální analýza sgnálů 5. Spektrální analýza sgnálů 5. Spektrální analýza determnstckých sgnálů 5.. Dskrétní spektrální analýza perodckých sgnálů 5..2 Dskrétní

Více

Regulace frekvence a velikosti napětí Řízení je spojeno s dodávkou a přenosem činného a jalového výkonu v soustavě.

Regulace frekvence a velikosti napětí Řízení je spojeno s dodávkou a přenosem činného a jalového výkonu v soustavě. 18. Řízeí elektrizačí soustavy ES je spojeí paralelě pracujících elektráre, přeosových a rozvodých sítí se spotřebiči. Provoz je optimálě spolehlivá hospodárá dodávka kvalití elektrické eergie. Stěžejími

Více

Úloha III.S... limitní

Úloha III.S... limitní Úloha III.S... limití 10 bodů; průměr 7,81; řešilo 6 studetů a) Zkuste vlastími slovy popsat postup kostrukce itervalových odhadů středí hodoty v případě obecého rozděleí měřeých dat (postačí vlastími

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základy měřeí eelektrických veliči.. Měřicí řetězec Měřicí řetězec (měřicí soustava) je soubor měřicích čleů (jedotek) účelě uspořádaých tak, aby bylo ožě split požadovaý úkol měřeí, tj. získat iformaci

Více

Číslicové zpracování signálů - spojité a diskrétní signály

Číslicové zpracování signálů - spojité a diskrétní signály Číslicové zpracováí sigálů - spojité a diskrétí sigály f (t) f (t) k 6 5 4 3 t 2 t Obr. Sigál spojitý a kvatovaý f -T 7 6 5 4 3 2 f (t) T 2T 3T 4T 5T 6T 7T 8T Obr.2 Diskrétí sigál t -3-2 - 2 3 4 5 6 Obr.4

Více

VY_52_INOVACE_J 05 01

VY_52_INOVACE_J 05 01 Název a adresa školy: Středí škola průmyslová a umělecká, Opava, příspěvková orgazace, Praskova 399/8, Opava, 74601 Název operačího programu: OP Vzděláváí pro kokureceschopost, oblast podpory 1.5 Regstračí

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,

Více

1 Základy Z-transformace. pro aplikace v oblasti

1 Základy Z-transformace. pro aplikace v oblasti Základy Z-trasformace pro aplikace v oblasti číslicového zpracováí sigálů Petr Pollák 9. říja 29 Základy Z-trasformace Teto stručý text slouží k připomeutí základích vlastostí Z-trasformace s jejími aplikacemi

Více

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl:

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl: 9 ÁHODÉ VÝBĚR A JEJICH ZPRACOVÁÍ Čas ke studu katol: 30 mut Cíl: Po rostudováí tohoto odstavce budete rozumět ojmům Základí soubor, oulace, výběr, výběrové šetřeí, výběrová statstka a budete zát základí

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé

Více

( + ) ( ) ( ) ( ) ( ) Derivace elementárních funkcí II. Předpoklady: Př. 1: Urči derivaci funkce y = x ; n N.

( + ) ( ) ( ) ( ) ( ) Derivace elementárních funkcí II. Předpoklady: Př. 1: Urči derivaci funkce y = x ; n N. .. Derivace elemetárích fukcí II Předpoklady: Př. : Urči derivaci fukce y ; N. Budeme postupovat stejě jako předtím dosazeím do vzorce: f ( + ) f ( ) f f ( + ) + + + +... + (biomická věta) + + +... + f

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T BŘEZNA 08 :. břez 08 D : 0 P P P : 0 M. M. M. :,8 % S : 0 : 7,5 : -7,5 M. P : -,0 : 0,6 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90

Více

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě

Více

Měření závislostí. Statistická závislost číselných znaků

Měření závislostí. Statistická závislost číselných znaků Měřeí závslostí Statstcká závslost číselých zaků - závslost dvou velč lze vádřt ako ech fukčí vztah vzorcem, taulkou hodot příslušé fukce eo grafck; - mez zak zkoumaých evů zšťueme estec příčé (kauzálí

Více

Fourierova transformace ve zpracování obrazů

Fourierova transformace ve zpracování obrazů Fourierova trasformace ve zpracováí obrazů Jea Baptiste Joseph Fourier 768-83 6. předáška předmětu Zpracováí obrazů Martia Mudrová 24 Motivace Proč používat Fourierovu trasformaci? základí matematický

Více

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti

Více

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL Difereciálí počet fukcí jedé reálé proměé - 6. - PRVNÍ DIFERENCIÁL TAYLORŮV ROZVOJ FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL PŘÍKLAD Pomocí věty o prvím difereciálu ukažte že platí přibližá rovost

Více

P2: Statistické zpracování dat

P2: Statistické zpracování dat P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu

Více

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY LABORATORNÍ CVIČENÍ Z FYZIKY Jméo: Petr Česák Datum měřeí:.3.000 Studjí rok: 999-000, Ročík: Datum odevzdáí: 6.3.000 Studjí skupa: 5 Laboratorí skupa:

Více

11. Popisná statistika

11. Popisná statistika . Popsá statstka.. Pozámka: Př statstckém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákotost, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme statstcké jedotky. Př

Více

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že

Více

1 Elektrotechnika 1. 9:00 hod. G 0, 25

1 Elektrotechnika 1. 9:00 hod. G 0, 25 A 9: hod. Elektrotechnka a) Napětí stejnosměrného zdroje naprázdno je = 5 V. Př proudu A je svorkové napětí V. Vytvořte napěťový a proudový model tohoto reálného zdroje. b) Pomocí přepočtu napěťových zdrojů

Více

OBRAZOVÁ ANALÝZA POVRCHU POTISKOVANÝCH MATERIÁLŮ A POTIŠTĚNÝCH PLOCH

OBRAZOVÁ ANALÝZA POVRCHU POTISKOVANÝCH MATERIÁLŮ A POTIŠTĚNÝCH PLOCH OBRAZOVÁ ANALÝZA POVRCU POTISKOVANÝC MATERIÁLŮ A POTIŠTĚNÝC PLOC Zmeškal Oldřich, Marti Julíe Tomáš Bžatek Ústav fyzikálí a spotřebí chemie, Fakulta chemická, Vysoké učeí techické v Brě, Purkyňova 8, 62

Více

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost Číselé řady Defiice (Posloupost částečých součtů číselé řady). Nechť (a ) =1 je číselá posloupost. Pro všecha položme s = ak. Posloupost ( s ) azýváme posloupost částečých součtů řady. Defiice (Součet

Více

Vlastnosti posloupností

Vlastnosti posloupností Vlstosti posloupostí Nekoečá posloupost je fukce defiová v oboru přirozeých čísel Z toho plye, že kždá posloupost má prví čle (zčíme ), koečé poslouposti mjí i čle posledí Př Vypište prví čtyři čley poslouposti

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

2.4. INVERZNÍ MATICE

2.4. INVERZNÍ MATICE 24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:

Více

14. B o d o v é o d h a d y p a r a m e t r ů

14. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzt Krlov v Prze Pedgogcká kult SEMINÁRNÍ PRÁCE Z POLYNOMICKÉ ALGEBRY POLYNOM / CIFRIK Zdáí: Vyšetřete všem probrým prostředky polyom Vyprcováí: Rcoálí kořey Podle věty: Nechť p Q je koře polyomu q

Více

je vstupní kvantovaný signál. Průběh kvantizační chyby e { x ( t )}

je vstupní kvantovaný signál. Průběh kvantizační chyby e { x ( t )} ČÍSLICOVÉ ZPRACOVÁNÍ ZVUKOVÝCH SIGNÁLŮ Z HLEDISKA PSYCHOAKUSTIKY Fratišek Kadlec ČVUT, fakulta elektrotechická, katedra radioelektroiky, Techická 2, 66 27 Praha 6 Úvod Při číslicovém zpracováí zvukových

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí

Více

Fourierova transformace ve zpracování obrazů

Fourierova transformace ve zpracování obrazů Jea Baptiste Joseph Fourier 768-83 Fourierova trasforace ve zpracováí obrazů 6. předáška předětu Zpracováí obrazů Martia Mudrová 24 Motivace Proč používat Fourierovu trasforaci? základí ateatický ástroj

Více

Analýza a zpracování signálů. 3. Číselné řady, jejich vlastnosti a základní operace, náhodné signály

Analýza a zpracování signálů. 3. Číselné řady, jejich vlastnosti a základní operace, náhodné signály Aalýza a zpracováí sigálů 3. Číselé řady, jejich vlastosti a základí operace, áhodé sigály Diskrétí sigál fukce ezávislé proměé.!!! Pozor!!!! : sigál eí defiová mezi dvěma ásledujícími vzorky a eí tam

Více

P. Girg. 23. listopadu 2012

P. Girg. 23. listopadu 2012 Řešeé úlohy z MS - díl prví P. Girg 2. listopadu 202 Výpočet ity poslouposti reálých čísel Věta. O algebře it kovergetích posloupostí.) Necht {a } a {b } jsou kovergetí poslouposti reálých čísel a echt

Více

Měřící technika - MT úvod

Měřící technika - MT úvod Měřící techika - MT úvod Historie Už Galileo Galilei zavádí vědecký přístup k měřeí. Jeho výrok Měřit vše, co je měřitelé a co eí měřitelým učiit platí stále. - jedotá soustava jedotek fyz. veliči - símače

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

DYNAMIC PROPERTIES OF ELECTRONIC GYROSCOPES FOR INERTIAL MEASUREMENT UNITS

DYNAMIC PROPERTIES OF ELECTRONIC GYROSCOPES FOR INERTIAL MEASUREMENT UNITS DYNAMIC PROPERTIES OF ELECTRONIC GYROSCOPES FOR INERTIAL MEASUREMENT UNITS Jiří Tůma & Jiří Kulháek Abstract: The paper deals with the dyamic properties of the electroic gyroscope as a sesor of agular

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

4. Model M1 syntetická geometrie

4. Model M1 syntetická geometrie 4. Model M1 sytetiká geometrie V této kapitole se udeme zaývat vektory, jejih vlastostmi a využitím v geometrii. Neudeme přitom rozlišovat, jestli se jedá je o roviu (dvě dimeze) eo prostor (tři dimeze).

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Přednáška 7: Soustavy lineárních rovnic

Přednáška 7: Soustavy lineárních rovnic Předáška 7: Soustavy lieárích rovic 7.1. Příklad (geometrie v roviě) Rozhoděte o vzájemé poloze přímky p : x y 1 a přímky a) a : x y 3, b) b : 2x 2y 3, c) c :3x 3y 3. Jak víme ze středí školy, lze o vzájemé

Více

2. Vícekriteriální a cílové programování

2. Vícekriteriální a cílové programování 2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě

Více

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem.

HYPOTEČNÍ ÚVĚR. , kde v = je diskontní faktor, Dl počáteční výše úvěru, a anuita, i roční úroková sazba v procentech vyjádřená desetinným číslem. HYPTEČNÍ ÚVĚR Spláceí úvěru stejým splátkam - kostatí auta ÚLHA 1: Mladý maželský pár s dostačujícím příjmy (tz. a získáí hypotéčího úvěru) se rozhodl postavt s meší rodý domek. Podle předběžé kalkulace

Více

jsou reálná a m, n jsou čísla přirozená.

jsou reálná a m, n jsou čísla přirozená. .7.5 Racioálí a polomické fukce Předpoklad: 704 Pedagogická pozámka: Při opisováí defiic racioálí a polomické fukce si ěkteří studeti stěžovali, že je to příliš těžké. Ve skutečosti je sstém, kterým jsou

Více

3 - Póly, nuly a odezvy

3 - Póly, nuly a odezvy 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 8 9-6-8 Automatické řízeí - Kyberetika a robotika Póly přeou a póly ytému Póly přeou jou kořey jmeovatele pro g () = b () a () jou to komplexí číla

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Nosné stavební konstrukce Výpočet reakcí Výpočet vnitřních sil přímého nosníku

Nosné stavební konstrukce Výpočet reakcí Výpočet vnitřních sil přímého nosníku Stveí sttik.ročík klářského studi osá stveí kostruke osé stveí kostruke ýpočet rekí ýpočet vitříh sil přímého osíku osá stveí kostruke slouží k přeosu ztížeí ojektu do horiového msívu ěmž je ojekt zlože.

Více

4. Návrh číslicových filtrů s nekonečnou impulzní odezvou

4. Návrh číslicových filtrů s nekonečnou impulzní odezvou P.Skalický- Digitálí filtrace a sigálové procesory Praha - /995 4. Návrh číslicových filtrů s ekoečou impulzí odezvou Návrh číslicových filtrů můžeme rozdělit do těchto tří fází:. Určeí vlastostí avrhovaého

Více

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2 SP3 Neparametrcké testy hypotéz PRAVDĚPODOBNOST A STATISTIKA Neparametrcké testy hypotéz čast Lbor Žák SP3 Neparametrcké testy hypotéz Lbor Žák Neparametrcké testy hypotéz - úvod Neparametrcké testy statstckých

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

Definice obecné mocniny

Definice obecné mocniny Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma

Více

[ jednotky ] Chyby měření

[ jednotky ] Chyby měření Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více