Lineární a adaptivní zpracování dat. 9. Modely časových řad II.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Lineární a adaptivní zpracování dat. 9. Modely časových řad II."

Transkript

1 Lieárí a adaptiví zpracováí dat 9. Modely časových řad II. Daiel Schwarz Ivestice do rozvoje vzděláváí

2 Opakováí K čemu je dobré vytvářet modely procesů geerující časové řady? Dekompozice časový řad: jaké přístupy záte? Vyjmeujte složky, do kterých časové řady rozkládáme. Které z ich tvoří užitečou iformaci o procesu? Je ějaký rozdíl mezi sezóí a cyklickou složkou? Jaký? Defiujte stacioárí stochastický proces. Jaké máme možosti pro očištěí časových řad od tredu? Jaké máme možosti pro očištěí časových řad od sezóích vlivů? Istitute of Biostatistics ad Aalyses

3 Modely časových řad Jakoukoli stacioárí časovou řadu či sigál s áhodou složkou geeruje stochastický proces, kterému lze přiřadit jede z těchto modelů: čistě rekursiví model erekursiví model s klouzavým průměrem kombiovaý model bílý šum AR autoregressive MA movigaverage ARMA Istitute of Biostatistics ad Aalyses

4 Modely časových řad Jakoukoli stacioárí časovou řadu či sigál s áhodou složkou geeruje stochastický proces, kterému lze přiřadit jede z těchto modelů: čistě rekursiví model erekursiví model s klouzavým průměrem kombiovaý model bílý šum AR autoregressive MA movigaverage ARMA V případě estacioarity procesu, který časovou řadu geeruje, modelujeme ejdříve časovou řadu oproštěou od tredových a sezóích (cyklických) vlivů a ve výsledém modelu pak tyto vlivy opět uplatíme. Hovoří se pak i o modelech ARIMA a SARIMA. Istitute of Biostatistics ad Aalyses

5 Bílý šum Náhodý proces ozačujeme za bílý šum, pokud jeho středí hodota a autokorelačí fukce (ACF) splňují tyto podmíky: Diracova distribuce μ = Ε = 0, R { } N 0 (, ) = Ε{ ( ) ( )} = δ ( ). Empirická ACF w() Rww(,) Istitute of Biostatistics ad Aalyses

6 Autoregresí (AR) model = a a... a p p časová řada / sigál bílý šum p řád AR modelu a i parametry modelu z z z Odhad parametrů a a a p Istitute of Biostatistics ad Aalyses

7 Autoregresí (AR) model = a a... a p p AR model je lieárí regrese aktuálí hodoty řady proti jedé a více předcházejícím hodotám. Aktuálí hodota časové řady je dáa lieárí kombiací jejich předchozích hodot. AR modely mají přímou a jasou iterpretaci. Rekurziví systém buzeí IIR filtru bílým šumem. Staoveí parametrů modelu: metoda ejmeších čtverců eboli miimalizace rozptylu. z z z a a a p Istitute of Biostatistics ad Aalyses

8 (MA) model s klouzavým průměrem = c... c c q q časová řada / sigál bílý šum q řád MA modelu μ středí hodota áhodého procesu kocetrace CO c i parametry modelu čas Odhad parametrů z z z z c c c q c q Istitute of Biostatistics ad Aalyses

9 (MA) model s klouzavým průměrem = c... c c q q MA model je lieárí regrese aktuálí hodoty řady ovšem tetokrát proti vzorkům bílého šumu. Komplikace: v aměřeých datech obvykle tyto šumové hodoty ejsou k dispozici MA modely mají horší iterpretaci ež AR modely. Nerekurziví systém buzeí FIR filtru bílým šumem. Staoveí parametrů modelu: elieárí iteračí techiky. z z z z c c c q c q Istitute of Biostatistics ad Aalyses

10 ARMA model ARMA(p, q) kombiuje AR(p) a MA(q) modely. = a a... a p p c c... c q q Boova Jekisova metodologie zahruje: idetifikaci modelu, odhad modelu, validaci modelu. Určeí řádů p, q Výpočet parametrů a i, c i Kotrola rozložeí residuí Istitute of Biostatistics ad Aalyses

11 ARMA model: idetifikace. Je časová řada / sigál stacioárí?. Vykazuje časová řada / sigál sezóost? ANO NE zjištěí periody T, zahrutí čleu AR(T) ebo MA(T) do modelu, případě sezóí diferece ARIMA (autoregressive itegrated movig average model) Idetifikace, odhad, validace stacioárího ARMA modelu a diferecovaých datech a ásledá úprava modelu a estacioárí model ARIMA. Př. model AR(): y = y y = =-0406( )-0.64( ) = Istitute of Biostatistics ad Aalyses

12 ARMA model: idetifikace Určeí řádů p a q a) a základě zkušeosti a eperimetováí b) spektrum: každé výrazé maimum v rozsahu <0,f vz /> vyžaduje jede pár pólů, což zvyšuje řád o. c) kritéria a základě autokorelačí fukce (ACF) a parciálí autokorelačí fukce (PACF) Srováváí teoretických průběhů ACF, PACF procesů zámých řádů s ACF, PACF aměřeých časových řad Istitute of Biostatistics ad Aalyses

13 Parciálí autokorelačí fukce - PACF PACF představuje korelaci mezi rezidui regresí dvou proměých vůči třetí proměé. Pro zpožděí k vyjadřuje PACF vztah mezi dvěma zpožděými vzorky časové řady a k tak, že ezapočítává lieárí vliv vzorků ležících mezi imi. PACF(k): jedá se o autokorelačí koeficiet pro zpožděí k očištěý od vlivu,,, k Istitute of Biostatistics ad Aalyses

14 ARMA model: idetifikace Příklad: AR() proces a = = = a a a = ( a ) = ( a)... ( a) ( a ) = z a 0 Istitute of Biostatistics ad Aalyses

15 Istitute of Biostatistics ad Aalyses ARMA model: idetifikace Příklad: AR() proces a = ( ) ( ) ( ) ( ) 0... a a a a a a a = = = = = { } ( ) a a a E = =, μ μ μ { } { }, a E D = = σ μ a <: ( ) { } ( ). k k a E k R = =

16 ARMA model: idetifikace Příklad: AR() proces = ( ) { } k R k E = ( a). a = k Istitute of Biostatistics ad Aalyses

17 ARMA model: idetifikace Příklad: AR() proces = ( ) { } k R k E = ( a). a = k V literatuřelze alézt teoretické vlastosti základích stacioárích procesů AR(), AR(), MA(), MA() atd. Tyto teoretické vlastosti (apř. průběhy teoretické autokorelačí fukce) se pak srovávají s empirickými vlastostmi získaými z aměřeých časových řad a výsledky porováí slouží pro idetifikaci p, q. Istitute of Biostatistics ad Aalyses

18 ARMA model: idetifikace Tvar ACF Epoeciála klesající k ule. Změy kladých a záporých hodot, postupý pokles k ule. Jede ebo ěkolik vrcholů,zbytek zaedbatelý, ulový. Průběhklesající až po ěkolika zpožděích Vše zaedbatelé, ulové Vysoké hodoty ve stejých itervalech Neklesá k ule Model AR(p) model. Pro určeí p se vychází z PACF, která je pro AR(p) ulová od zpožděí p. MA model. Řád odpovídá hodotě zpožděí, od kterého je ACF ulová. Kombiovaý model ARMA. Data jsou áhodá, geeruje je bílý šum. Zahrout AR čle s řádem odpovídajícím periodě. Nejedá se o stacioárí řadu / sigál. Istitute of Biostatistics ad Aalyses

19 ARMA model: idetifikace očištěí od tredu Detekce sezóích kompoet Perioda vzorků Istitute of Biostatistics ad Aalyses

20 ARMA model: idetifikace Zbývá idetifikovat ještě esezóí kompoety sigálu / řady. Sezóí diferecováí: Istitute of Biostatistics ad Aalyses

21 ARMA model: idetifikace Zbývá idetifikovat ještě esezóí kompoety sigálu / řady. Istitute of Biostatistics ad Aalyses

22 ARMA model: idetifikace Zbývá idetifikovat ještě esezóí kompoety sigálu / řady. Hledáme tzv. bod usekutí, tj. zpožděí, od kterého je PACF ulová/zaedbatelá. Istitute of Biostatistics ad Aalyses

23 Istitute of Biostatistics ad Aalyses ARMA model ARMA(p, q) kombiuje AR(p) a MA(q) modely. Odhad parametrů modelu iteračí algoritmy: elieárí metoda ejmeších čtverců odhad a základě maimálí věrohodosti (MLE) Vhodější tvar rovice (pro SW ástroje): q q p p c c c a a a = q q p p c c c a a a =......

24 ARMA model ARMA(p, q) kombiuje AR(p) a MA(q) modely. = a a... a p p c c... c q q Odhad parametrů modelu iteračí algoritmy: elieárí metoda ejmeších čtverců odhad a základě maimálí věrohodosti (MLE) Výsledý AR() model (pro data očištěá od lieárího tredu a sezóích vlivů) = Istitute of Biostatistics ad Aalyses

25 ARMA modely Validace modelu = Zpěté ověřeí předpokladů kladeých a áhodé chyby, tj. aalýza residuí RESIDUA = CHYBY PREDIKCE Residua by měla představovat bílý šum. Istitute of Biostatistics ad Aalyses

26 ARMA modely Validace modelu AR() = Validace modelu AR(4) = Istitute of Biostatistics ad Aalyses

27 ARMA modely Validace modelu AR() = Validace modelu ARMA(4,4).345 = = 4 Istitute of Biostatistics ad Aalyses

28 ARMA modely Validace modelu AR() = Ai postupým avyšováím složitosti (řádu) modelu se edospělo k uspokojivým výsledkům Validace modelu ARMA(4,4) (ACF residuí eodpovídá ACF bílého šumu) = V takovém případě je ejlepší ávrat k co = ejjedoduššímu 3 4 modelu: v ukázaém příkladu se jedá o AR(). Istitute of Biostatistics ad Aalyses

29 ARMA modely Posouzeí kvality předpovídáí aplikace modelu a řadu zkráceou o m pozorováí, předpověď hodot m, m,, porováí = Model: AR() Horizot predikce: Shoda: 8. % Istitute of Biostatistics ad Aalyses

30 ARMA modely Posouzeí kvality předpovídáí aplikace modelu a řadu zkráceou o m pozorováí, předpověď hodot m, m,, porováí = Model: AR() Horizot predikce: 5 Shoda: < % Istitute of Biostatistics ad Aalyses

31 ARMA modely Posouzeí kvality předpovídáí aplikace modelu a řadu zkráceou o m pozorováí, předpověď hodot m, m,, porováí = Model: AR(4) Horizot predikce: Shoda: 9.0 % Istitute of Biostatistics ad Aalyses

32 ARMA modely Posouzeí kvality předpovídáí aplikace modelu a řadu zkráceou o m pozorováí, předpověď hodot m, m,, porováí = Model: AR(4) Horizot predikce: 5 Shoda: 3.3 % Istitute of Biostatistics ad Aalyses

33 ARMA modely Posouzeí kvality předpovídáí aplikace modelu a řadu zkráceou o m pozorováí, předpověď hodot m, m,, porováí = = 4 Model: ARMA(4,4) Horizot predikce: Shoda: 98.6 % Istitute of Biostatistics ad Aalyses

34 ARMA modely Posouzeí kvality předpovídáí aplikace modelu a řadu zkráceou o m pozorováí, předpověď hodot m, m,, porováí = = 4 Model: ARMA(4,4) Horizot predikce: 5 Shoda: 3.9 % Istitute of Biostatistics ad Aalyses

35 LTI systém a jeho popis y =.745 y y y z z Istitute of Biostatistics ad Aalyses

36 LTI systém a jeho popis y =.745 y y y z z Nesystematickou složku předložeé časové řady (měřeí kocetrace CO v ovzduší) očištěé od tredu a sezóích vlivů modelujeme jako buzeí IIR filtru druhého řádu. Istitute of Biostatistics ad Aalyses

37 Shrutí Popis a idetifikace systémů a procesů z z z z c c c q c q Aalýza, Simulace, Predikce, Moitorig, Diagostika, Řízeí Istitute of Biostatistics ad Aalyses

38 9. cvičeí ) Z předložeých dat co.csv představujících moitorig kocetrace CO v ovzduší idetifikujte a odhaděte model procesu, který tato data vygeeroval. Využijte aditiví přístup k dekompozici časových řad a dále Bo Jekisovu metodiku pro idetifikaci struktury modelu. Pro odhad parametrů modelu využijte fukce z System Idetificatio Toolbo Matlabu. Nezapomeňte svůj model validovat pomocí aalýzy residuí a po té se pokuste předpovědět kocetraci ovzduší v ásledujících letech. Istitute of Biostatistics ad Aalyses

39 9. cvičeí c=.459*time-537. Istitute of Biostatistics ad Aalyses

40 9. cvičeí Istitute of Biostatistics ad Aalyses

41 9. cvičeí Istitute of Biostatistics ad Aalyses

42 9. cvičeí Istitute of Biostatistics ad Aalyses

43 9. cvičeí Istitute of Biostatistics ad Aalyses

44 9. cvičeí Istitute of Biostatistics ad Aalyses

45 Istitute of Biostatistics ad Aalyses 9. cvičeí ( ) ( ) ( ) ( ) ( ) d d d d d d d d d d d d d d d d d d d d d d d d d d d d dd dd d dd dd dd dd = = = = ) 3.74(

46 9. cvičeí Istitute of Biostatistics ad Aalyses

47 9. cvičeí Istitute of Biostatistics ad Aalyses

48 9. cvičeí Istitute of Biostatistics ad Aalyses

49 9. cvičeí Istitute of Biostatistics ad Aalyses

50 ffgf Otázky? 50 Istitute of Biostatistics ad Aalyses

Lineární a adaptivní zpracování dat. 8. Modely časových řad I.

Lineární a adaptivní zpracování dat. 8. Modely časových řad I. Lieárí a adaptiví zpracováí dat 8. Modely časových řad I. Daiel Schwarz Ivestice do rozvoje vzděláváí Cíl, motivace Popis a idetifikace systémů BLACK BOX Cíl, motivace Popis a idetifikace systémů BLACK

Více

Investice do rozvoje vzdělávání

Investice do rozvoje vzdělávání Lieárí systémy a modely časových řad Daiel Schwarz Ivestice do rozvoje vzděláváí Cíl, motivace Popis a idetifikace systémů Lieárí systémy a modely časových řad Istitute of Biostatistics ad Aalyses Cíl,

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základy měřeí eelektrických veliči.. Měřicí řetězec Měřicí řetězec (měřicí soustava) je soubor měřicích čleů (jedotek) účelě uspořádaých tak, aby bylo ožě split požadovaý úkol měřeí, tj. získat iformaci

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model EKONOMETRIE 9. předáška Zobecěý lieárí regresí model Porušeí základích podmíek klasického modelu Metoda zobecěých emeších čtverců Jestliže sou porušey ěkteré podmíky klasického modelu. E(u),. E (uu`) σ

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky

Více

OPTIMÁLNÍ FILTRACE METALURGICKÝCH SIGNÁLŮ POMOCÍ INFORMAČNÍCH KRITÉRIÍ

OPTIMÁLNÍ FILTRACE METALURGICKÝCH SIGNÁLŮ POMOCÍ INFORMAČNÍCH KRITÉRIÍ OPTIMÁLNÍ FILTRACE METALURGICKÝCH SIGNÁLŮ POMOCÍ INFORMAČNÍCH KRITÉRIÍ Ja Morávka Třiecký ižeýrig, a.s. Abstract Příspěvek popisuje jede přístup k optimálí filtraci metalurgických sigálů pomocí růzých

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy

} kvantitativní znaky. korelace, regrese. Prof. RNDr. Jana Zvárov. Obecné principy Měřeí statistické závislosti, korelace, regrese Prof. RNDr. Jaa Zvárov rová,, DrSc. MĚŘENÍZÁVISLOSTI Cílem statistické aalýzy vepidemiologii bývá eje staovit, zda oemocěí závisí a výskytu rizikového faktoru,

Více

Úvod do analýzy časových řad

Úvod do analýzy časových řad Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2... } se nazývá stochastický

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Lineární a adaptivní zpracovní dat. 5. Lineární filtrace: FIR, IIR

Lineární a adaptivní zpracovní dat. 5. Lineární filtrace: FIR, IIR Leárí a adaptví zpracoví dat 5. Leárí fltrace: FIR, IIR Dael Schwarz Ivestce do rozvoje vzděláváí Opakováí 2 Co je to fltrace? Co je to fltr? A jak ho popsujeme? Jaký je vztah Z trasformace a Fourerovy

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Lineární a adaptivní zpracovní dat. 4. Lineární filtrace II: FIR, IIR

Lineární a adaptivní zpracovní dat. 4. Lineární filtrace II: FIR, IIR Leárí a adaptví zpracoví dat 4 Leárí fltrace II: FIR, IIR Dael Schwarz Ivestce do rozvoje vzděláváí Opakováí 2 Co je to fltrace? Co je to fltr? A jak ho popsujeme? Jaký je vztah Z trasformace a Fourerovy

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů Číslicová filtrace Použití : Separace sigálů Restaurace sigálů Číslicové filtry Aalogové x číslicové filtry : Aalogové Číslicové: + levé + rychlé + velký dyamický rozsah (v amplitudě i frekveci) - evhodé

Více

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Pravděpodobnostní model doby setrvání ministra školství ve funkci Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Iterační metody řešení soustav lineárních rovnic

Iterační metody řešení soustav lineárních rovnic Iteračí metody řešeí soustav lieárích rovic Matice je: diagoálě domiatí právě tehdy, když pozitivě defiití (symetrická matice) právě tehdy, když pro x platí x, Ax a ij Tyto vlastosti budou důležité pro

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

K čemu slouží regrese?

K čemu slouží regrese? REGRESE K čemu slouží regrese? C = Ca + c. Y C = 00 + 0,6. Y + e Budeme zjišťovat jak jeda proměá (ezávislá) Ovlivňuje jiou proměou (závislou) C Y 950 1000 910 150 1130 1500 1150 1750 1475 000 1550 50

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM Difereciálí počet fukcí jedé reálé proměé - - DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ ÚVODNÍ POZNÁMKY I derivace podobě jako limity můžeme počítat ěkolikerým způsobem a to kokrétě pomocí: defiice vět o algebře

Více

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

8.2.1 Aritmetická posloupnost I

8.2.1 Aritmetická posloupnost I 8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

8.2.1 Aritmetická posloupnost

8.2.1 Aritmetická posloupnost 8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž

Více

Zhodnocení přesnosti měření

Zhodnocení přesnosti měření Zhodoceí přesosti měřeí 1. Chyby měřeí Měřeím emůžeme ikdy zjistit skutečou (pravou) hodotu s měřeé veličiy. To je způsobeo edokoalostí metod měřeí, měřicích přístrojů, lidských smyslů i proměých podmíek

Více

MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ

MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION 0/008 MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ STATISTICAL ASSESSMENT

Více

8. Odhady parametrů rozdělení pravděpodobnosti

8. Odhady parametrů rozdělení pravděpodobnosti Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z

Více

vají statistické metody v biomedicíně

vají statistické metody v biomedicíně Statistika v biomedicísk ském m výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Proč se používaj vají statistické metody v biomedicíě Biomedicísk

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv

Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv 3. meziárodí koferece Řízeí a modelováí fiačích rizik Ostrava VŠB-U Ostrava, Ekoomická fakulta, katedra Fiací 6.-7. září 006 tegrace hodot Value-at-Risk lieárích subportfolií a bázi vícerozměrého ormálího

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

9. Měření závislostí ve statistice Pevná a volná závislost

9. Měření závislostí ve statistice Pevná a volná závislost Dráha [m] 9. Měřeí závislostí ve statistice Měřeí závislostí ve statistice se zabývá především zkoumáím vzájemé závislosti statistických zaků vícerozměrých souborů. Závislosti přitom mohou být apříklad

Více

Optické vlastnosti atmosféry, rekonstrukce optického signálu degradovaného průchodem atmosférou

Optické vlastnosti atmosféry, rekonstrukce optického signálu degradovaného průchodem atmosférou INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Optické vlastosti atmosféry, rekostrukce optického sigálu degradovaého průchodem atmosférou Učebí texty k semiáři Autor: Dr. Ig. Zdeěk Řehoř UO Bro) Datum: 22. 10. 2010

Více

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy 3.1 Zadáí: 3. Sekvečí obvody 1. Navrhěte a realizujte obvod geerující zadaou sekveci. Postupujte ásledově: a) Vytvořte vývojovou tabulku pro zadaou sekveci b) Miimalizujte budící fukce pomocí Karaughovy

Více

Testování statistických hypotéz

Testování statistických hypotéz Tetováí tatitických hypotéz CHEMOMETRIE I, David MILDE Jedá e o jedu z ejpoužívaějších metod pro vyloveí závěrů o základím ouboru, který ezkoumáme celý, ale pomocí áhodého výběru. Př.: Je obah účié látky

Více

Úloha II.S... odhadnutelná

Úloha II.S... odhadnutelná Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí

Více

2. Náhodná veličina. je konečná nebo spočetná množina;

2. Náhodná veličina. je konečná nebo spočetná množina; . Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité

Více

Lekce 2 Jednoduchý lineární regresní model

Lekce 2 Jednoduchý lineární regresní model Lekce 2 Jedoduchý lieárí regresí model Co si řekeme v této lekci Trochu opáčko miulé lekce Sezámíme se s jedoduchým regresím modelem Vysvětlíme si co je to regrese Naučíme se jej iterpretovat Metoda ejmeších

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,

Více

Časové řady, typy trendových funkcí a odhady trendů

Časové řady, typy trendových funkcí a odhady trendů Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces

Více

Variabilita měření a statistická regulace procesu

Variabilita měření a statistická regulace procesu Variabilita měří a statistická rgulac procsu Ig. Darja Noskivičová, CSc. Katdra kotroly a řízí jakosti, VŠB-TU Ostrava Abstrakt: Efktivost využití statistických mtod pro aalýzu a řízí procsů j odvislá

Více

1. JEV JISTÝ a. je jev, který nikdy nenastane b. je jev, jehož pravděpodobnost = ½ c. je jev, jehož pravděpodobnost = 0 d.

1. JEV JISTÝ a. je jev, který nikdy nenastane b. je jev, jehož pravděpodobnost = ½ c. je jev, jehož pravděpodobnost = 0 d. ZÁPOČTOVÝ TEST. JEV JISTÝ a. je jev, který ikdy eastae b. je jev, jehož pravděpodobost ½ c. je jev, jehož pravděpodobost 0 d. je jev, jehož pravděpodobost e. je jev, který astae za jistých okolostí f.

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

Periodicita v časové řadě, její popis a identifikace

Periodicita v časové řadě, její popis a identifikace Periodicita v časové řadě, její popis a idetifikace 1 Periodicita Některé časové řady obsahují periodickou složku. Pomocí vybraých ástrojů spektrálí aalýzy budeme tuto složku idetifikovat. Mějme fukci

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvalitěí výuky prostředictvím ICT Téma III..3, pracoví list 3 Techická měřeí v MS Ecel Průměry a četosti, odchylky změřeých hodot. Ig. Jiří Chobot

Více

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t. Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví

Více

6. FUNKCE A POSLOUPNOSTI

6. FUNKCE A POSLOUPNOSTI 6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat

Více

U klasifikace podle minimální vzdálenosti je nutno zvolit:

U klasifikace podle minimální vzdálenosti je nutno zvolit: .3. Klasifikace podle miimálí vzdáleosti Tato podkapitola je věováa popisu podstaty klasifikace podle miimálí vzdáleosti, jež úzce souvisí s klasifikací pomocí etaloů klasifikačích tříd. Představíme si

Více

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti 8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika Přijímací řízeí akademický rok 0/0 c. studium Kompletí zěí testových otázek matematika Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá. Které číslo doplíte místo 8? 6 6 8 C. Které číslo

Více

Elementární zpracování statistického souboru

Elementární zpracování statistického souboru Elemetárí zpracováí statistického souboru Obsah kapitoly 4. Elemetárí statistické zpracováí - parametrizace vhodými empirickými parametry Studijí cíle Naučit se výsledky měřeí parametrizovat vhodými empirickými

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

1 Uzavřená Gaussova rovina a její topologie

1 Uzavřená Gaussova rovina a její topologie 1 Uzavřeá Gaussova rovia a její topologie Podobě jako reálá čísla rozšiřujeme o dva body a, rozšiřujeme také možiu komplexích čísel. Nepřidáváme však dva body ýbrž je jede. Te budeme začit a budeme ho

Více

Petr Šedivý Šedivá matematika

Petr Šedivý  Šedivá matematika LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

Vyhledávání v tabulkách

Vyhledávání v tabulkách Vyhledáváí v tabulkách Tabulkou azveme možiu položek idetifikovatelých hodotou přístupového (idetifikačího) klíče (key, ID idetificator). Ve vodorovém směru se jedá o heterogeí pole, tz. že každá položka

Více

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopraví Statistika Semestrálí práce Zdražováí pohoých hmot Jméa: Martia Jelíková, Jakub Štoudek Studijí skupia: 2 37 Rok: 2012/2013 Obsah Úvod... 2 Použité

Více

2.4. INVERZNÍ MATICE

2.4. INVERZNÍ MATICE 24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:

Více

Zimní semestr akademického roku 2015/ listopadu 2015

Zimní semestr akademického roku 2015/ listopadu 2015 Cvičeí k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikovaé matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičeí Zimí semestr akademického roku 2015/2016 20. listopadu 2015 Předmluva

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

Přednáška VIII. Testování hypotéz o kvantitativních proměnných

Přednáška VIII. Testování hypotéz o kvantitativních proměnných Předáška VIII. Testováí hypotéz o kvatitativích proměých Úvodí pozámky Testy o parametrech rozděleí Testy o parametrech rozděleí Permutačí testy Opakováí hypotézy Co jsou to hypotézy a jak je staovujeme?

Více

13 Popisná statistika

13 Popisná statistika 13 Popisá statistika 13.1 Jedorozměrý statistický soubor Statistický soubor je možia všech prvků, které jsou předmětem statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický

Více

8.1.3 Rekurentní zadání posloupnosti I

8.1.3 Rekurentní zadání posloupnosti I 8.. Rekuretí zadáí poslouposti I Předpoklady: 80, 80 Pedagogická pozámka: Podle mých zkušeostí je pro studety pochopitelější zavádět rekuretí posloupost takto (sado kotrolovatelou ukázkou), ež dosazováím

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

2 EXPLORATORNÍ ANALÝZA

2 EXPLORATORNÍ ANALÝZA Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů.

Více

Lineární regrese ( ) 2

Lineární regrese ( ) 2 Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ ÚZKOPÁSMOVÉ FILTRY PRO SIGNÁLY EKG FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ ÚZKOPÁSMOVÉ FILTRY PRO SIGNÁLY EKG FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

Modely pro nestacionární časové řady

Modely pro nestacionární časové řady Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Modely ARIMA Transformace Proces náhodné procházky Random Walk Process Proces Y t = Y t 1 + ɛ t je

Více

množina všech reálných čísel

množina všech reálných čísel /6 FUNKCE Základí pojmy: Fukce sudá a lichá, Iverzí fukce Nepřímá úměrost, Mociá fukce, Epoeciálí fukce a rovice Logaritmus, logaritmická fukce a rovice Opakováí: Defiice fukce, graf fukce Defiičí obor,

Více

Analýza úrokových měr

Analýza úrokových měr Uiverzita Karlova v Praze Matematicko-fyzikálí fakulta BAKALÁŘSKÁ PRÁCE Ja Pechaec Aalýza úrokových měr Katedra pravděpodobosti a matematické statistiky Vedoucí bakalářské práce: Doc. RNDr. Ja Hurt, CSc.

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

DYNAMIC PROPERTIES OF ELECTRONIC GYROSCOPES FOR INERTIAL MEASUREMENT UNITS

DYNAMIC PROPERTIES OF ELECTRONIC GYROSCOPES FOR INERTIAL MEASUREMENT UNITS DYNAMIC PROPERTIES OF ELECTRONIC GYROSCOPES FOR INERTIAL MEASUREMENT UNITS Jiří Tůma & Jiří Kulháek Abstract: The paper deals with the dyamic properties of the electroic gyroscope as a sesor of agular

Více