Nosné stavební konstrukce Výpočet reakcí Výpočet vnitřních sil přímého nosníku

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Nosné stavební konstrukce Výpočet reakcí Výpočet vnitřních sil přímého nosníku"

Transkript

1 Stveí sttik.ročík klářského studi osá stveí kostruke osé stveí kostruke ýpočet rekí ýpočet vitříh sil přímého osíku osá stveí kostruke slouží k přeosu ztížeí ojektu do horiového msívu ěmž je ojekt zlože. usí mít dosttečou úosost dlouhodoou použitelost (líže předmět Pružost plstiit). Skládá se z horí kostruke ze zákldové kostruke Reálé ztížeí osýh stveíh kostrukí Prut (geometriký popis vější vzy ehyost silové ztížeí složky rekí) ýpočet vitříh sil přímého vodorového osíku Ktedr stveí mehiky Fkult stveí ŠB - Tehiká uiverzit Ostrv Kogresové etrum Bro 2 Tříděí osýh kostrukí podle geometrikého tvru Kostruke je oeě slože z kostrukčíh prvků:. Prutový kostrukčí prvek (prut) délk je výrzě větší ež dv příčé rozměry idelize dokole tuhou črou (přímá eo zkřiveá) 2. Plošý kostrukčí prvek tloušťk je výrzě meší ež zývjíí dv rozměry idelize roviým eo prostorově zkřiveým orzem. Dělí se stěy (ztížeí ve vlstí roviě) desky (ztížeí kolmo k roviě) skořepiy (zkřiveý plošý prvek). 3. siví trojrozměrý kostrukčí prvek osou kostruki může tvořit jediý kostrukčí prvek zprvidl je tvoře ěkolik kostrukčími prvky soustv kostrukčíh prvků. osá kostruke z lepeého lmelového dřev soustv prutovýh prvků desky Lhti Fisko foto: Ig. Atoí Lokj Ph.D. 3 Ztížeí osé kostruke Rozděleí ztížeí: ) silové - vější síly momety ) deformčí - otepleí sedáí poddolováí ) sttiké - velikost směr umístěí sil se v čse eměí př. ztížeí oytýh udov ) dymiké - vyvoláo ryhlou změou velikosti polohy eo směru sil vede k rozkmitáí kostruke př. ztížeí mostů jedouími vozidly ) determiistiké - vlstosti jedozčě vymezey ormou př. měré tíhy stviv ) stohstiké (prvděpodoostí přístup) velikost ztížeí eí předepsáo jedou hodotou ýrž prvděpodoostí fukí 4

2 Prut - geometriký popis prutu idelize Pohyové možosti volýh hmotýh ojektů h d l y z F l F 2F 2 F F 2 d h x Zákldí pojmy: Rovi souměrosti prutu Řídííčár os prutu (přímý prut) středie (přímý i zkřiveý prut) Průřez prutu Těžiště průřezu P Prut roviě eo prostorově lomeý. P 2 2 Sttiké shém R x sttiký model osé l kostruke R z R z 5 Stupeň volosti v : možost vykot jedu složku posuu v ose souřdého systému eo pootočeí. volý hmotý od v roviě: v 2 (posu v oeém směru rozlože do 2 kolmýh směrů osy souřdého systému) volý tuhý prut (desk) v roviě: v 3 (posu ve dvou osáh pootočeí) volý hmotý od v prostoru: v 3 (posu rozlože do tří os) tuhé těleso v prostoru: v 6 ( oeý posu pootočeí) z γ m[x m z m ] z x x 6 ější vzy odeírjí ojektu stupě volosti. ásoá vz ruší ojektu stupňů volosti. ázev vzy ásoost vzy Ozčeí vzy reke Kyvý prut Příkldy jedoduhýh vze tuhého prutu v roviě Posuvá klouová podpor Pevý klouová podpor Posuvé vetkutí Dokolé vetkutí R x R x R z R z R z R z R z eo eo R x R z R z 7 Zjištěí ehyosti prutu K pevému podepřeí ojektu je potře tolik vze v y zrušily všehy stupě volosti v. v v v < v v > v Podepřeí ojektu je kiemtiky určité zjiště ehyost ojektu použitelá jko stveí kostruke. Podepřeí ojektu je kiemtiky eurčité ehyost ojektu eí zjiště jko stveí kostruke epřípustá (edosttečý počet vze). Podepřeí ojektu je kiemtiky přeurčité ehyost ojektu zjiště použitelá jko stveí kostruke (větší počet vze ež je ezytě uté). zy musí ýt vhodě uspořádáy y skutečě zjišťovly ehyost ojektu esmí se jedt o tzv. výjimkový přípd kiemtiky určité eo přeurčité kostruke. 8

3 Stupeň sttiké eurčitosti osíku v roviě Kiemtiky i sttiky určitá kostruke v v v e... počet vějšíh vze osíku... počet jedoásoýh vze 2... počet dvojásoýh vze 3... počet trojásoýh vze 3 v 3 v... počet stupňů volosti osíku v roviě v v v 3 v 3 Prostý osík: Podepřeí ojektu je kiemtiky určité Prut je sttiky určitý (3 složky rekí 3 podmíky rovováhy) v v s v v sttiky i kiemtiky určitá soustv v < v v > v sttiky eurčitá kiemtiky přeurčitá soustv sttiky přeurčitá kiemtiky eurčitá soustv Stupeň sttiké eurčitosti s v - v Kozol: v v s 9 Kiemtiky přeurčitá sttiky eurčitá kostruke Kiemtiky eurčitá kostruke v > v kiemtiky přeurčité sttiky eurčité podepřeí v < v kiemtiky eurčité podepřeí Stupeň sttiké eurčitosti: s v - v v v s v v v v s Ojekt v rovováze je z určitého ztížeí e stveí prxi epoužitelé. 2

4 ýjimkové přípdy podepřeí Idelizové silové ztížeí prutů zy musí ýt vhodě uspořádáy esmí vzikout výjimkové přípdy podepřeí které jsou ve stveí prxi epoužitelé. Bodová síl [k] [] () Bodový momet [km] [m] ) kroutíí ) ohýjíí v v () ejčstěji vziká při přeložeí exetriké síly do půsoiště ose prutu (or.6..) () v v () () Determit soustvy rove ule jde o výjimkový přípd. 3 Bodová ztížeí Or. 6.. / str. 8 Bodové momety Or. 6.. / str. 8 4 Liiová ztížeí Příkld stropí kostruke Silové liiové ztížeí - příčé [k/m] [/m] Příkldy: tíh zděé příčky půsoíí stropí osík hodilé ztížeí stropu [k/m 2 ] soustředěé osík formou sěrého pásu Příkld příčého silového liiového ztížeí osíku Or / str Stropí kostruke výzkumého eergetikého etr ŠB-TU Ostrv 6

5 Sttiky určitá kostruke v v Prut je sttiky určitý (v roviě: v 3 v 3) 3 ezámé složky rekí lze vypočítt ze 3 podmíek rovováhy. R x R z R z R x y R z 7 oeé rovié soustvy sil Soustv je v rovováze tehdy pokud součet všeh sil v ose x z součet všeh mometů k liovolému mometovému středu s je rove. 3 podmíky rovováhy m ) 2 silové mometová:. P 2. P 3. i s i i x 3. P pokud je v ose z pouze jed i z i ezámá složk reke 3) Užívé jsou tké 3 mometové podmíky ke třem liovolým mometovým středům které esmí ležet v jedé příme i i z 2) prktikýh plikíh je čsto výhodější sestvit 2 mometové podmíky k mometovým středům : i. 2. Tyto pomíky se doplí třetí podmíkou - silovou: 3. P i x i i i i pokud je v ose x pouze jed ezámá složk reke i i 8 oeé rovié soustvy sil Příkld : PROSTÝ OSÍK příkld : R x R x P 3 3 P Pix i i R z Kotrol : Piz s s 2 s 3 R 2 l P P 2 R s 2 s s 3 R R z P iz i i P 2 P R z Kotrol : Pix 2 R x l 9 Sh odhdout směr rekí F i x i i Kotrol: F i z 2

6 Příkld 2: PROSTÝ OSÍK Příkld 3: PROSTÝ OSÍK superpozie předešlýh úloh 2km 6 Sh odhdout směr rekí 2km P6k 3 3 Popřemýšlet závěr? F i x i 2km P6k i 3 3 Kotrol: F i z 2 22 Příkld 4: PROSTÝ OSÍK dom doplňte podmíky rovováhy vyřešte reke Příkld 5: PROSTÝ OSÍK R z 2km P6k 3 3 R x R z R x R z P z P 7 k P Rz P z F i x F i z i i Kotrol: Rx k Rz 5k ( ) skut.směr Rz k ( ) skut.směr 23 F i x i i F i z Kotrol: 24

7 Příkld 6: PROSTÝ OSÍK Příkld 7: PROSTÝ OSÍK Q q 3k/m áhrdí řemeo Q Q q 4k/m áhrdí řemeo Q R x R x R z 3 7 R z R z R z F i x i i Kotrol: F i z 25 F i x i i Kotrol: F i z 26 Příkld 8: OSÍK S PŘEISLÝ KOCE Příkld 8: OSÍK S PŘEISLÝ KOCE R x 5 5 q 24 k/m Q 8 2 áhrdí řemeo: Q R x 4 áhrdí řeme: q 24 k/m Q Q 2 Q 8 2 Q 2 R z R z R z R z F i x i i : F i x i i : Kotrol: Kotrol: F i z 27 F i z 28

8 Příkld 9: KOZOLA Příkld : KOZOLA P z 45 P z 636k Q 2k q 2 k/m R x P 9k R x R z R z F i x F i z i Kotrol: i : 29 F i x F i z i Kotrol: i : 3 Příkld : OSÍK S PŘEISLÝI KOCI itří síly q 4 k/m Prut v roviě 3 volosti 3km R x P 2 6k Podepřeí - 3 vzy oderáy 3 volosti sttiky určitá úloh P 4k R z R z ější ztížeí reke musí ýt v rovováze 3 podmíky rovováhy z ih 3 ezámé reke F i x i i : Kotrol: ější ztížeí reke se zývjí vější síly Uvitř osíku půsoeím vějšíh sil vzikjí vitří síly Oeou výsledii vitříh sil rozkládáme tři složky v ose x - ormálová síl v ose z - posouvjíí síl ohyový momet F i z 3 32

9 ýpočet osíku v osové úloze Půsoí-li ztížeí pouze v ose osíku. Jed vější vz v ose x z podmíky rovováhy: R F : ix x R R R R () () x x R Složk vitříh sil v ose osíku ormálová síl. () (d) ýpočet reke ormálové síly v osové úloze Or. 7.. / str ormálová síl ormálová síl v liovolém průřezu x osíku je rov lgerikému součtu všeh vějšíh sil půsoííh v ose osíku zlev eo zprv od x. Kldá ormálová síl vyvozuje v průřezu x th půsoí z průřezu. opčém přípdě je ormálová síl záporá vyvozuje tlk. ější síly R x R x os osíku - th F F tlk 34 Příkld síly F 2 F 2 6 F 3 ýpočet osíku v příčé úloze Ztížeí síly v ose z mometové ztížeí. příčé úloze dv druhy vitříh sil: posouvjíí síl ohyový momet. F 8 Zdáí: sestrojit průěh ormálovýh sil F 2 2 F 3 6 P R x l/2 l/2 Průěh ormálovýh sil po elé déle se zázorňuje grfiky formou digrmu (grfu). kldé ormálové síly se vyášejí horu záporé dolů R z R z Řešeí příkldu 4.2 Or / str

10 Posouvjíí síl Příkld síly Posouvjíí síl v liovolém průřezu x osíku je rov lgerikému součtu všeh vějšíh sil půsoííh kolmo k ose osíku zlev eo zprv od x. Kldá posouvjíí síl počítá zlev směřuje horu. opčém přípdě je záporá. Kldá posouvjíí síl počítá zprv směřuje dolů. opčém přípdě je záporá. ější síly R F os osíku - R F k F 2 4k F 3 2k d e R z 34 R z 8 F k F 2 4k F 3 2k d e R z 34 R z 8 Doplňte hodoty sil zmék: s podpormi ez podpor je síly kldé posouvjíí síly se vyášejí horu záporé dolů Ohyový momet Ohyový momet v liovolém průřezu x osíku je rove lgerikému součtu všeh sttikýh mometů od všeh vějšíh sil zlev eo zprv od x. Kldý ohyový momet počítý zlev otáčí po směru hodu hodiovýh ručiček. opčém přípdě je záporý. Kldý ohyový momet počítý zprv otáčí proti směru hodu hodiovýh ručiček. opčém přípdě je záporý. Kldým ohyovým mometem jsou dolí vlák tže horí tlče (osík je prohýá směrem dolů). U záporého ohyového mometu je to opk. R R tlk th th tlk os osíku F R - F R 39 Příkld ohyové momety F k F 2 4k F 3 2k d e R z 34 R z 8 F k F 2 4k F 3 2k d e R z 34 R z 8 Doplňte hodoty zmék: s podpormi ez podpor je síly ohyové momety se vyášejí stru tžeýh vláke u osíku horu záporé dolů kldé hodoty 4

11 Směr půsoeí vitříh sil Shwedlerovy vzthy - Difereiálí podmík rovováhy elemetu v osové úloze Kldé směry vitříh sil: x 2 x x d z Záporé směry vitříh sil: - x ýsledie všeh sil půsoííh elemet musí ýt ulová: R x : - (d). d 4 42 x Shwedlerovy vzthy Difereiálí podmíky rovováhy elemetu v příčé úloze ýsledie všeh sil půsoííh elemet musí ýt ulové: d x x 2 x z m dq q. q d R z : - (d) q. Σ ix2 : d q - (d). q../2 m. pro m: d m d 43 Závěry ze Shwedlerovýh vzthů extrémí hodoty vitříh sil Závěry: d q pro m: d Shwedlerovy vzthy Joh Wilhelm Shwedler ( ) výzmý ěmeký ižeýr Extrém fuke f(x): ( x) df Extrém posouvjííh sil je v průřezu kde q Extrém ohyovýh mometů je v průřezu kde eo měí zméko d d d. 2. q 3. d q d itegre Derivčě itegrčí shém pro m: -q derive 44

12 Shrutí - určeí extrémíh hodot vitříh sil Souvislost mezi spojitým příčým ztížeím průěhy vitříh sil Extrém může vzikout: ) v podporovýh odeh ) v půsoištíh osmělýh sil (zméko se měí skokem) ) pod spojitým ztížeím v místě kde je d Extrém v průřezu kde eo měí zméko eezpečý (kritiký) průřez Závěry: d q d. řád fuke (x) (x) typ čáry v digrmeh 2. míst extrému u (x) (x) itegre -q derive º º - - º 2º mx mx 45 Souvislost mezi spojitým příčým ztížeím průěhy vitříh sil Or / str R x R z 735 Prvidl která je uto dodržet při řešeí vitříh sil x L q 3 k/m x P R z (294) mx 35 km ýpočet rekí dodržet všeh prvidl: 3 podmíky rovováhy kotrolí zřetelé zčeí skutečého směru d itří síly - vykreslit shém pro všehy 3 vitří síly (i ulové) - kldé d osu stru tžeýh vláke - vlevo od kždého shémtu ozčit o kterou vitří sílu se jedá. Zčeí v kroužku př. - v kždém orzi zřetelé zméko vitří síly - orze uď šrfovt kolmo osu osíku eo poeht prázdé - zčeí stupňů polyomů - zčeí odu kde se měí stupeň polyomů (od ) - všehy potřeé hodoty vitříh sil do orázku: v místě změy ztížeí (od ) miimálě hodot v poli pod spojitým ztížeím (od d) extrémí momet - ozčit okótovt místo eezpečého průřezu - u stčí potřeé hodoty v orázku ejsou uté rovie výpočtu - výpočet polohy eezpečého průřezu - utá rovie - výpočet mometů pro všehy hodoty uté rovie 47 příkld ormálové síly P z 35 k P 7 k 6 R x 662k 662 k 2 4 R z 2333k 6 R x hodoty kreslit d osu zlev: R z 67k zprv: 48

13 příkld posouvjíí síly příkld ohyové momety R x 662k R z 2333k P z 35 k P 7 k k hodoty kreslit d osu R z 67k zlev: R x R z P 7 k P z 35 k 6 l k l oh.momety vyášet stru tžeýh vláke (dole zméko) zlev: R z P z 35 k - 67 R z R z zprv: R z P z 35 k R z zprv: 49 5 příkld 2 příkld 3 382km R x 636k zdáí 5 x 45 P 9k x L řešeí 382km 45 P 9k R x 636k P z 636 R z 636k 5 x P 636 zlev: - úsek - úsek x L (zlev) R z 333k 3km x P (zprv) R z 333k R z 636k zprv: - úsek (- R z. x) úsek 5 v odě počítt hodotu mometu 2krát!!! tzv. mometový skok 2 hodoty v odě 52

14 Okruhy prolémů k ústíčásti zkoušky Ztížeí osýh stveíh kostrukí Zjištěí ehyosti prutu kiemtiká sttiká určitost eurčitost přeurčitost stupeň sttiké eurčitosti Typy podpor složky rekí ve vějšíh vzáh ýjimkové přípdy kiemtiky určitého podepřeí prutů ýpočet vitříh sil přímého vodorového osíku Difereiálí podmíky rovováhy elemetu přímého osíku Shwedlerovy vzthy využití Určeí extrémíh hodot vitříh sil 53

Výpočet vnitřních sil přímého nosníku

Výpočet vnitřních sil přímého nosníku Stvení sttik, 1.ročník klářského studi ýpočet vnitřních sil přímého nosníku nitřní síly přímého vodorovného nosníku prostý nosník konzol nosník s převislým koncem Ktedr stvení mechniky Fkult stvení, ŠB

Více

Výpočet vnitřních sil přímého nosníku I

Výpočet vnitřních sil přímého nosníku I Stvení sttik, 1.ročník kominovného studi ýpočet vnitřních sil přímého nosníku I ýpočet vnitřních sil přímého vodorovného nosníku Ktedr stvení mechniky Fkult stvení, ŠB - Technická univerzit Ostrv nitřní

Více

Výpočet vnitřních sil přímého nosníku II

Výpočet vnitřních sil přímého nosníku II Stveí sttik, 1.ročík komiového studi Shwederovy vzthy Difereiáí podmík rovováhy eemetu v osové úoze ýpočet vitříh si přímého osíku II 1 d z d ýpočet vitříh si osíků ztížeýh spojitým ztížeím ýpočet osíku

Více

Podepření - 3 vazby, odebrány 3 volnosti, staticky určitá úloha

Podepření - 3 vazby, odebrány 3 volnosti, staticky určitá úloha nitřní síly Prut v rovině 3 volnosti Podepření - 3 vzy, oderány 3 volnosti, sttiky určitá úloh nější ztížení reke musí ýt v rovnováze, 3 podmínky rovnováhy, z nih 3 neznámé reke nější ztížení reke se nzývjí

Více

Výpočet vnitřních sil přímého nosníku II

Výpočet vnitřních sil přímého nosníku II Stveí sttik, 1.ročík kářského studi ýpočet vitřích si přímého osíku II ýpočet vitřích si osíků ztížeých spojitým ztížeím: příčé kosttí trojúheíkové spojité ztížeí, spojité ztížeí v osové úoze, mometové

Více

Nosné stavební konstrukce Výpočet reakcí

Nosné stavební konstrukce Výpočet reakcí Stvení sttik 1.ročník klářského studi Nosné stvení konstrukce Výpočet rekcí Reálné ztížení nosných stveních konstrukcí Prut geometrický popis vnější vzy nehynost silové ztížení složky rekcí Ktedr stvení

Více

Výpočet vnitřních sil I

Výpočet vnitřních sil I Stvení sttik, 1.ročník klářského studi ýpočet vnitřních sil I přímý nosník, ztížení odové nitřní síly - zákldní pojmy ýpočet vnitřních sil přímého vodorovného nosníku Ktedr stvení mechniky Fkult stvení,

Více

Rovinné nosníkové soustavy II

Rovinné nosníkové soustavy II Prázý Prázý Prázý Ství sttik,.roík kláského stui Rovié osíkové soustvy II Trojklouový rám (osík) Trojklouový olouk (osík) Trojklouový rám s táhlm Trojklouový olouk s táhlm Ktr ství mhiky Fkult ství, VŠB

Více

Výpočet vnitřních sil přímého nosníku II

Výpočet vnitřních sil přímého nosníku II Stveí sttik, 1.ročík kářského studi ýpočet vitřích si přímého osíku II ýpočet vitřích si osíků ztížeých spojitým ztížeím: příčé kosttí trojúheíkové spojité ztížeí, spojité ztížeí v osové úoze, mometové

Více

Rovinné nosníkové soustavy I

Rovinné nosníkové soustavy I Stveí sttik, 1.roík kláského stui Záklí typy osíkovýh soustv v rovi xz Rovié osíkové soustvy I ) Spojitý osík s vložeými klouy (tzv. Gererv osík) Heirih Gerer (18-191) výzmý meký kostruktér oelovýh most

Více

Předmět: SM 01 ROVINNÉ PŘÍHRADOVÉ KONSTRUKCE

Předmět: SM 01 ROVINNÉ PŘÍHRADOVÉ KONSTRUKCE Přdmět: SM 0 ROVIÉ PŘÍHRADOVÉ KOSTRUKCE doc. Ig. Michl POLÁK, CSc. Fkult stvbí, ČVUT v Prz ROVIÉ PŘÍHRADOVÉ KOSTRUKCE: KOSTRUKCE JE VYTVOŘEA Z PŘÍMÝCH PRUTŮ, PRUTY JSOU AVZÁJEM POSPOJOVÁY V BODECH STYČÍCÍCH,

Více

Nosné stavební konstrukce Výpoet reakcí Výpoet vnitních sil pímého nosníku

Nosné stavební konstrukce Výpoet reakcí Výpoet vnitních sil pímého nosníku Stvení sttik.roník kláského studi osná stvení konstruke osné stvení konstruke ýpoet rekí ýpoet vnitníh sil pímého nosníku osná stvení konstruke slouží k penosu ztížení ojektu do horninového msívu n nmž

Více

Trojkloubový nosník. Rovinné nosníkové soustavy

Trojkloubový nosník. Rovinné nosníkové soustavy Stvení sttik, 1.ročník klářského studi Rovinné nosníkové soustvy Trojklouový nosník Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Trojklouový nosník Trojklouový nosník Ktedr

Více

Pohybové možnosti volných hmotných objektů v rovině

Pohybové možnosti volných hmotných objektů v rovině REAKCE Pohyové možnosti volných hmotných ojektů v rovině Stupeň volnosti n v : možnost vykont jednu složku posunu v ose souřdného systému neo pootočení. +x volný hmotný od v rovině: n v =2 (posun v oecném

Více

Rovinné nosníkové soustavy

Rovinné nosníkové soustavy Stvení sttik,.ročník kominovného studi Rovinné nosníkové soustvy Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Trojklouový rám Trojklouový rám s táhlem Ktedr stvení mehniky

Více

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti. Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti, sttických mometů, souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme, že

Více

Výpočet vnitřních sil přímého nosníku III: šikmý nosník

Výpočet vnitřních sil přímého nosníku III: šikmý nosník Stvení sttik,.ročník klářského studi Výpočet vnitřníh sil přímého nosníku III: šikmý nosník Výpočet vnitřníh sil šikmého nosníku - ztížení kolmé ke střednii prutu (vítr) - ztížení svislé zdáno n délku

Více

Výpočet vnitřních sil přímého nosníku III: šikmý nosník

Výpočet vnitřních sil přímého nosníku III: šikmý nosník Stvení sttik,.ročník klářského studi Výpočet vnitřníh sil přímého nosníku III: šikmý nosník Výpočet vnitřníh sil šikmého nosníku - ztížení kolmé ke střednii prutu (vítr) - ztížení svislé zdáno n délku

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

Stavební statika. Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava. Letní semestr. Stavební statika, 1.ročník bakalářského studia

Stavební statika. Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava. Letní semestr. Stavební statika, 1.ročník bakalářského studia Stvení sttik, 1.ročník klářského studi Stvení sttik Úvod do studi předmětu n Stvení fkultě VŠB-TU Ostrv Letní semestr Ktedr stvení mechniky Fkult stvení, VŠB - Technická univerzit Ostrv Stvení sttik -

Více

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti. Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti sttických mometů souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme že jste

Více

Stavební statika. Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava. Stavební statika, 1.ročník kombinovaného studia

Stavební statika. Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava. Stavební statika, 1.ročník kombinovaného studia Stvební sttik, 1.ročník kombinovného studi Stvební sttik Úvod do studi předmětu n Stvební fkultě VŠB-TU Ostrv Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit Ostrv Stvební sttik přednášející

Více

Rovinné nosníkové soustavy Gerberův nosník

Rovinné nosníkové soustavy Gerberův nosník Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Gererův nosník Spojitý nosník s vloženými klouy - Gererův nosník Kter stvení mehniky Fkult stvení, VŠB - Tehniká univerzit Ostrv Sttiky neurčité

Více

Zjednodušená styčníková metoda

Zjednodušená styčníková metoda Stvní sttik, 1.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Zjnoušná styčníková mto Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového

Více

9. Racionální lomená funkce

9. Racionální lomená funkce @ 9. Rcioálí loeá fukce Defiice: Nechť P je poloická fukce -tého stupě... ) ( P kde R... A echť Q je poloická fukce -tého stupě... ) ( Q kde R... Rcioálí loeá fukce R je dá podíle ) ( ) ( ) ( Q P R pro

Více

Výpočet vnitřních sil lomeného nosníku

Výpočet vnitřních sil lomeného nosníku Stvní sttik, 1.ročník klářského stui ýpočt vnitřníh sil lomného nosníku omný nosník v rovinné úloz Kontrol rovnováhy uvolněného styčníku nitřní síly n uvolněném prutu rostorově lomný nosník Ktr stvní mhniky

Více

Trojkloubový nosník. Rovinné nosníkové soustavy

Trojkloubový nosník. Rovinné nosníkové soustavy Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Trojklouový nosník Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Trojklouový nosník Kter stvení mehniky Fkult

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte:

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte: 6.2. ČÍSELNÉ ŘADY V této kpitole se dozvíte: jk defiujeme číselou řdu; defiici kovergece řdy jejího součtu; jk vypdá ritmetická, geometrická hrmoická řd jk je to s jejich kovergecí; jk zí utá podmík kovergece

Více

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+ Neurčité výrzy (lgebr s posloupostmi divergujícími k ekoeču), zvedeí pojmu číselé řdy, defiice POSLOUPNOST ČÁSTEČNÝCH SOUČTŮ, součet řdy, TVRZENÍ O NUTNÉ PODMÍNCE KONVERGENCE ŘADY, kokrétí příkldy výpočtu

Více

Rovinné nosníkové soustavy III Příhradový nosník

Rovinné nosníkové soustavy III Příhradový nosník Stvení sttik,.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového nosníku Zjenoušená

Více

Předmět: SM 01 Rovinné příhradové konstrukce

Předmět: SM 01 Rovinné příhradové konstrukce Přdmět: SM 0 Rovié říhrdové kostrukc rof. Ig. Michl POÁK, CSc. Fkult stvbí, ČVUT v Prz Rovié říhrdové kostrukc: Kostrukc j vytvoř z římých rutů, Pruty jsou vzájm osojováy v bodch styčících, Vzájmé sojí

Více

Šikmý nosník rovnoměrné spojité zatížení. L průmětu. zatížení kolmé ke střednici prutu (vítr)

Šikmý nosník rovnoměrné spojité zatížení. L průmětu. zatížení kolmé ke střednici prutu (vítr) Šikmý nosník Šikmý nosník rovnoměrné spojité ztížení ztížení kolmé ke střednii prutu (vítr) q h - ztížení kolmé ke střednii prutu (vítr) - ztížení svislé zdáno n délku prutu (vlstní tíh) - ztížení svislé

Více

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI 6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.. ČÍSELNÉ POSLOUPNOSTI V této kpitole se dozvíte: jk defiujeme posloupost reálých ebo komplexích čísel; defiici vlstí evlstí limity poslouposti; defiici pojmů souvisejících

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

Rovinné nosníkové soustavy II h=3

Rovinné nosníkové soustavy II h=3 Stvní sttik,.ročník klářského stui Mimostyčníkové ztížní prutu V prutu č. vznikn v ůslku mimostyčníkového ztížní rovněž V M. q konst. Rovinné nosníkové soustvy II h Rovinný klouový příhrový nosník Mimostyčníkové

Více

Nosné stavební konstrukce, výpočet reakcí

Nosné stavební konstrukce, výpočet reakcí Stvení sttik.ročník kářského studi Nosná stvení konstrukce Nosné stvení konstrukce výpočet rekcí Nosná stvení konstrukce souží k přenosu ztížení ojektu do horninového msívu n němž je ojekt zožen. Musí

Více

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t.

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t. ročík - loeý lgebrický výrz, lieárí rovice s ezáou ve jeovteli Loeý lgebrický výrz Lieárí rovice s ezáou ve jeovteli Doporučujee žáků zopkovt vzorce tpu ( + pod úprvu výrzu souči Loeý výrz Číselé výrz

Více

VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE V ROVINĚ

VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE V ROVINĚ VEKTOROVÁ LGEBR NLYTICKÁ GEOMETRIE V ROVINĚ Délk úsečk, střed úsečk,, B Délk úsečk B : B C, BC Střed úsečk : B S s, s souřdice středu: s, s Vektor Vektor = oži všech souhlsě orietových rovoěžých úseček

Více

Posouvající síla V. R a. R b. osa nosníku. Kladné směry kolmé složky vnitřních sil. Výpočet nosníku v příčné úloze (ve svislé hlavní rovině xz)

Posouvající síla V. R a. R b. osa nosníku. Kladné směry kolmé složky vnitřních sil. Výpočet nosníku v příčné úloze (ve svislé hlavní rovině xz) Posouvjící sí Posouvjící síu v zdném průřezu c ze vypočítt jko gerický součet všech svisých si po jedné strně průřezu. Postupujei se z evé strny, do součtu se zhrnou kdně síy půsoící zdo nhoru, záporně

Více

6 Stabilita lineárních diskrétních regulačních obvodů

6 Stabilita lineárních diskrétních regulačních obvodů 6 Stbilit lieárích diskrétích regulčích obvodů Pro diskrétí systémy pltí stejá defiice stbility jko pro systémy spojité. Systém je stbilí, když se po odezěí vstupího sigálu vrátí zpět do rovovážého stvu.

Více

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel KAPITOLA : Číselé řdy MA-8:P.] Ozčeí: R {, +} R R C {} C rozšířeá komplexí rovi evlstí hodot, číslo, bod U ε {x C x < ε } pro C, ε > 0 U K {x C x > K } pro K 0 defiujeme pro C: ±, je pro 0, edefiujeme:

Více

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika Přijímcí řízeí kdemický rok /4 NvMg studium Kompletí zěí testových otázek mtemtik sttistik Koš Zěí otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správá odpověď efiičí obor fukce defiové předpisem f

Více

Příklad 1 Osově namáhaný prut průběhy veličin

Příklad 1 Osově namáhaný prut průběhy veličin Příkld 1 Osově nmáhný prut průběhy veličin Zdání Oelový sloup složený ze dvou částí je neposuvně ukotven n obou koníh v tuhém rámu. Dolní část je vysoká, m je z průřezu 1 - HEB 16 (průřezová ploh A b =

Více

8.1 Úvod. Definice: [MA1-18:P8.1] výpočet obsahu plochy pod grafem funkce. (nejdříve jen pro a < b ) a = x 0 < x 1 <... < x n = b.

8.1 Úvod. Definice: [MA1-18:P8.1] výpočet obsahu plochy pod grafem funkce. (nejdříve jen pro a < b ) a = x 0 < x 1 <... < x n = b. KPITOL 8: určitý itegrál Riemův itegrál [M-8:P8.] motivce: výpočet oshu plochy pod grfem fukce 8. Úvod ejdříve je pro < ) řekeme, že moži D, je děleím itervlu,, jestliže je koečá, D. Prvky děleí D {x,

Více

1.2. MOCNINA A ODMOCNINA

1.2. MOCNINA A ODMOCNINA .. MOCNINA A ODMOCNINA V této kpitole se dozvíte: jk je defiová oci s přirozeý, celý, rcioálí oecý reálý epoete jké jsou její vlstosti; jk je defiová přirozeá odoci, jké jsou její vlstosti jk se dá vyjádřit

Více

Základní elementární funkce.

Základní elementární funkce. 6. předášk Zákldí elemetárí fukce. Defiice: Elemetárími fukcemi zveme všech fukce, které jsou vtvoře koečým počtem zákldích opercí ze zákldích elemetárích fukcí. Zákldí operce s fukcemi jsou:. Sčítáí dvou

Více

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ STEJNOMĚRNÁ KONVERGENCE Ztím ebylo v těchto textech věováo příliš pozorosti kovergeci fukcí, t jko limit poslouposti ebo součet řdy. Jik byl kovergece poslouposti fukcí ebo řdy brá jko bodová kovergece.

Více

1.7.4 Těžiště, rovnovážná poloha

1.7.4 Těžiště, rovnovážná poloha 74 ěžiště, rovovážá poloha Předpoklady: 00703 Př : Polož si sešit a jede prst tak, aby espadl Záleží a místě, pod kterým sešit podložíš? Proč? Musíme sešit podložit prstem přesě uprostřed, jiak spade Sešit

Více

M - Posloupnosti VARIACE

M - Posloupnosti VARIACE M - Poslouposti Autor: Mgr Jromír Juřek - http://wwwjrjurekcz Kopírováí jkékoliv dlší využití výukového mteriálu je povoleo pouze s uvedeím odkzu wwwjrjurekcz VARIACE Teto dokumet byl kompletě vytvoře,

Více

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a }

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a } Nekoečé řdy. Nekoečé číselé řdy.. Defiice ) Ozčme { } { } = L L ekoečou posloupost reálých čísel.,,,,, Nekoečá číselá řd je součet tvru = + + + L+ + L. Jedotlivá čísl,,, L,, L se zývjí čley řdy, čle obvykle

Více

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců. 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl

Více

Rovinné nosníkové soustavy. Pohyblivé zatížení. Trojkloubový nosník s táhlem Rovinně zakřivený nosník (oblouk) Příčinkové čáry

Rovinné nosníkové soustavy. Pohyblivé zatížení. Trojkloubový nosník s táhlem Rovinně zakřivený nosník (oblouk) Příčinkové čáry Stvení sttik,.ročník kářského studi Rovinné nosníkové soustvy Pohyivé ztížení Trojkouový nosník s táhem Rovinně zkřivený nosník (oouk) Příčinkové čáry Ktedr stvení mehniky Fkut stvení, VŠB - Tehniká univerzit

Více

VŠB-TU OSTRAVA 2016/2017 KONSTRUKČNÍ CVIČENÍ. Teplovodní čerpadlo. Tomáš Blejchař

VŠB-TU OSTRAVA 2016/2017 KONSTRUKČNÍ CVIČENÍ. Teplovodní čerpadlo. Tomáš Blejchař VŠB-TU OTRAVA 0607 KONTRUKČNÍ CVIČENÍ Teplovodí čerpadlo Tomáš Blejhař .Zadáí: Navrhěte a propočtěte jedostupňové odstředivé radiálí čerpadlo.tehiká data: Průtok Q = 600 dm 3 mi - = 0.0 m 3 s - Výtlačá

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava- Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,

Více

LINEÁRNÍ TRANSFORMACE V ROVINĚ

LINEÁRNÍ TRANSFORMACE V ROVINĚ LINEÁRNÍ TRANSFORMACE V ROVINĚ Kil Mleček Dgr Szrková FSv ČVUT Prh Thákurov 7 66 9 Prh 6 ČR e-il: kil@tfsvvutz SjF STU Brtislv Ná Slood 7 8 3 Brtislv SR e-il: szrkov@sjfstusk Astrkt V řísěvku je osý geoetriký

Více

Kuželosečky jako algebraické křivky 2. stupně

Kuželosečky jako algebraické křivky 2. stupně Kuželosečk Pretrické iplicití vjádřeí kuželoseček P. Pech: Kuželosečk, JU České Budějovice 4, 59s Kuželosečk jko lgerické křivk. stupě Kuželosečk je oži odů v roviě, jejichž souřdice (, ) vhovují v ějké

Více

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26 Zákld mtemtik Číselé oor ČÍSELNÉ OBORY 0 Některé pojm z mtemtické logik 0 Výroková logik 0 Moži vzth mezi imi Možiové operce Grfické zázorěí moži Číselé oor Čísl ázv jejich chrkteristik Chrkteristik číselých

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T BŘEZNA 08 :. břez 08 D : 0 P P P : 0 M. M. M. :,8 % S : 0 : 7,5 : -7,5 M. P : -,0 : 0,6 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzt Krlov v Prze Pedgogcká kult SEMINÁRNÍ PRÁCE Z POLYNOMICKÉ ALGEBRY POLYNOM / CIFRIK Zdáí: Vyšetřete všem probrým prostředky polyom Vyprcováí: Rcoálí kořey Podle věty: Nechť p Q je koře polyomu q

Více

Vlastnosti posloupností

Vlastnosti posloupností Vlstosti posloupostí Nekoečá posloupost je fukce defiová v oboru přirozeých čísel Z toho plye, že kždá posloupost má prví čle (zčíme ), koečé poslouposti mjí i čle posledí Př Vypište prví čtyři čley poslouposti

Více

PRUŽNOST A PLASTICITA

PRUŽNOST A PLASTICITA PRUŽOST A PLASTICITA Ing. Lenk Lusová LPH 407/1 Povinná litertur tel. 59 732 1326 lenk.lusov@vs.cz http://fst10.vs.cz/lusov http://mi21.vs.cz/modul/pruznost-plsticit Doporučená litertur Zákldní typy nmáhání

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T BŘEZNA 08 : 9. břez 08 D : 897 P P P : 0 M. M. M. :, % S : 0 : 0 : -7,5 M. P : -, : 0, Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90

Více

S k l á d á n í s i l

S k l á d á n í s i l S l á d á í s i l Ú o l : Všetřovat rovováhu tří sil, působících a tuhé těleso v jedom bodě. P o t ř e b : Viz sezam v desách u úloh a pracovím stole. Obecá část: Při sládáí soustav ěolia sil působících

Více

a) 1 b) 0 c) 1 d) 2 x e) 2x

a) 1 b) 0 c) 1 d) 2 x e) 2x FSI VUT v Brě zdáí č.. str. Příjmeí jméo: Z uvedeých odpovědí je vžd právě jed správá. Zkroužkujte ji! ) Je-li 0, pk 0 c) e) ) Výrz lze uprvit tvr c) e) ) Nerovice má řešeí c) e) ) Rovice 0 má právě jedo

Více

Předpoklad: pružné chování materiálu. počet neznámých > počet podmínek rovnováhy. Řešení:

Předpoklad: pružné chování materiálu. počet neznámých > počet podmínek rovnováhy. Řešení: Sttiky neurčité přípdy thu prostého tlku u pružnýh prutů Sttiky neurčité úlohy Předpokld: pružné hování mteriálu Sttiky neurčité úlohy: počet nenámýh > počet podmínek rovnováhy Řešení: počet nenámýh podmínky

Více

1. Trapézový plech poloha pozitivní (betonem jsou vyplněna úzká žebra) TR 50/250-1mm. Tloušťka Hmotnost PL Ý PRŮŘEZ EFEKTIV Í PRŮŘEZ

1. Trapézový plech poloha pozitivní (betonem jsou vyplněna úzká žebra) TR 50/250-1mm. Tloušťka Hmotnost PL Ý PRŮŘEZ EFEKTIV Í PRŮŘEZ Příkld 0: Nvrhěte pouďte protě uložeou oelobetoovou tropii rozpětí 6 m včetě poouzeí trpézového plehu jko ztreého beděí. - rozteč tropi m - tloušťk betoové dek elkem 00 mm - oel S 5 - beto C 0/5 - užité

Více

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů .8. Mohočley, sčítáí odčítáí mohočleů Předpokldy: 7 Mohočle = zvláští typ výrzů. Jk je pozáme? Mohočley obshují pouze přirozeé mociy ezámých (jedé ebo více) kostty. Př. : Rozhodi, které z ásledujících

Více

Posloupnosti a řady. Obsah

Posloupnosti a řady. Obsah Poslouposti řdy Poslouposti řdy Obsh. Poslouposti... 8. Úvod do posloupostí... 8. Aritmetická geometrická posloupost... 9. Limit poslouposti... 9. Řdy... 0. Nekoečá geometrická řd... 0 Strák 7 Poslouposti

Více

Základní věta integrálního počtu (Newton Leibnizova) nám umožní výpočet určitých integrálů. Poznáte základní vlastnosti určitých integrálů.

Základní věta integrálního počtu (Newton Leibnizova) nám umožní výpočet určitých integrálů. Poznáte základní vlastnosti určitých integrálů. Mtemtik II Výpočet vlstosti určitého itegrálu Výpočet vlstosti určitého itegrálu Cíle Zákldí vět itegrálího počtu (Newto Leiizov) ám umoží výpočet určitých itegrálů Pozáte zákldí vlstosti určitých itegrálů

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY T BŘEZNA 9 D : 8. břez 9 Mx. možé skóre: Počet řešitelů testu: Mx. dosžeé skóre: Počet úloh: Mi. možé skóre: -7,5 Průměrá vyechost:, %Správé Mi. dosžeé skóre: -, odpovědi jsou

Více

Cílem kapitoly je zavedení význačných pojmů pro matice, jejichž znalost je nutná, mimo jiné, pro řešení soustav lineárních rovnic.

Cílem kapitoly je zavedení význačných pojmů pro matice, jejichž znalost je nutná, mimo jiné, pro řešení soustav lineárních rovnic. Mtemtik I část I Cíle Cílem kpitoly je zvedeí výzčýh pojmů pro mtie jejihž zlost je utá mimo jié pro řešeí soustv lieáríh rovi Předpokládé zlosti Předpokldem dorého zvládutí látky je zejmé zlost opere

Více

Posloupnosti ( 1) ( ) 1. Různým způsobem (rekurentně i jinak) zadané posloupnosti. 2. Aritmetická posloupnost

Posloupnosti ( 1) ( ) 1. Různým způsobem (rekurentně i jinak) zadané posloupnosti. 2. Aritmetická posloupnost Poloupoti Růzým způobem (rekuretě i jik zdé poloupoti Urči prvích pět čleů poloupoti, ve které, + Urči prvích pět čleů poloupoti, je-li dáo:, + + Urči prvích pět čleů poloupoti, je-li dáo: 0,, Urči prvích

Více

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný Soustv kpl + tuhá látk Izobrcký fázový dgrm pro soustvu obshující vodu chlord sodý t / o C H 2 O (s) + esyceý roztok 30 20 10 0-10 -20 t I t II esyceý roztok 2 1 p o NCl (s) + syceý roztok eutektcký bod

Více

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor . LINEÁRNÍ LGEBR Vektorový prostor.. Defiice Nechť V e moži které sou defiováy operce sčítáí + : t. zobrzeí V V V ásobeí i : t zobrzeí R V V. Možiu V zýváme vektorovým prostorem, sou-li splěy ásleduící

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Analytická geometrie

Analytická geometrie 7..06 Alytická geometrie Vektory Prmetrické vyjádřeí přímky roviy Obecá rovice droviy Vektorový prostor Nechť jsou dáy ásledující mtemtické objekty: ) ) ) 4) Číselé těleso T. Neprázdá moži V. Zobrzeí Zobrzeí

Více

Příhradové konstrukce - průsečná metoda v Ritterově úpravě

Příhradové konstrukce - průsečná metoda v Ritterově úpravě Příhrové konstruk - průsčná mto v Rittrově úprvě vyřšt síly v pruth u soustvy n orázku. goniomtri os = /( + ) / = 0,6 γ β () sin = /( + ) / = 0,8 (h) β osβ = /[ + ] / sinβ = /[ + ] / = 0, 987 = 0, 6 γ

Více

Stavební mechanika 2 (K132SM02)

Stavební mechanika 2 (K132SM02) Stvení mecnik 2 (K132SM02) Přednáší: Jn Sýkor Ktedr mecniky K132 místnost D2016 e-mil: jn.sykor.1@fsv.cvut.cz konzultční odiny: Po 12-14 Kldné směry vnitřníc sil: Kldný průřez vnitřní síly jsou kldné ve

Více

právě jedna správná. Zakroužkujte ji! a) a b) a c) x b) 6 x c) 5) Rovnice y = je rovnicí a) elipsy b) paraboly c) přímky d) kružnice e) hyperboly

právě jedna správná. Zakroužkujte ji! a) a b) a c) x b) 6 x c) 5) Rovnice y = je rovnicí a) elipsy b) paraboly c) přímky d) kružnice e) hyperboly FSI VUT v Brě zdáí č.. str. MATEMATIKA 009 Příjmeí jméo: Z uvedeých odpovědí je vždy právě jed správá. Zkroužkujte ji! ) Je-li > 0, pk c) e) ) Je-li > 0, pk : 6 6 c) 6 e) ) Nerovice < má řešeí < > c)

Více

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n /9 POSLOUPNOSTI Zákldí pojmy: Defiice poslouposti Vlstosti poslouposti Určeí poslouposti Aritmetická posloupost Geometrická posloupost Užití poslouposti. Defiice poslouposti Př. Sestrojte grf fukce y =.x

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

právě jedna správná. Zakroužkujte ji! a) a b) a c)

právě jedna správná. Zakroužkujte ji! a) a b) a c) FSI VUT v Brě zdáí č. str. MATEMATIKA 06 Příjmeí jméo: Z uvedeých odpovědí je vždy právě jed správá. Zkroužkujte ji! ) Je-li > 0, pk c) e) ) Je-li > 0, pk 6 c) 6 9 e) 9 ) Rovice má řešeí v itervlu ; )

Více

HYDROMECHANIKA. Požadavky ke zkoušce: - zápočet Zkouška: písemný test (příklady) + ev. ústní

HYDROMECHANIKA. Požadavky ke zkoušce: - zápočet Zkouška: písemný test (příklady) + ev. ústní HYDROMECHANIKA Rozsh : /1 z, zk, semestr: 3 Ktedr vodního hospodářství environmentálního modelování Grnt předmětu: Rdek Roub FŽP MCEV II, D439 Tel.: 4 38 153, 737 483 840, e-mil: roub@fzp.czu.cz Konzultční

Více

PRUŽNOST A PLASTICITA

PRUŽNOST A PLASTICITA PRUŽOST A PLASTICITA Ig. Vdimír Michcová LPH 407/1 Poviá itertur te. 59 732 1348 vdimir.michcov@vs.cz http://fst10.vs.cz/michcov http://mi21.vs.cz/modu/pruzostpsticit Doporu eá itertur V jší vit í síy

Více

2 Základní poznatky o číselných oborech

2 Základní poznatky o číselných oborech Zákldí poztky o číselých oorech Mozí lidé jsou evědoí je proto, že vycházejí z pojů, které jsou podle tetických ěřítek epřesé (Sokrtes). Přirozeá čísl Přirozeá čísl ozčují počet prvků koečých oži. Kždé

Více

BSI. Trámové botky s vnitřními křidélky Trojrozměrná spojovací deska z uhlíkové oceli s galvanickým zinkováním BSI - 01 ÚČINNÉ ODKLONĚNÝ OHYB

BSI. Trámové botky s vnitřními křidélky Trojrozměrná spojovací deska z uhlíkové oceli s galvanickým zinkováním BSI - 01 ÚČINNÉ ODKLONĚNÝ OHYB SI Trámové botky s vitřími křidélky Trojrozměrá spojovací deska z uhlíkové oceli s galvaickým zikováím ÚČINNÉ Stadardizovaý, certifikovaý, rychlý a ekoomický systém OLASTI POUŽITÍ Smykové spoje dřevo-dřevo,

Více

Rovinné nosníkové soustavy

Rovinné nosníkové soustavy Stvení sttik, 1.ročník kominovného stui Rovinné nosníkové soustvy Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Gererův nosník Trojklouový rám Trojklouový rám s táhlem Kter

Více

právě jedna správná. Zakroužkujte ji! ax + ay bx by ax ay bx + by d) a b 4) Řešením nerovnice x 3x e) nemá řešení

právě jedna správná. Zakroužkujte ji! ax + ay bx by ax ay bx + by d) a b 4) Řešením nerovnice x 3x e) nemá řešení FSI VUT v Brě zdáí č.. str. MATEMATIKA 0 Příjmeí jméo: Z uvedeých odpovědí je vždy právě jed správá. Zkroužkujte ji! ) Pro všechy přípusté hodoty pltí: + y y b) y + y c) + b b + y b by y b + by d) b +

Více

8.3.1 Pojem limita posloupnosti

8.3.1 Pojem limita posloupnosti .3. Pojem limit poslouposti Předpokldy: 30, 0 Pedgogická pozámk: Limit poslouposti eí pro studety sdo strvitelým pojmem. Hlvím problémem je podle mých zkušeostí edorozuměí s tím, zd mezi posloupostí její

Více

Pružnost a pevnost. 9. přednáška, 11. prosince 2018

Pružnost a pevnost. 9. přednáška, 11. prosince 2018 Pružost a pevost 9. předáška, 11. prosice 2018 1) Krouceí prutu s kruhovým průřezem 2) Volé krouceí prutu s průřezem a) masivím b) otevřeým tekostěým c) uzavřeým tekostěým 3) Ohybové (vázaé) krouceí Rovoměré

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na Fakultě bezpečnostního inženýrství VŠB TU Ostrava

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na Fakultě bezpečnostního inženýrství VŠB TU Ostrava Okruhy z učiv sředoškolské memiky pro příprvu ke sudiu Fkulě ezpečosího ižeýrsví VŠB TU Osrv I Úprvy lgerických výrzů, zlomky, rozkld kvdrického rojčleu, mociy se záporým epoeem, mociy s rcioálím epoeem,

Více

Téma 2 Přímková a rovinná soustava sil

Téma 2 Přímková a rovinná soustava sil Stavebí statka,.ročík bakalářského studa Téma 2 Přímková a rová soustava sl Přímková soustava sl ový svazek sl Statcký momet síly k bodu a dvojce sl v rově Obecá rová soustava sl ová soustava rovoběžých

Více

Posuďte oboustranně kloubově uložený sloup délky L = 5 m, který je centricky zatížen silou

Posuďte oboustranně kloubově uložený sloup délky L = 5 m, který je centricky zatížen silou Příkld 1: SPŘAŽEÝ SLOUP (TRUBKA VYPLĚÁ BETOE) ZATÍŽEÝ OSOVOU SILOU Posuďte oboustrnně kloubově uložený sloup délk L 5 m, který je entrik ztížen silou 1400 kn. Sloup tvoří trubk Ø 45x7 z oeli S35 vplněná

Více