Nosné stavební konstrukce Výpočet reakcí Výpočet vnitřních sil přímého nosníku

Rozměr: px
Začít zobrazení ze stránky:

Download "Nosné stavební konstrukce Výpočet reakcí Výpočet vnitřních sil přímého nosníku"

Transkript

1 Stveí sttik.ročík klářského studi osá stveí kostruke osé stveí kostruke ýpočet rekí ýpočet vitříh sil přímého osíku osá stveí kostruke slouží k přeosu ztížeí ojektu do horiového msívu ěmž je ojekt zlože. usí mít dosttečou úosost dlouhodoou použitelost (líže předmět Pružost plstiit). Skládá se z horí kostruke ze zákldové kostruke Reálé ztížeí osýh stveíh kostrukí Prut (geometriký popis vější vzy ehyost silové ztížeí složky rekí) ýpočet vitříh sil přímého vodorového osíku Ktedr stveí mehiky Fkult stveí ŠB - Tehiká uiverzit Ostrv Kogresové etrum Bro 2 Tříděí osýh kostrukí podle geometrikého tvru Kostruke je oeě slože z kostrukčíh prvků:. Prutový kostrukčí prvek (prut) délk je výrzě větší ež dv příčé rozměry idelize dokole tuhou črou (přímá eo zkřiveá) 2. Plošý kostrukčí prvek tloušťk je výrzě meší ež zývjíí dv rozměry idelize roviým eo prostorově zkřiveým orzem. Dělí se stěy (ztížeí ve vlstí roviě) desky (ztížeí kolmo k roviě) skořepiy (zkřiveý plošý prvek). 3. siví trojrozměrý kostrukčí prvek osou kostruki může tvořit jediý kostrukčí prvek zprvidl je tvoře ěkolik kostrukčími prvky soustv kostrukčíh prvků. osá kostruke z lepeého lmelového dřev soustv prutovýh prvků desky Lhti Fisko foto: Ig. Atoí Lokj Ph.D. 3 Ztížeí osé kostruke Rozděleí ztížeí: ) silové - vější síly momety ) deformčí - otepleí sedáí poddolováí ) sttiké - velikost směr umístěí sil se v čse eměí př. ztížeí oytýh udov ) dymiké - vyvoláo ryhlou změou velikosti polohy eo směru sil vede k rozkmitáí kostruke př. ztížeí mostů jedouími vozidly ) determiistiké - vlstosti jedozčě vymezey ormou př. měré tíhy stviv ) stohstiké (prvděpodoostí přístup) velikost ztížeí eí předepsáo jedou hodotou ýrž prvděpodoostí fukí 4

2 Prut - geometriký popis prutu idelize Pohyové možosti volýh hmotýh ojektů h d l y z F l F 2F 2 F F 2 d h x Zákldí pojmy: Rovi souměrosti prutu Řídííčár os prutu (přímý prut) středie (přímý i zkřiveý prut) Průřez prutu Těžiště průřezu P Prut roviě eo prostorově lomeý. P 2 2 Sttiké shém R x sttiký model osé l kostruke R z R z 5 Stupeň volosti v : možost vykot jedu složku posuu v ose souřdého systému eo pootočeí. volý hmotý od v roviě: v 2 (posu v oeém směru rozlože do 2 kolmýh směrů osy souřdého systému) volý tuhý prut (desk) v roviě: v 3 (posu ve dvou osáh pootočeí) volý hmotý od v prostoru: v 3 (posu rozlože do tří os) tuhé těleso v prostoru: v 6 ( oeý posu pootočeí) z γ m[x m z m ] z x x 6 ější vzy odeírjí ojektu stupě volosti. ásoá vz ruší ojektu stupňů volosti. ázev vzy ásoost vzy Ozčeí vzy reke Kyvý prut Příkldy jedoduhýh vze tuhého prutu v roviě Posuvá klouová podpor Pevý klouová podpor Posuvé vetkutí Dokolé vetkutí R x R x R z R z R z R z R z eo eo R x R z R z 7 Zjištěí ehyosti prutu K pevému podepřeí ojektu je potře tolik vze v y zrušily všehy stupě volosti v. v v v < v v > v Podepřeí ojektu je kiemtiky určité zjiště ehyost ojektu použitelá jko stveí kostruke. Podepřeí ojektu je kiemtiky eurčité ehyost ojektu eí zjiště jko stveí kostruke epřípustá (edosttečý počet vze). Podepřeí ojektu je kiemtiky přeurčité ehyost ojektu zjiště použitelá jko stveí kostruke (větší počet vze ež je ezytě uté). zy musí ýt vhodě uspořádáy y skutečě zjišťovly ehyost ojektu esmí se jedt o tzv. výjimkový přípd kiemtiky určité eo přeurčité kostruke. 8

3 Stupeň sttiké eurčitosti osíku v roviě Kiemtiky i sttiky určitá kostruke v v v e... počet vějšíh vze osíku... počet jedoásoýh vze 2... počet dvojásoýh vze 3... počet trojásoýh vze 3 v 3 v... počet stupňů volosti osíku v roviě v v v 3 v 3 Prostý osík: Podepřeí ojektu je kiemtiky určité Prut je sttiky určitý (3 složky rekí 3 podmíky rovováhy) v v s v v sttiky i kiemtiky určitá soustv v < v v > v sttiky eurčitá kiemtiky přeurčitá soustv sttiky přeurčitá kiemtiky eurčitá soustv Stupeň sttiké eurčitosti s v - v Kozol: v v s 9 Kiemtiky přeurčitá sttiky eurčitá kostruke Kiemtiky eurčitá kostruke v > v kiemtiky přeurčité sttiky eurčité podepřeí v < v kiemtiky eurčité podepřeí Stupeň sttiké eurčitosti: s v - v v v s v v v v s Ojekt v rovováze je z určitého ztížeí e stveí prxi epoužitelé. 2

4 ýjimkové přípdy podepřeí Idelizové silové ztížeí prutů zy musí ýt vhodě uspořádáy esmí vzikout výjimkové přípdy podepřeí které jsou ve stveí prxi epoužitelé. Bodová síl [k] [] () Bodový momet [km] [m] ) kroutíí ) ohýjíí v v () ejčstěji vziká při přeložeí exetriké síly do půsoiště ose prutu (or.6..) () v v () () Determit soustvy rove ule jde o výjimkový přípd. 3 Bodová ztížeí Or. 6.. / str. 8 Bodové momety Or. 6.. / str. 8 4 Liiová ztížeí Příkld stropí kostruke Silové liiové ztížeí - příčé [k/m] [/m] Příkldy: tíh zděé příčky půsoíí stropí osík hodilé ztížeí stropu [k/m 2 ] soustředěé osík formou sěrého pásu Příkld příčého silového liiového ztížeí osíku Or / str Stropí kostruke výzkumého eergetikého etr ŠB-TU Ostrv 6

5 Sttiky určitá kostruke v v Prut je sttiky určitý (v roviě: v 3 v 3) 3 ezámé složky rekí lze vypočítt ze 3 podmíek rovováhy. R x R z R z R x y R z 7 oeé rovié soustvy sil Soustv je v rovováze tehdy pokud součet všeh sil v ose x z součet všeh mometů k liovolému mometovému středu s je rove. 3 podmíky rovováhy m ) 2 silové mometová:. P 2. P 3. i s i i x 3. P pokud je v ose z pouze jed i z i ezámá složk reke 3) Užívé jsou tké 3 mometové podmíky ke třem liovolým mometovým středům které esmí ležet v jedé příme i i z 2) prktikýh plikíh je čsto výhodější sestvit 2 mometové podmíky k mometovým středům : i. 2. Tyto pomíky se doplí třetí podmíkou - silovou: 3. P i x i i i i pokud je v ose x pouze jed ezámá složk reke i i 8 oeé rovié soustvy sil Příkld : PROSTÝ OSÍK příkld : R x R x P 3 3 P Pix i i R z Kotrol : Piz s s 2 s 3 R 2 l P P 2 R s 2 s s 3 R R z P iz i i P 2 P R z Kotrol : Pix 2 R x l 9 Sh odhdout směr rekí F i x i i Kotrol: F i z 2

6 Příkld 2: PROSTÝ OSÍK Příkld 3: PROSTÝ OSÍK superpozie předešlýh úloh 2km 6 Sh odhdout směr rekí 2km P6k 3 3 Popřemýšlet závěr? F i x i 2km P6k i 3 3 Kotrol: F i z 2 22 Příkld 4: PROSTÝ OSÍK dom doplňte podmíky rovováhy vyřešte reke Příkld 5: PROSTÝ OSÍK R z 2km P6k 3 3 R x R z R x R z P z P 7 k P Rz P z F i x F i z i i Kotrol: Rx k Rz 5k ( ) skut.směr Rz k ( ) skut.směr 23 F i x i i F i z Kotrol: 24

7 Příkld 6: PROSTÝ OSÍK Příkld 7: PROSTÝ OSÍK Q q 3k/m áhrdí řemeo Q Q q 4k/m áhrdí řemeo Q R x R x R z 3 7 R z R z R z F i x i i Kotrol: F i z 25 F i x i i Kotrol: F i z 26 Příkld 8: OSÍK S PŘEISLÝ KOCE Příkld 8: OSÍK S PŘEISLÝ KOCE R x 5 5 q 24 k/m Q 8 2 áhrdí řemeo: Q R x 4 áhrdí řeme: q 24 k/m Q Q 2 Q 8 2 Q 2 R z R z R z R z F i x i i : F i x i i : Kotrol: Kotrol: F i z 27 F i z 28

8 Příkld 9: KOZOLA Příkld : KOZOLA P z 45 P z 636k Q 2k q 2 k/m R x P 9k R x R z R z F i x F i z i Kotrol: i : 29 F i x F i z i Kotrol: i : 3 Příkld : OSÍK S PŘEISLÝI KOCI itří síly q 4 k/m Prut v roviě 3 volosti 3km R x P 2 6k Podepřeí - 3 vzy oderáy 3 volosti sttiky určitá úloh P 4k R z R z ější ztížeí reke musí ýt v rovováze 3 podmíky rovováhy z ih 3 ezámé reke F i x i i : Kotrol: ější ztížeí reke se zývjí vější síly Uvitř osíku půsoeím vějšíh sil vzikjí vitří síly Oeou výsledii vitříh sil rozkládáme tři složky v ose x - ormálová síl v ose z - posouvjíí síl ohyový momet F i z 3 32

9 ýpočet osíku v osové úloze Půsoí-li ztížeí pouze v ose osíku. Jed vější vz v ose x z podmíky rovováhy: R F : ix x R R R R () () x x R Složk vitříh sil v ose osíku ormálová síl. () (d) ýpočet reke ormálové síly v osové úloze Or. 7.. / str ormálová síl ormálová síl v liovolém průřezu x osíku je rov lgerikému součtu všeh vějšíh sil půsoííh v ose osíku zlev eo zprv od x. Kldá ormálová síl vyvozuje v průřezu x th půsoí z průřezu. opčém přípdě je ormálová síl záporá vyvozuje tlk. ější síly R x R x os osíku - th F F tlk 34 Příkld síly F 2 F 2 6 F 3 ýpočet osíku v příčé úloze Ztížeí síly v ose z mometové ztížeí. příčé úloze dv druhy vitříh sil: posouvjíí síl ohyový momet. F 8 Zdáí: sestrojit průěh ormálovýh sil F 2 2 F 3 6 P R x l/2 l/2 Průěh ormálovýh sil po elé déle se zázorňuje grfiky formou digrmu (grfu). kldé ormálové síly se vyášejí horu záporé dolů R z R z Řešeí příkldu 4.2 Or / str

10 Posouvjíí síl Příkld síly Posouvjíí síl v liovolém průřezu x osíku je rov lgerikému součtu všeh vějšíh sil půsoííh kolmo k ose osíku zlev eo zprv od x. Kldá posouvjíí síl počítá zlev směřuje horu. opčém přípdě je záporá. Kldá posouvjíí síl počítá zprv směřuje dolů. opčém přípdě je záporá. ější síly R F os osíku - R F k F 2 4k F 3 2k d e R z 34 R z 8 F k F 2 4k F 3 2k d e R z 34 R z 8 Doplňte hodoty sil zmék: s podpormi ez podpor je síly kldé posouvjíí síly se vyášejí horu záporé dolů Ohyový momet Ohyový momet v liovolém průřezu x osíku je rove lgerikému součtu všeh sttikýh mometů od všeh vějšíh sil zlev eo zprv od x. Kldý ohyový momet počítý zlev otáčí po směru hodu hodiovýh ručiček. opčém přípdě je záporý. Kldý ohyový momet počítý zprv otáčí proti směru hodu hodiovýh ručiček. opčém přípdě je záporý. Kldým ohyovým mometem jsou dolí vlák tže horí tlče (osík je prohýá směrem dolů). U záporého ohyového mometu je to opk. R R tlk th th tlk os osíku F R - F R 39 Příkld ohyové momety F k F 2 4k F 3 2k d e R z 34 R z 8 F k F 2 4k F 3 2k d e R z 34 R z 8 Doplňte hodoty zmék: s podpormi ez podpor je síly ohyové momety se vyášejí stru tžeýh vláke u osíku horu záporé dolů kldé hodoty 4

11 Směr půsoeí vitříh sil Shwedlerovy vzthy - Difereiálí podmík rovováhy elemetu v osové úloze Kldé směry vitříh sil: x 2 x x d z Záporé směry vitříh sil: - x ýsledie všeh sil půsoííh elemet musí ýt ulová: R x : - (d). d 4 42 x Shwedlerovy vzthy Difereiálí podmíky rovováhy elemetu v příčé úloze ýsledie všeh sil půsoííh elemet musí ýt ulové: d x x 2 x z m dq q. q d R z : - (d) q. Σ ix2 : d q - (d). q../2 m. pro m: d m d 43 Závěry ze Shwedlerovýh vzthů extrémí hodoty vitříh sil Závěry: d q pro m: d Shwedlerovy vzthy Joh Wilhelm Shwedler ( ) výzmý ěmeký ižeýr Extrém fuke f(x): ( x) df Extrém posouvjííh sil je v průřezu kde q Extrém ohyovýh mometů je v průřezu kde eo měí zméko d d d. 2. q 3. d q d itegre Derivčě itegrčí shém pro m: -q derive 44

12 Shrutí - určeí extrémíh hodot vitříh sil Souvislost mezi spojitým příčým ztížeím průěhy vitříh sil Extrém může vzikout: ) v podporovýh odeh ) v půsoištíh osmělýh sil (zméko se měí skokem) ) pod spojitým ztížeím v místě kde je d Extrém v průřezu kde eo měí zméko eezpečý (kritiký) průřez Závěry: d q d. řád fuke (x) (x) typ čáry v digrmeh 2. míst extrému u (x) (x) itegre -q derive º º - - º 2º mx mx 45 Souvislost mezi spojitým příčým ztížeím průěhy vitříh sil Or / str R x R z 735 Prvidl která je uto dodržet při řešeí vitříh sil x L q 3 k/m x P R z (294) mx 35 km ýpočet rekí dodržet všeh prvidl: 3 podmíky rovováhy kotrolí zřetelé zčeí skutečého směru d itří síly - vykreslit shém pro všehy 3 vitří síly (i ulové) - kldé d osu stru tžeýh vláke - vlevo od kždého shémtu ozčit o kterou vitří sílu se jedá. Zčeí v kroužku př. - v kždém orzi zřetelé zméko vitří síly - orze uď šrfovt kolmo osu osíku eo poeht prázdé - zčeí stupňů polyomů - zčeí odu kde se měí stupeň polyomů (od ) - všehy potřeé hodoty vitříh sil do orázku: v místě změy ztížeí (od ) miimálě hodot v poli pod spojitým ztížeím (od d) extrémí momet - ozčit okótovt místo eezpečého průřezu - u stčí potřeé hodoty v orázku ejsou uté rovie výpočtu - výpočet polohy eezpečého průřezu - utá rovie - výpočet mometů pro všehy hodoty uté rovie 47 příkld ormálové síly P z 35 k P 7 k 6 R x 662k 662 k 2 4 R z 2333k 6 R x hodoty kreslit d osu zlev: R z 67k zprv: 48

13 příkld posouvjíí síly příkld ohyové momety R x 662k R z 2333k P z 35 k P 7 k k hodoty kreslit d osu R z 67k zlev: R x R z P 7 k P z 35 k 6 l k l oh.momety vyášet stru tžeýh vláke (dole zméko) zlev: R z P z 35 k - 67 R z R z zprv: R z P z 35 k R z zprv: 49 5 příkld 2 příkld 3 382km R x 636k zdáí 5 x 45 P 9k x L řešeí 382km 45 P 9k R x 636k P z 636 R z 636k 5 x P 636 zlev: - úsek - úsek x L (zlev) R z 333k 3km x P (zprv) R z 333k R z 636k zprv: - úsek (- R z. x) úsek 5 v odě počítt hodotu mometu 2krát!!! tzv. mometový skok 2 hodoty v odě 52

14 Okruhy prolémů k ústíčásti zkoušky Ztížeí osýh stveíh kostrukí Zjištěí ehyosti prutu kiemtiká sttiká určitost eurčitost přeurčitost stupeň sttiké eurčitosti Typy podpor složky rekí ve vějšíh vzáh ýjimkové přípdy kiemtiky určitého podepřeí prutů ýpočet vitříh sil přímého vodorového osíku Difereiálí podmíky rovováhy elemetu přímého osíku Shwedlerovy vzthy využití Určeí extrémíh hodot vitříh sil 53

Nosné stavební konstrukce Výpočet reakcí

Nosné stavební konstrukce Výpočet reakcí Stvení sttik 1.ročník klářského studi Nosné stvení konstrukce Výpočet rekcí Reálné ztížení nosných stveních konstrukcí Prut geometrický popis vnější vzy nehynost silové ztížení složky rekcí Ktedr stvení

Více

Rovinné nosníkové soustavy II

Rovinné nosníkové soustavy II Prázý Prázý Prázý Ství sttik,.roík kláského stui Rovié osíkové soustvy II Trojklouový rám (osík) Trojklouový olouk (osík) Trojklouový rám s táhlm Trojklouový olouk s táhlm Ktr ství mhiky Fkult ství, VŠB

Více

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti. Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti, sttických mometů, souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme, že

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

Rovinné nosníkové soustavy Gerberův nosník

Rovinné nosníkové soustavy Gerberův nosník Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Gererův nosník Spojitý nosník s vloženými klouy - Gererův nosník Kter stvení mehniky Fkult stvení, VŠB - Tehniká univerzit Ostrv Sttiky neurčité

Více

Zjednodušená styčníková metoda

Zjednodušená styčníková metoda Stvní sttik, 1.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Zjnoušná styčníková mto Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

Rovinné nosníkové soustavy III Příhradový nosník

Rovinné nosníkové soustavy III Příhradový nosník Stvení sttik,.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového nosníku Zjenoušená

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t.

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t. ročík - loeý lgebrický výrz, lieárí rovice s ezáou ve jeovteli Loeý lgebrický výrz Lieárí rovice s ezáou ve jeovteli Doporučujee žáků zopkovt vzorce tpu ( + pod úprvu výrzu souči Loeý výrz Číselé výrz

Více

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26 Zákld mtemtik Číselé oor ČÍSELNÉ OBORY 0 Některé pojm z mtemtické logik 0 Výroková logik 0 Moži vzth mezi imi Možiové operce Grfické zázorěí moži Číselé oor Čísl ázv jejich chrkteristik Chrkteristik číselých

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava- Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců. 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl

Více

1. Trapézový plech poloha pozitivní (betonem jsou vyplněna úzká žebra) TR 50/250-1mm. Tloušťka Hmotnost PL Ý PRŮŘEZ EFEKTIV Í PRŮŘEZ

1. Trapézový plech poloha pozitivní (betonem jsou vyplněna úzká žebra) TR 50/250-1mm. Tloušťka Hmotnost PL Ý PRŮŘEZ EFEKTIV Í PRŮŘEZ Příkld 0: Nvrhěte pouďte protě uložeou oelobetoovou tropii rozpětí 6 m včetě poouzeí trpézového plehu jko ztreého beděí. - rozteč tropi m - tloušťk betoové dek elkem 00 mm - oel S 5 - beto C 0/5 - užité

Více

2 Základní poznatky o číselných oborech

2 Základní poznatky o číselných oborech Zákldí poztky o číselých oorech Mozí lidé jsou evědoí je proto, že vycházejí z pojů, které jsou podle tetických ěřítek epřesé (Sokrtes). Přirozeá čísl Přirozeá čísl ozčují počet prvků koečých oži. Kždé

Více

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný Soustv kpl + tuhá látk Izobrcký fázový dgrm pro soustvu obshující vodu chlord sodý t / o C H 2 O (s) + esyceý roztok 30 20 10 0-10 -20 t I t II esyceý roztok 2 1 p o NCl (s) + syceý roztok eutektcký bod

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků).

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků). Učebí text k předášce UFY8 Dvojvzková tererece teké vrtvě Dvojvzková tererece teké vrtvě Předpokládejme, vl o mpltudě dvou delektrk tk, že mpltud održeé vly bude o dexu lomu bude t (vz obr. DI-1). v protředí

Více

Posuďte oboustranně kloubově uložený sloup délky L = 5 m, který je centricky zatížen silou

Posuďte oboustranně kloubově uložený sloup délky L = 5 m, který je centricky zatížen silou Příkld 1: SPŘAŽEÝ SLOUP (TRUBKA VYPLĚÁ BETOE) ZATÍŽEÝ OSOVOU SILOU Posuďte oboustrnně kloubově uložený sloup délk L 5 m, který je entrik ztížen silou 1400 kn. Sloup tvoří trubk Ø 45x7 z oeli S35 vplněná

Více

Logické rovnice. 1 Úvod. 2 Soustavy logických rovnic

Logické rovnice. 1 Úvod. 2 Soustavy logických rovnic Logické rovice J Bborák, Gyáziu Česká Líp, bbork@sez.cz Ev Svobodová, Krlíské gyáziu, evsvobo@gil.co Doiik Tělupil, Gyáziu Bro, dtelupil@gil.co Abstrkt Záklde šeho iiproektu e počítáí poocí Booleovy lgebry

Více

Geometrická optika. Zákon odrazu a lomu světla

Geometrická optika. Zákon odrazu a lomu světla Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Nejistoty v mìøení II: nejistoty pøímých mìøení

Nejistoty v mìøení II: nejistoty pøímých mìøení V úvodí èásti [] volého cylu èláù yl uvede struèý pøehled proletiy ejistot v ìøeí, pøilíže historicý vývoj v této olsti zèey dùvody výhody používáí souèsé odifice v širších souvislostech eziárodí etrologie

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

MECHANIKA STATIKA. + y. + x. - x. F 4y F4. - y. FRBy. FRAy. Ing. Radek Šebek 2012 A B C D. I a III 3 5 7 D II. B C a b c F1Z F2Z. a 2. a 3. a 4.

MECHANIKA STATIKA. + y. + x. - x. F 4y F4. - y. FRBy. FRAy. Ing. Radek Šebek 2012 A B C D. I a III 3 5 7 D II. B C a b c F1Z F2Z. a 2. a 3. a 4. h MECHNIK + y 2 F Vy F 2y 1 FV V F 1y F 3y F3 3 - x F 1x F 3x F 4x 0 F 2x F 4y F4 F Vx + x F FRy 4 - y FRy F l FRy C D FRy I 2 III 6 V 1 3 5 7 D II 4 IV C c Z Z Ing. Rdek Šeek 2012 MECHNIK 1. OSH 2. MECHNIK

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

ZÁKLADY STAVEBNÍ MECHANIKY

ZÁKLADY STAVEBNÍ MECHANIKY VYSOKÉ UČENÍ TECHNICKÉ V BNĚ AKULTA STAVEBNÍ ING. JIŘÍ KYTÝ, CSc. ING. ZBYNĚK KEŠNE, CSc. ING. OSTISLAV ZÍDEK ING. ZBYNĚK VLK ZÁKLADY STAVEBNÍ ECHANIKY ODUL BD0-O SILOVÉ SOUSTAVY STUDIJNÍ OPOY PO STUDIJNÍ

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e M t i c e v e s t ř e d o š k o l s k é m t e m t i c e P t r i k K v e c k ý M e d e l o v o g y m á z i u m v O p v ě S t u d i j í m t e r i á l - M t i c e v e s t ř e d o š k o l s k é m t e m t i

Více

Téma 9 Těžiště Těžiště rovinných čar Těžiště jednoduchých rovinných obrazců Těžiště složených rovinných obrazců

Téma 9 Těžiště Těžiště rovinných čar Těžiště jednoduchých rovinných obrazců Těžiště složených rovinných obrazců Stvení sttik, 1.ročník klářského studi Tém 9 Těžiště Těžiště rovinných čr Těžiště jednoduchých rovinných orců Těžiště složených rovinných orců Ktedr stvení mechniky Fkult stvení, VŠB - Technická univerit

Více

Výroba certifikovaných flexibilních teflonových topných těles STFX s flexibilním přívodem

Výroba certifikovaných flexibilních teflonových topných těles STFX s flexibilním přívodem Chlzeí Topeí Výrob certifikových flexibilích tefloových topých těles STFX s flexibilím přívodem Model 500 15000W Všestrá topá těles! jsou odolá většiě kyseli lklických látek mx. teplot lázě pro stdrdí

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uivezit lov v Pze Pedgogiká fkult SEMINÁRNÍ PRÁCE Z POLYNOMICÉ ALGEBRY ZVOLENÝ POLYNOM / CIFRI Zdáí: Zvol olyom f ( x) stuě 6 tkový y 6 f ( ) { 87868}. Uči všehy kořey s ásoostí. Vyováí: Zdáí vyhovuje

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

2. Matice a determinanty

2. Matice a determinanty Mtce deterty Defce : Odélíové sche (řádů) (sloupců) čísel zvee tce typu : [ ] M Je-l luvíe o čtvercové tc Prvy ( ) tvoří hlví dgoálu Zčíe ovyle : [ ] O - všechy prvy ulové - ulová tce I - edotová tce (

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa...

IV-1 Energie soustavy bodových nábojů... 2 IV-2 Energie elektrického pole pro náboj rozmístěný obecně na povrchu a uvnitř objemu tělesa... IV- Eergie soustavy bodových ábojů... IV- Eergie elektrického pole pro áboj rozmístěý obecě a povrchu a uvitř objemu tělesa... 3 IV-3 Eergie elektrického pole v abitém kodezátoru... 3 IV-4 Eergie elektrostatického

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

2 i i. = m r, (1) J = r m = r V. m V

2 i i. = m r, (1) J = r m = r V. m V Měření momentu setrvčnosti 1 Měření momentu setrvčnosti Úko č. 1: Změřte moment setrvčnosti obdéníkové desky přímou metodou. Pomůcky Fyzické kyvdo (kovová obdéníková desk s třemi otvory), kovové těísko

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé

Více

Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl

Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl Středí průmyslová škol sdělovcí techiky Pská 3 Prh Jroslv Reichl, 00 Jroslv Reichl OBSAH Poslouposti, Jroslv Reichl, 00 Poslouposti jejich vlstosti 3 Pojem posloupost 3 Připomeutí fukcí 3 Defiice poslouposti

Více

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled řijímcí řízení k. r. / Kompletní znění testových otázek - mtemtický přehled Koš Znění otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo otzníku? 8?. Které číslo

Více

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x)

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x) 9 REGRESE A KORELACE Slovo regrese oecě zmeá poh zpět ústup ávrt regresví = ustupující Opčým termíem je progrese pokrok postup šířeí růst Pojem regrese l do sttstk zvede kocem 9 století rtským učecem Frcsem

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

CHEMICKÁ KINETIKA. Tuto rovnici lze po zavedení okamžitých molárních koncentrací C a rozsahu reakce x vyjádřeného pomocí koncentrací přepsat na

CHEMICKÁ KINETIKA. Tuto rovnici lze po zavedení okamžitých molárních koncentrací C a rozsahu reakce x vyjádřeného pomocí koncentrací přepsat na HEMIKÁ KINETIK hemická kietik je část fyzikálí chemie zbývjící se způsobem rychlostí, kterými chemické rekce procházejí mezi počátečím koečým stvem. To jí odlišuje od chemické termodymiky, která studuje

Více

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ, p. o. MATEMATIKA Ig. Rudolf PŠENICA 6 OBSAH:. SHRNUTÍ A PROHLOUBENÍ UČIVA... 5.. Zákldí možiové pojmy... 5.. Číselé možiy... 6.. Itervly... 6.. Absolutí

Více

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám Sttik stvebních konstrukcí I.,.ročník bklářského studi Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická

Více

1 - Integrální počet, výpočet obsahu plochy, objemu rotačního tělesa 1) Vypočítejte (integrace pomocí substituce): 1 a) c) x. + 4x

1 - Integrální počet, výpočet obsahu plochy, objemu rotačního tělesa 1) Vypočítejte (integrace pomocí substituce): 1 a) c) x. + 4x - Itegrálí počet, výpočet oshu plochy, ojemu rotčího těles ) Vypočítejte (itegrce pomocí sustituce): ) 9 d si( l ) ) d c) e d d) e d ) Vypočítejte (itegrce metodou per - prtes): l ) ( ) e d ) d c) ( )

Více

MATEMATIKA PRO EKONOMY

MATEMATIKA PRO EKONOMY VYSOKÁ ŠKOLA POLYECHNICKÁ JIHLAVA Ktedr mtemtik MAEMAIKA PRO EKONOMY Rdek Stolí 8 Recezovl: doc RNDr Ev Věčková CSc Mgr Adre Kubišová Z jzkovou věcou správost obshu díl odpovídá utor et eprošel jzkovou

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Sbírka úloh z matematiky pro 9.ročník Lomené výrazy ZŠ Třešť

Sbírka úloh z matematiky pro 9.ročník Lomené výrazy ZŠ Třešť Sík úloh z tetik po 9.očík I. Loeé výz ZŠ Třešť . Loeý výz je zloek. Jeovtel zloku e eí ovt ule. U loeých výzů učujee vžd podík, po kteé á loeý výz l. Řešeý příkld Uči podík, po kteé jí výz l, řeš dlší

Více

Střední škola obchodu, řemesel, služeb a Základní škola, Ústí nad Labem, příspěvková organizace Vzdělávací středisko Trmice

Střední škola obchodu, řemesel, služeb a Základní škola, Ústí nad Labem, příspěvková organizace Vzdělávací středisko Trmice Střední škol ohodu, řemesel, služe Zákldní škol, Ústí nd Lem, příspěvková orgnize Vzděláví středisko Trmie MATURITNÍ TÉMATA Předmět: Mtemtik Oor vzdělání: Ekonomik podnikání Školní rok: 0/06 Tříd: EKP

Více

stručná osnova jarní semestr podzimní semestr

stručná osnova jarní semestr podzimní semestr Brýlová optika stručá osova jarí semestr základy geometrické optiky pro brýlovou optiku Gullstradovo schématické oko, další modely, otoreceptory oka, vizus, optotypy myopie, hypermetropie, aakie a jejich

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

4. Model M1 syntetická geometrie

4. Model M1 syntetická geometrie 4. Model M1 sytetiká geometrie V této kapitole se udeme zaývat vektory, jejih vlastostmi a využitím v geometrii. Neudeme přitom rozlišovat, jestli se jedá je o roviu (dvě dimeze) eo prostor (tři dimeze).

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

Příklady k přednášce 9 - Zpětná vazba

Příklady k přednášce 9 - Zpětná vazba Příklady k předášce 9 - Zpětá vazba Michael Šebek Automatické řízeí 205 6--5 Příklad: Přibližá iverze tak průřezu s výškou hladiy y(t), přítokem u(t) a odtokem dy() t dt + 2 yt () = ut () Cíl řízeí: sledovat

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

ZÁKLADNÍ POJMY OPTIKY

ZÁKLADNÍ POJMY OPTIKY Záš pojmy A. Popiš aspoň jede fyzikálí experimet měřeí rychlosti světla. - viz apříklad Michelsoův, Fizeaův, Roemerův pokus. Defiuj a popiš fyzikálí veličiu idex lomu. - je to bezrozměrá fyzikálí veličia

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava ENERGETIKA U ŘÍZENÝCH ELEKTRICKÝCH POHONŮ. 1.

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava ENERGETIKA U ŘÍZENÝCH ELEKTRICKÝCH POHONŮ. 1. Katedra obecé eletrotechiy Faulta eletrotechiy a iformatiy, VŠB - TU Ostrava EERGETIKA U ŘÍZEÝCH EEKTRICKÝCH POHOŮ Předmět : Rozvody eletricé eergie v dolech a lomech. Úvod: Světový tred z hledisa eletricé

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Ktedr geotechniky podzemního stvitelství Modelování v geotechnice Princip metody mezní rovnováhy (prezentce pro výuku předmětu Modelování v geotechnice) doc. RNDr. Ev Hrubešová, Ph.D. Inovce studijního

Více

FORT-PLASTY s.r.o., Hulínská 2193/2a, 767 01 Kroměříž, CZ tel.: +420 575 755 711, e-mail: info@fort-plasty.cz, www.fort-plasty.cz

FORT-PLASTY s.r.o., Hulínská 2193/2a, 767 01 Kroměříž, CZ tel.: +420 575 755 711, e-mail: info@fort-plasty.cz, www.fort-plasty.cz FORT-LASTY s.r.o., Hulíská 2193/2a, 767 01 Kroměříž, CZ NQA ISO 9001 0 7. Vetilátory řady a Vetilátory řady a slouží k odsáváí vzdušiy s obsahem agresivích látek, jako jsou kyseliy a louhy především z

Více

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku Zákldní principy fyziky seestrální projekt Studiu dyniky kldky, závží vozíku Petr Luzr I/4 008/009 Zákldní principy fyziky Seestrální projekt Projekt zdl: Projekt vyprcovl: prof. In. rntišek Schuer, DrSc.

Více

b c a P(A B) = c = 4% = 0,04 d

b c a P(A B) = c = 4% = 0,04 d Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá

Více

ZÁKLADNÍ SUMAČNÍ TECHNIKY

ZÁKLADNÍ SUMAČNÍ TECHNIKY Zápdočeská uiverzit v Plzi Fkult pedgogická Bklářská práce ZÁKLADNÍ SUMAČNÍ TECHNIKY Diel Tyr Plzeň Prohlšuji, že jsem tuto práci vyprcovl smosttě s použitím uvedeé litertury zdrojů iformcí. V Plzi,..

Více

Studijní materiály ke 4. cvičení z předmětu IZSE

Studijní materiály ke 4. cvičení z předmětu IZSE ZSE 8/9 Studijní mteriály ke 4 vičení z předmětu ZSE Předkládný studijní mteriál je určen primárně studentům kterým odpdlo vičení dne 4 9 (velikonoční pondělí) Ke studiu jej smozřejmě mohou využít i studenti

Více

Odraz na kulové ploše Duté zrcadlo

Odraz na kulové ploše Duté zrcadlo Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. Podle oázku

Více

š š Ť ř ň š ú ř ý ž š ř ě Š ě š ř ň š ú ř ý ž ř ý ě ř š ř ň š ú ý ř ý ž ě ě š š ě ě ě ž ž š ě ř ý ěž ů ň ů ý š ř ý ř ě ž ř ě ž ý ž ý ř š ř š ě ř ý š ý ě ž ř ě ž ě ř ěž ř ž ř ň ř ý ý š ě ě ž ň ř ý ř ě ý

Více

Technická dokumentace Ing. Lukáš Procházka

Technická dokumentace Ing. Lukáš Procházka Tehniká dokumente ng Lukáš Proházk Tém: hlvní část dokumentu, orázky, tulky grfy 1) Osh hlvní části dokumentu ) Orázky, tulky grfy ) Vzore rovnie Hlvní část dokumentu Hlvní část dokumentu je řzen v následujíím

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt relizovný n PŠ Nové Město nd Metují s finnční podporou v Operční proru Vzdělávání pro konkurencescopnost Královérdeckéo krje Modul 03 - Tecnické předěty In. Jn Jeelík - nuk o rovnováze kplin jejic

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava Katedra elektrotechiky Fakulta elektrotechiky a iformatiky, VŠB - TU Ostrava 10. STŘÍDAVÉ STROJE Obsah 1. Asychroí stroje 1. Výzam a použití asychroích strojů 1.2 Pricip čiosti a provedeí asychroího motoru.

Více

2.3. DETERMINANTY MATIC

2.3. DETERMINANTY MATIC 2.3. DETERMINANTY MATIC V této kpitole se dozvíte: definici determinntu čtvercové mtice; co je to subdeterminnt nebo-li minor; zákldní vlstnosti determinntů, používné v mnoh prktických úlohách; výpočetní

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realoaý a SPŠ Noé Město ad Metují s fačí podporou Operačím programu Vdělááí pro kokureceschopost Králoéhradeckého kraje Modul - Techcké předměty Ig. Ja Jemelík - fukčí soustay součástí, které slouží

Více

2 EXPLORATORNÍ ANALÝZA

2 EXPLORATORNÍ ANALÝZA Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů.

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Přijímací řízení akademický rok 2014/2015 Bc. studium Kompletní znění testových otázek matematika

Přijímací řízení akademický rok 2014/2015 Bc. studium Kompletní znění testových otázek matematika Přijímcí řízení kemický rok 0/0 Bc. stuium Kompletní znění testových otázek mtemtik Koš Znění otázky Opověď ) Opověď ) Opověď c) Opověď ) Správná opověď. Které číslo oplníte místo otzníku? 9 7?. Které

Více

Aritmetická posloupnost

Aritmetická posloupnost /65 /65 Obsh Obsh... Aritmetická posloupost.... Soustv rovic, součet.... AP - předpis... 5. AP - součet... 6. AP - prvoúhlý trojúhelík... 7. Součet čísel v itervlu... 8 Geometrická posloupost... 0. Soustv

Více

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu 1. Defiice elektrického pohou Pod pojmem elektrický poho rozumíme soubor elektromechaických vazeb a vztahů mezi pracovím mechaismem a elektromechaickou soustavou. Mezi základí tři části elektrického pohou

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B) Přijímací řízeí pro akademický rok 24/5 a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata B) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Geometrie. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Geometrie. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Geometrie Mgr. Jrmil Zelená Gymnázium, SOŠ VOŠ Ledeč nd Sázvou Výpočty v prvoúhlém trojúhelníku VY_3_INOVACE_05_3_1_M Gymnázium, SOŠ VOŠ Ledeč nd Sázvou PRAVOÚHLÝ TROJÚHELNÍK 1 Pojmy oznčení:,.odvěsny

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

2.5.10 Přímá úměrnost

2.5.10 Přímá úměrnost 2.5.10 Přímá úměrost Předpoklady: 020508 Př. 1: 1 kwh hodia elektrické eergie stojí typicky 4,50 Kč. Doplň do tabulky kolik Kč stojí růzá možství objedaé elektrické eergie. Zkus v tabulce ajít zajímavé

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více