je vstupní kvantovaný signál. Průběh kvantizační chyby e { x ( t )}

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "je vstupní kvantovaný signál. Průběh kvantizační chyby e { x ( t )}"

Transkript

1 ČÍSLICOVÉ ZPRACOVÁNÍ ZVUKOVÝCH SIGNÁLŮ Z HLEDISKA PSYCHOAKUSTIKY Fratišek Kadlec ČVUT, fakulta elektrotechická, katedra radioelektroiky, Techická 2, Praha 6 Úvod Při číslicovém zpracováí zvukových sigálů (DSP), zvláště pak v oblasti ízkých úroví sigálů se projevují vedlejší účiky DSP, které způsobují jejich zkresleí Číslicovým geerováím a zázamem sigálů obdržíme sigály včetě zkreslujících složek vziklých v průběhu zpracováí Použijeme-li takovéto sigály, apř pro testováí elektroakustických soustav, může dojít ke zkresleí výsledků poslechových testů Působeí zdroje sigálu, který již sám o sobě obsahuje chybový sigál a vliv vlastí odezvy soustavy se projeví společě, bez možosti rozlišeí jedotlivých kompoet V příspěvku je uvede příklad úpravy sigálů pro poslechové testy, který sižuje epřízivý vliv DSP zvukových sigálů z psychoakustického hlediska Úprava sigálu spočívá ve změě rozložeí eergie šumu v kmitočtové oblasti 2 Hz 2kHz Při modelováí DSP zvukových sigálů a jejich aalýze používáme programové vybaveí MATLAB 2 Číslicové zpracováí zvukových sigálů ízké úrově Při kvatováí harmoických sigálů ízké úrově, kdy předpokládáme úroveň sigálu o velikosti řádově ěkolika jedotek ebo desítek kvatovacích úroví A/D převodíku, vyjdeme při kmitočtové aalýze kvatovaého sigálu z průběhu kvatizačí chyby Sigál a výstupu kvatizačího procesu můžeme apsat ve tvaru () t Q{ ( t )} ( t ) e{ ( t )}, = = () kde Q {} je operátor pro vyjádřeí kvatizačího procesu a ( t) je vstupí kvatovaý sigál Průběh kvatizačí chyby e { ( t )} lze vyjádřit pomocí tzv pilové fukce S { ( t )} Jedá se o periodickou fukci s periodou rovou kvatizačímu kroku a s maimálí úroví ± 2 [] Použitím vztahů platých pro Fourierovy řady lze odvodit aalytický výraz pro aalýzu fukce S{ () t } S ( ) = ( π = ) si (2) Kvatovaý sigál ( t ) vyjádřeý rovicí () pak bude mít tvar ( t) = ( t) S{ ( t) }, ( t) = ( t ) π = ( ) 2 π si ( t ) (3) Dále vezmeme v úvahu sigál ( t ), který vstupuje do kvatizačího procesu a obsahuje A pouze jedu harmoickou složku si( ω ), kde A je amplituda t

2 Dosazeím sigálu ( t ) do rovice (3) obdržíme výraz pro kvatovaý sigál ( ) A si ( ω t ) ( t ) = A si ( t ) si π = ω (4) Kvatovaý sigál ( t ) obsahuje jedak původí harmoickou složku vstupího sigálu A ( t ) si ω a další ové kmitočtové kompoety Rovici (4) lze upravit pomocí Besselových fukcí a výsledý tvar = m= 2 ( ) A ( t ) = A si ( ω t) J si ( m t ), pro m liché m ω π (5) m kde J ( ) je Besselova fukce prvího druhu a řádu m Sigál vyjádřeý rovicí (5), A obsahuje základí harmoickou složku si( ω ) a liché chybové harmoické složky, které vzikly v průběhu kvatováí t Dosud jsme hovořili pouze o kvatováí sigálu Vlivem diskretizace kvatovaého sigálu ( t ) dochází k aliasigu Kvatovaý a diskretizovaý sigál lze v časové oblasti apsat ve tvaru ( ) ( ) ( ), t = t t t d = δ (6) kde t je vzorkovací krok Ve spektrálí oblasti pak platí X ( ) =, X ω k d t k = t ω (7) kde X ( ω ) je Fourierův obraz ( t ) Diskretizovaý a kvatovaý sigál ízké úrově bude obsahovat základí harmoickou složku, liché chybové harmoické složky a diskrétí zkreslující kompoety, které vzikou vlivem aliasigu Při modelováí sigálů jsme vycházeli z předpokladu, že jako zdroj sigálů bude použit CD Z toho vyplývá použitý vzorkovací kmitočet f v = 44 Hz Při uvažováí rozsahu amplitudy sigálu ± V a použití 6-bitového A/D převodíku, obdržíme velikost kvatizačího kroku 6 = 2 2 V Úroveň sigálu V korespoduje s hladiou db Sigály ízké úrově jsme avrhovali tak, aby je bylo možé použít jak pro testováí elektroakustických soustav měřeím, tak i pro poslechové testy Vzhledem k tomu, že se jedá o sigály ízké úrově, zaměřili jsme se a kmitočty z oblasti f = 4 khz, tedy a pásmo maimálí citlivosti lidského ucha Z hlediska aalýzy sigálů byl kmitočet geerovaých sigálů staove tak, aby počet vzorků jedé periody byl celistvé číslo

3 3 Tvarováí šumových spekter sigálů Vímáí zkreslujících kompoet sigálu lze omezit ěkolika způsoby [2,3,4] Jede z možých způsobů spočívá v možosti přesuout zkreslující složky sigálu z oblasti středích kmitočtů jak do oblasti ízkých tak i vysokých kmitočtů, tedy do oblastí s ižší citlivostí sluchu Blokové schéma obvodu pro tvarováí šumu je a obr Pro tvarováí šumu se zde používá psychoakustických filtrů, při jejichž ávrhu se vychází z křivek kostatích hladi hlasitosti [5] Vygeerovaé křivky kostatích hladi hlasitosti jsou zázorěy a obr 2 e() y = ε [ ] ( ) ( ) () Σ v() A /D _ u() v() _ Σ Filter H(z ) s() ε ( ) ( ) Fig Blokové schéma číslicového zpracováí sigálu při použití psychoakustických filtrů Číslicové zpracováí sigálu pomocí soustavy zázorěé a obr lze odvodit rozborem v Z oblasti Pro sigál a výstupu soustavy lze apsat = (8) Y ( z ) V ( z ) E( z ) kde E ( z ) je chybový sigál Při zpracováí lze též použít i dither Dalším řešeím přeosu soustavy obdržíme pro celkový chybový sigál a jejím výstupu = ε ( z ) [ H ( z )] E( z ) (9) kde H ( z ) je přeosová fukce psychoakustického filtru Koečý výraz pro sigál a výstupu soustavy y [ ] můžeme pomocí rovic (8) a (9) apsat ve tvaru = ε = () Y ( z ) X ( z ) ( z ) X ( z ) [ H ( z )] E( z ) Vztah () vyjadřuje souvislost mezi vstupím sigálem ( t ), celkovým chybovým sigálem ε ( ) a výstupu soustavy a chybovým sigálem e ( ), který vziká vlivem kvatizace sigálu v ( ) Z uvedeých vztahů vyplývá, že celkový chybový sigál je tvarová fukcí [ H ( z )] Kmitočtový průběh filtru H ( z ) by měl mít takový průběh, aby chybový sigál ε ( z ) a výstupu soustavy byl vímá co ejméě V prai to zameá, že úroveň vímáí rušivého sigálu bude miimálí, pokud se jeho vjem bude blížit vímáí rovoměrě rozložeého šumu v závislosti a kmitočtu Měřicí sigály jsou umericky geerováy a počítači pomocí programového vybaveí MATLAB [6] Takto vygeerovaé diskrétí sigály můžeme z hlediska přesosti považovat za ekvatovaé sigály ( ), které ám přicházejí do další fáze číslicového zpracováí

4 pomocí soustav pro oise shapig [3] Na výstupu soustav dostáváme upraveé digitálí sigály y [ ], které jsou již vhodé pro číslicový zázam apř a CD hladia hlasitosti [Ph] 4 p [db] a) W(f) [db] 2 b) f [khz] Obr 2 a) Stadardí křivky průběhů kostatích hladi hlasitosti v závislosti a kmitočtu; b) Normovaý průběh H ( ω ) pro hladiu hlasitosti 5 Ph Aalýzu vlivu diskretizace a kvatováí sigálů si ukážeme a kmitočtu f = 764 Hz (25 vzorků a periodu) Detailí průběh kmitočtového spektra diskretizovaého a kvatovaého sigálu o amplitudě ± 3 můžeme vidět a obr 3a Aalýza sigálu o shodém kmitočtu, který byl zpracová obvodem pro tvarováí šumu a obr, je zázorěa a obr 3b Na obr 3a je základí harmoický kmitočet spolu s dalšími harmoickými i eharmoickými složkami jejichž původ spočívá v aliasigu Nově vziklé kompoety sigálu působí rušivě a sluchový vjem Číslicovým zpracováím sigálu s trasformací kvatizačího šumu získáme sigál ve kterém se již ově vziklé diskrétí kmitočty evyskytují, ale a druhou strau obdržíme ve spektru kvatizačí šum, který je tvarová psychoakustickým filtrem H ( ω ) Upraveý kvatizačí šum je vímá méě rušivě ež diskrétí harmoické složky V [db] -8-9 V [db] -8 a) -9 b) Obr 3 a) Aalýza číslicově geerovaého harmoického sigálu upraveý z psychoakustického hlediska f = 764 Hz ; b) Sigál

5 4 Závěr V příspěvku je ukázá jede z možých způsobů úpravy zvukových sigálů z hlediska jejich optimálího vímáí, tedy s potlačeím ežádoucích efektů které vzikají v průběhu DSP Pomocí programového vybaveí MATLAB byly vytvořey základí algoritmy pro geerováí a zázam číslicově zpracovaých zvukových sigálů Numericky vygeerovaé sigály jsou ejprve upravey z hlediska jejich optimálího vímáí a takto zpracovaé sigály jsou převedey do souborů typu *wav Soubory typu *wav již lze použít k reprodukci testovacích sigálů Většiou jsou však upraveé sigály zazameáy a CD a teprve tyto osiče ám slouží jako zdroje zvukových sigálů Testovací sigály ízké úrově upraveé z hlediska psychoakustiky jsou při reprodukci vímáy jako čistší oproti sigálům bez úprav Projekt byl podporová Gratovou ageturou České republiky, grat č 2/2/56 Literatura [] Maher, R C: O the Nature of Graulatio Noise i Uiform Quatizatio Systems Joural of Audio Egieerig Society, Vol 4, 992, No /2, p2-2 [2] Waamaker, R A: Psychoacoustically Optimal Noise Shapig 4, J Audio Eg Soc, 992, p 6 62 [3] Gerzo, M Crave, P Stuart, R Wilso, R: Psychoacoustic Noise Shaped Improvemets i CD ad Other Liear Digital Media The 94 th Audio Eg Soc Covetio, Berli, Preprit 35, 993 [4] Matsuya, Y, Uchimura, K, Iwata, A, Kobayashi, T, Ishikawa, M, Yoshitome, T: A 6-bit Oversamplig A-to-D Coversio Techology Usig Triple-Itegratio Noise Shapig IEEE Joural of Solid-State Circuits, 22, 987,u p [5] Zwicker, E Fastl, H: Psychoacoustics, Facts ad Models Spriger-Verlag Berli Heildelberg, 99 [6] Kadlec, F: Desig, Geeratio ad Aalysis of Digital Test Sigals The th Audio Eg Soc Covetio, New York, Preprit 35, 2

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

OBRAZOVÁ ANALÝZA POVRCHU POTISKOVANÝCH MATERIÁLŮ A POTIŠTĚNÝCH PLOCH

OBRAZOVÁ ANALÝZA POVRCHU POTISKOVANÝCH MATERIÁLŮ A POTIŠTĚNÝCH PLOCH OBRAZOVÁ ANALÝZA POVRCU POTISKOVANÝC MATERIÁLŮ A POTIŠTĚNÝC PLOC Zmeškal Oldřich, Marti Julíe Tomáš Bžatek Ústav fyzikálí a spotřebí chemie, Fakulta chemická, Vysoké učeí techické v Brě, Purkyňova 8, 62

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Téma: 11) Dynamika stavebních konstrukcí

Téma: 11) Dynamika stavebních konstrukcí Počítačová podpora statických výpočtů Téma: ) Dyamika stavebích kostrukcí Katedra stavebí mechaiky Fakulta stavebí, VŠB V Techická uiverzita Ostrava Rozděleí mechaiky Statika Zabývá se problematikou působeí

Více

Lineární a adaptivní zpracování dat. 8. Modely časových řad I.

Lineární a adaptivní zpracování dat. 8. Modely časových řad I. Lieárí a adaptiví zpracováí dat 8. Modely časových řad I. Daiel Schwarz Ivestice do rozvoje vzděláváí Cíl, motivace Popis a idetifikace systémů BLACK BOX Cíl, motivace Popis a idetifikace systémů BLACK

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základy měřeí eelektrických veliči.. Měřicí řetězec Měřicí řetězec (měřicí soustava) je soubor měřicích čleů (jedotek) účelě uspořádaých tak, aby bylo ožě split požadovaý úkol měřeí, tj. získat iformaci

Více

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů Číslicová filtrace Použití : Separace sigálů Restaurace sigálů Číslicové filtry Aalogové x číslicové filtry : Aalogové Číslicové: + levé + rychlé + velký dyamický rozsah (v amplitudě i frekveci) - evhodé

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš KVANTOVÁNÍ ZVUKOVÝCH SIGNÁLŮ NÍZKÉ ÚROVNĚ Abstrakt Quantization of acoustic low level signals David Bursík, Miroslav Lukeš Při testování kvality A/D převodníků se používají nejrůznější testovací signály.

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

Fourierova transformace ve zpracování obrazů

Fourierova transformace ve zpracování obrazů Fourierova trasformace ve zpracováí obrazů Jea Baptiste Joseph Fourier 768-83 6. předáška předmětu Zpracováí obrazů Martia Mudrová 24 Motivace Proč používat Fourierovu trasformaci? základí matematický

Více

UŽITÍ MATLABU V KOLORIMETRII. J.Novák, A.Mikš. Katedra fyziky, FSv ČVUT, Praha

UŽITÍ MATLABU V KOLORIMETRII. J.Novák, A.Mikš. Katedra fyziky, FSv ČVUT, Praha UŽITÍ MATLABU V KOLORIMETRII J.Novák A.Mikš Katedra fyziky FSv ČVUT Praha Kolorimetrické metody jsou velmi často používáy jako diagostické metody v řadě oblastí vědy a techiky. V čláku jsou ukázáy příklady

Více

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu 1. Defiice elektrického pohou Pod pojmem elektrický poho rozumíme soubor elektromechaických vazeb a vztahů mezi pracovím mechaismem a elektromechaickou soustavou. Mezi základí tři části elektrického pohou

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Příklady k přednášce 9 - Zpětná vazba

Příklady k přednášce 9 - Zpětná vazba Příklady k předášce 9 - Zpětá vazba Michael Šebek Automatické řízeí 205 6--5 Příklad: Přibližá iverze tak průřezu s výškou hladiy y(t), přítokem u(t) a odtokem dy() t dt + 2 yt () = ut () Cíl řízeí: sledovat

Více

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže Regulace apětí v ES Základí pricip regulace v ES si ukážeme a defiici statických charakteristik zátěže Je zřejmé, že výko odebíraý spotřebitelem je závislý a frekveci a apětí a přípojicích spotřebitelů.

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

TYPY ELEKTROD PRO DIGITÁLNÍ MIKROFON S PŘÍMOU A/D KONVERZÍ

TYPY ELEKTROD PRO DIGITÁLNÍ MIKROFON S PŘÍMOU A/D KONVERZÍ TYPY ELEKTROD PRO DIGITÁLNÍ MIKROFON S PŘÍMOU A/D KONVERZÍ Abstrakt Type of Electrode for Digital Microphoe with Direct A/D Coversio Duša Kovář * Digitálí mikrofo s přímou koverzí je elektroakustický systém,

Více

Měřící technika - MT úvod

Měřící technika - MT úvod Měřící techika - MT úvod Historie Už Galileo Galilei zavádí vědecký přístup k měřeí. Jeho výrok Měřit vše, co je měřitelé a co eí měřitelým učiit platí stále. - jedotá soustava jedotek fyz. veliči - símače

Více

Teorie kompenzace jalového induktivního výkonu

Teorie kompenzace jalového induktivního výkonu Teorie kompezace jalového iduktivího výkou. Úvod Prvky rozvodé soustavy (zdroje, vedeí, trasformátory, spotřebiče, spíací a jistící kompoety) jsou obecě vzato impedace a jejich áhradí schéma můžeme sestavit

Více

MATLAB. F. Rund, A. Novák Katedra radioelektroniky, FEL ČVUT v Praze. Abstrakt

MATLAB. F. Rund, A. Novák Katedra radioelektroniky, FEL ČVUT v Praze. Abstrakt PROBLÉM ŠPATNÉ SYNCHRONIZACE VZORKOVACÍCH KMITOČTŮ U MLS SIGNÁLŮ: MODEL V PROSTŘEDÍ MATLAB F. Rund, A. Novák Katedra radioelektroniky, FEL ČVUT v Praze Abstrakt Chceme-li hodnotit kvalitativní stránku

Více

523/2006 Sb. VYHLÁŠKA

523/2006 Sb. VYHLÁŠKA 523/2006 Sb. VYHLÁŠKA ze de 21. listopadu 2006, kterou se staoví mezí hodoty hlukových ukazatelů, jejich výpočet, základí požadavky a obsah strategických hlukových map a akčích pláů a podmíky účasti veřejosti

Více

DYNAMIC PROPERTIES OF ELECTRONIC GYROSCOPES FOR INERTIAL MEASUREMENT UNITS

DYNAMIC PROPERTIES OF ELECTRONIC GYROSCOPES FOR INERTIAL MEASUREMENT UNITS DYNAMIC PROPERTIES OF ELECTRONIC GYROSCOPES FOR INERTIAL MEASUREMENT UNITS Jiří Tůma & Jiří Kulháek Abstract: The paper deals with the dyamic properties of the electroic gyroscope as a sesor of agular

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Iterační výpočty projekt č. 2

Iterační výpočty projekt č. 2 Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

Číslicové zpracování signálů - spojité a diskrétní signály

Číslicové zpracování signálů - spojité a diskrétní signály Číslicové zpracováí sigálů - spojité a diskrétí sigály f (t) f (t) k 6 5 4 3 t 2 t Obr. Sigál spojitý a kvatovaý f -T 7 6 5 4 3 2 f (t) T 2T 3T 4T 5T 6T 7T 8T Obr.2 Diskrétí sigál t -3-2 - 2 3 4 5 6 Obr.4

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

Direct Digital Synthesis (DDS)

Direct Digital Synthesis (DDS) ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Direct Digital Synthesis (DDS) Přímá číslicová syntéza Tyto materiály vznikly za podpory

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Vyšší harmonické a meziharmonické

Vyšší harmonické a meziharmonické České vysoké učeí techické v Praze Fakulta elektrotechická Katedra elektroeergetiky Vyšší harmoické a meziharmoické. předáška ZS 0/0 Ig. Tomáš Sýkora, Ph.D. Defiice a zdroje vyšších harmoických Defiice

Více

3. Decibelové veličiny v akustice, kmitočtová pásma

3. Decibelové veličiny v akustice, kmitočtová pásma 3. Decibelové veličiy v akustice, kmitočtová ásma V ředchozí kaitole byly defiováy základí akustické veličiy, jako ař. akustický výko, akustický tlak a itezita zvuku. Tyto veličiy ve v raxi měí o moho

Více

SYNTÉZA AUDIO SIGNÁLŮ

SYNTÉZA AUDIO SIGNÁLŮ SYNTÉZA AUDIO SIGNÁLŮ R. Čmejla Fakulta elektrotechnická, ČVUT v Praze Abstrakt Příspěvek pojednává o technikách číslicové audio syntézy vyučovaných v předmětu Syntéza multimediálních signálů na Elektrotechnické

Více

FREQUENCY ANALYSIS OF FREE VIBRATIONS OF THE BEAM IN POSTCRITICAL STATE

FREQUENCY ANALYSIS OF FREE VIBRATIONS OF THE BEAM IN POSTCRITICAL STATE FREQUENCY ANAYSIS F FREE VIBRATINS F THE BEAM IN PSTCRITICA STATE P. Fratík * Summary: Postcritical ree vibratios o a sleder elastic beam are studied. Catilever beam is loaded by axial orce ad lateral

Více

Středoškolská technika 2015 ŘEŠENÍ DOKONALÉHO TVARU MOSTNÍHO NOSNÍKU Z HLEDISKA POTENCIÁLNÍ ENERGIE - ŘETĚZOVKA

Středoškolská technika 2015 ŘEŠENÍ DOKONALÉHO TVARU MOSTNÍHO NOSNÍKU Z HLEDISKA POTENCIÁLNÍ ENERGIE - ŘETĚZOVKA Středoškolská techika 05 Setkáí a prezetace prací středoškolských studetů a ČVUT ŘEŠENÍ DOKONALÉHO TVARU MOSTNÍHO NOSNÍKU Z HLEDISKA POTENCIÁLNÍ ENERGIE - ŘETĚZOVKA Duša Köig Středí průmyslová škola strojická

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

Měření neelektrických veličin. Fakulta strojního inženýrství VUT v Brně Ústav konstruování

Měření neelektrických veličin. Fakulta strojního inženýrství VUT v Brně Ústav konstruování Měření neelektrických veličin Fakulta strojního inženýrství VUT v Brně Ústav konstruování Obsah Struktura měřicího řetězce Senzory Technické parametry senzorů Obrazová příloha Měření neelektrických veličin

Více

8.2.1 Aritmetická posloupnost

8.2.1 Aritmetická posloupnost 8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

Vlastnosti a modelování aditivního

Vlastnosti a modelování aditivního Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),

Více

U klasifikace podle minimální vzdálenosti je nutno zvolit:

U klasifikace podle minimální vzdálenosti je nutno zvolit: .3. Klasifikace podle miimálí vzdáleosti Tato podkapitola je věováa popisu podstaty klasifikace podle miimálí vzdáleosti, jež úzce souvisí s klasifikací pomocí etaloů klasifikačích tříd. Představíme si

Více

6. FUNKCE A POSLOUPNOSTI

6. FUNKCE A POSLOUPNOSTI 6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

I. Výpočet čisté současné hodnoty upravené

I. Výpočet čisté současné hodnoty upravené I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě

Více

Lineární a adaptivní zpracování dat. 9. Modely časových řad II.

Lineární a adaptivní zpracování dat. 9. Modely časových řad II. Lieárí a adaptiví zpracováí dat 9. Modely časových řad II. Daiel Schwarz Ivestice do rozvoje vzděláváí Opakováí K čemu je dobré vytvářet modely procesů geerující časové řady? Dekompozice časový řad: jaké

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky

Více

MĚŘENÍ PARAMETRŮ OSVĚTLOVACÍCH SOUSTAV VEŘEJNÉHO OSVĚTLENÍ NAPÁJENÝCH Z REGULÁTORU E15

MĚŘENÍ PARAMETRŮ OSVĚTLOVACÍCH SOUSTAV VEŘEJNÉHO OSVĚTLENÍ NAPÁJENÝCH Z REGULÁTORU E15 VŠB - T Ostrava, FE MĚŘENÍ PARAMETRŮ OVĚTLOVACÍCH OTAV VEŘEJNÉHO OVĚTLENÍ NAPÁJENÝCH Z REGLÁTOR E5 Řešitelé: g. taislav Mišák, Ph.D., Prof. g. Karel okaský, Cc. V Ostravě de.8.2007 g. taislav Mišák, Prof.

Více

Zpracování zvuku v prezentacích

Zpracování zvuku v prezentacích Zpracování zvuku v prezentacích CENTRUM MEDIÁLNÍHO VZDĚLÁVÁNÍ Akreditované středisko dalšího vzdělávání pedagogických pracovníků Zvuk Zvuk je mechanické vlnění v látkovém prostředí (plyny, kapaliny, pevné

Více

METODICKÝ NÁVOD PRO MĚŘENÍ A HODNOCENÍ HLUKU A VIBRACÍ NA PRACOVIŠTI A VIBRACÍ V CHRÁNĚNÝCH VNITŘNÍCH PROSTORECH STAVEB

METODICKÝ NÁVOD PRO MĚŘENÍ A HODNOCENÍ HLUKU A VIBRACÍ NA PRACOVIŠTI A VIBRACÍ V CHRÁNĚNÝCH VNITŘNÍCH PROSTORECH STAVEB 6 VĚSTNÍK MZ ČR ČÁSTKA 4 METODICKÝ NÁVOD PRO MĚŘENÍ A HODNOCENÍ HLUKU A VIBRACÍ NA PRACOVIŠTI A VIBRACÍ V CHRÁNĚNÝCH VNITŘNÍCH PROSTORECH STAVEB Miisterstvo zdravotictví vydává podle 80 odst., písm. a)

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

Úloha II.S... odhadnutelná

Úloha II.S... odhadnutelná Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí

Více

Zvuk a jeho vlastnosti

Zvuk a jeho vlastnosti PEF MZLU v Brně 9. října 2008 Zvuk obecně podélné (nebo příčné) mechanické vlnění v látkovém prostředí, které je schopno vyvolat v lidském uchu sluchový vjem. frekvence leží v rozsahu přibližně 20 Hz až

Více

8.2.1 Aritmetická posloupnost I

8.2.1 Aritmetická posloupnost I 8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

3 Měření hlukových emisí elektrických strojů

3 Měření hlukových emisí elektrických strojů 3 Měření hlukových emisí elektrických strojů Cíle úlohy: Cílem laboratorní úlohy je seznámit studenty s hlukem jako vedlejším produktem průmyslové činnosti, zásadami pro jeho objektivní měření pomocí moderních

Více

TEORIE A VLASTNOSTI SYNTEZÁTORU FREKVENCE ZALOŽENÉHO NA PRINCIPU ZPĚTNOVAZEBNÍ SČÍTAČKY

TEORIE A VLASTNOSTI SYNTEZÁTORU FREKVENCE ZALOŽENÉHO NA PRINCIPU ZPĚTNOVAZEBNÍ SČÍTAČKY Roč. 69 (013) Číslo 3 M. Štork: Teorie a vlastosti sytezátoru rekvece... 1 TEORIE A VLASTOSTI SYTEZÁTORU FREKVECE ZALOŽEÉHO A PRICIPU ZPĚTOVAZEBÍ SČÍTAČKY Pro. Ig. Mila Štork, CSc. Katedra aplikovaé elektroiky

Více

2. Náhodná veličina. je konečná nebo spočetná množina;

2. Náhodná veličina. je konečná nebo spočetná množina; . Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ ÚZKOPÁSMOVÉ FILTRY PRO SIGNÁLY EKG FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ ÚZKOPÁSMOVÉ FILTRY PRO SIGNÁLY EKG FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

teorie elektronických obvodů Jiří Petržela analýza šumu v elektronických obvodech

teorie elektronických obvodů Jiří Petržela analýza šumu v elektronických obvodech Jiří Petržela co je to šum? je to náhodný signál narušující zpracování a přenos užitečného signálu je to signál náhodné okamžité amplitudy s časově neměnnými statistickými vlastnostmi kde se vyskytuje?

Více

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá

Více

Systémové vodící stěny a dopravní zábrany

Systémové vodící stěny a dopravní zábrany Vyvíjíme bezpečost. Systémové vodící stěy a dopraví zábray Fukčí a estetické řešeí v dopravě eje pro města a obce. www.deltabloc.cz CITYBLOC Více bezpečosti pro všechy účastíky siličího provozu Jediečá

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

5 PŘEDNÁŠKA 5: Jednorozměrný a třírozměrný harmonický oscilátor.

5 PŘEDNÁŠKA 5: Jednorozměrný a třírozměrný harmonický oscilátor. 5 PŘEDNÁŠKA 5: Jedorozměrý a třírozměrý harmoický oscilátor. Půjde o spektrum harmoického oscilátoru emá to ic společého se spektrem atomu ebo se spektrálími čarami atomu. Liší se to právě poteciálem!

Více

Multimediální systémy. 08 Zvuk

Multimediální systémy. 08 Zvuk Multimediální systémy 08 Zvuk Michal Kačmařík Institut geoinformatiky, VŠB-TUO Osnova přednášky Zvuk fyzikální podstata a vlastnosti Digitální zvuk Komprese, kodeky, formáty Zvuk v MMS Přítomnost zvuku

Více

Hlavní parametry rádiových přijímačů

Hlavní parametry rádiových přijímačů Hlavní parametry rádiových přijímačů Zpracoval: Ing. Jiří Sehnal Pro posouzení základních vlastností rádiových přijímačů jsou zavedena normalizovaná kritéria parametry, podle kterých se rádiové přijímače

Více

NA-45P / NA-45L. VLL VLN A W var PF/cos THD Hz/ C. k M

NA-45P / NA-45L. VLL VLN A W var PF/cos THD Hz/ C. k M Multifukčíměřícípřístroje NA-45P / NA-45L VLL VLN A W var PF/cos THD Hz/ C k M Přístroje jsou určey pro měřeí a sledováí sdružeých a fázových apětí, proudů, čiých a jalových výkoů, účiíků, THD apětí a

Více

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy 3.1 Zadáí: 3. Sekvečí obvody 1. Navrhěte a realizujte obvod geerující zadaou sekveci. Postupujte ásledově: a) Vytvořte vývojovou tabulku pro zadaou sekveci b) Miimalizujte budící fukce pomocí Karaughovy

Více

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Pravděpodobnostní model doby setrvání ministra školství ve funkci Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí

Více

Návrh frekvenčního filtru

Návrh frekvenčního filtru Návrh frekvenčního filtru Vypracoval: Martin Dlouhý, Petr Salajka 25. 9 2010 1 1 Zadání 1. Navrhněte co nejjednodušší přenosovou funkci frekvenčního pásmového filtru Dolní propusti typu Bessel, která bude

Více

Teorie chyb a vyrovnávací počet. Obsah:

Teorie chyb a vyrovnávací počet. Obsah: Teorie chyb a vyrovávací počet Obsah: Testováí statistických hypotéz.... Ověřováí hypotézy o středí hodotě základího souboru s orálí rozděleí... 4. Ověřováí hypotézy o rozptylu v základí souboru s orálí

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad... Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1

Více

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou

Více

Optické vlastnosti atmosféry, rekonstrukce optického signálu degradovaného průchodem atmosférou

Optické vlastnosti atmosféry, rekonstrukce optického signálu degradovaného průchodem atmosférou INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Optické vlastosti atmosféry, rekostrukce optického sigálu degradovaého průchodem atmosférou Učebí texty k semiáři Autor: Dr. Ig. Zdeěk Řehoř UO Bro) Datum: 22. 10. 2010

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika Přijímací řízeí akademický rok 0/0 c. studium Kompletí zěí testových otázek matematika Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá. Které číslo doplíte místo 8? 6 6 8 C. Které číslo

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti 8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:

Více

Geometrická optika. Zákon odrazu a lomu světla

Geometrická optika. Zákon odrazu a lomu světla Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

Regulace frekvence a velikosti napětí Řízení je spojeno s dodávkou a přenosem činného a jalového výkonu v soustavě.

Regulace frekvence a velikosti napětí Řízení je spojeno s dodávkou a přenosem činného a jalového výkonu v soustavě. 18. Řízeí elektrizačí soustavy ES je spojeí paralelě pracujících elektráre, přeosových a rozvodých sítí se spotřebiči. Provoz je optimálě spolehlivá hospodárá dodávka kvalití elektrické eergie. Stěžejími

Více

Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv

Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv 3. meziárodí koferece Řízeí a modelováí fiačích rizik Ostrava VŠB-U Ostrava, Ekoomická fakulta, katedra Fiací 6.-7. září 006 tegrace hodot Value-at-Risk lieárích subportfolií a bázi vícerozměrého ormálího

Více

4. Napěťové poměry v distribuční soustavě

4. Napěťové poměry v distribuční soustavě Tesařová M. Průmyslová elektroeergetika, ZČU v Plzi 000 4. Napěťové poměry v distribučí soustavě 4.1 Napěťové poměry při bezporuchovém provozím stavu Charakteristickým zakem kvality dodávaé elektrické

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více

3G3HV. Výkonný frekvenční měnič pro všeobecné použití

3G3HV. Výkonný frekvenční měnič pro všeobecné použití Výkoý frekvečí měič pro všeobecé použití APLIKACE Možství zabudovaých fukcí frekvečího měiče může být s výhodou použito v řadě aplikací Dopravíky (řízeí dopravíku) - Zlepšeí účiosti alezeím optimálího

Více

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU Matematické modelováí (KMA/MM Téma: Model pohybu mraveců Zdeěk Hazal (A8N18P, zhazal@sezam.cz 8/9 Obor: FAV-AVIN-FIS 1. ÚVOD Model byl převzat z kihy Spojité modely v biologii

Více