Reakce. K618 FD ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní charakter a bude v průbehu semestru
|
|
- Stanislav Horák
- před 6 lety
- Počet zobrazení:
Transkript
1 Poznámky ke cičení z předmětu Pružnost penost n K8 D ČVUT Prze (prconí erze). Tento mteriá má pouze prconí chrkter bude průbehu semestru postupně dopňoán. utor: Jn Vyčich E mi: ycich@fd.cut.cz Příkd reize:. istopdu 0 Vyšetřete nosník ztížený de obrázku. Určete funkci momentu ohyboé čáry stnote posunutí pootočení n konci. Vyřešte pomocí.d.r. Ú.D.R. Znáte: q 0,. Určete: o (), (), ϕ(), (), ϕ() Podsttné pro řešení úohy je jen sisá posoucí rekce moment bodě, kde = 0 ýrz q 0 je náhrdní břemeno pro spojité trojúheníkoé ztížení. sí sioá podmínk = q 0 q0 moment momentoá podmínk k bodu Rozbor ztížení = q 0 = q 0 Odození eikosti trojúheníkoého spojitého ztížení pro obecnou zdáenost od bodu z podobnosti trojúheníku q() = q 0 = q() = q 0 ernouiho diferenciání ronice Úpné diferenciání ronice q() q() q 0 q 0 q 0 Sečteme šechny momenty ze (kdné směry ) k yšetřonému bodu e zdáenosti. o () = + q() o () = q 0 + q 0 q 0 [ ] o () = q 0 Řešení pomocí.d.r. Postupnou integrcí funkce () dostneme neúpnou funkci ohyboé čáry () () = o() = q [ 0 + ] () = q [ ] () = q [ ] + + Pomocí okrjoých podmínek dopočítáme koeficienty, dopníme funkci ohyboé čáry () (0) = 0 posunutí bodě = = 0 ϕ(0) = (0) = 0 pootočení bodě = = 0 unkce ohyboé čáry pootočení () = q [ ] ϕ() = q [ ] 0 + n konci bodě () = q [ ] () = q 0 0 ϕ() = () = q 0 ϕ() = q 0 8 [ + ] () ϕ()
2 Řešení pomocí Ú.D.R. Postupnou integrcí funkce () dostneme neúpnou funkci ohyboé čáry () () = q() = q 0 () = q 0 () = q 0 () = q 0 () = q Pomocí okrjoých podmínek dopočítáme koeficienty,,, dopníme funkci ohyboé čáry () (0) = 0 posunutí bodě = = 0 ϕ(0) = (0) = 0 pootočení bodě = = 0 T() = 0 součet posoucích si bodě () = T() = 0 = q 0 + = 0 = q 0 o () = 0 součet momentů bodě () = o() = 0 = q = 0 unkce ohyboé čáry = q 0 () = q 0 0 q 0 () = q 0 + q 0 ] [ 0 + n konci bodě () = q [ ] () = q 0 0 ϕ() = () = q 0 ϕ() = q 0 8 [ + ] () ϕ() Příkd Vyšetřete nosník ztížený de obrázku. Určete funkci momentu ohyboé čáry stnote posunutí pootočení n konci. Vyřešte pomocí metody fiktiního. Znáte:,. Určete: o (), T f (), of (), (), ϕ(), (), ϕ() Podsttné pro řešení úohy je jen sisá posoucí rekce moment bodě, kde = 0. sí sioá podmínk = 0 moment momentoá podmínk k bodu = Sečteme šechny momenty ze (kdné směry ) k yšetřonému bodu e zdáenosti. o () = + = Výsedný průběh momentu
3 iktiní nosník Z tbuek určíme fiktiní nosník ytoříme n něm spojité ztížení odpoídjící trem eikostí momentům skuečnéhoq 0 =.Určímeprůběhposoucíchsi momentů n fiktiním T f () of () (stejná znménkoá konence jko u T tedy ). q 0 = T f () = q 0 = of () = q 0 = Hodnoty posoucí síy momentu e etknutí fiktiního T f () of (). T f () = q 0 = of () = q 0 = Ohyboá čár pootočení unkce ohyboé čáry pootočení pro obecný bod () = of() = ϕ() = T f() = n konci bodě () = of() = ϕ() = T f() = Příkd Vyšetřete nosník ztížený de obrázku. Určete funkci momentu ohyboé čáry stnote posunutí pootočení n konci. Vyřešte pomocí metody fiktiního. Znáte:,. Určete: o (), T f (), of (), (), ϕ(), (), ϕ() () ϕ() Podsttné pro řešení úohy je jen sisá posoucí rekce moment bodě, kde = 0. sí sioá podmínk = moment momentoá podmínk k bodu = Sečteme šechny momenty ze (kdné směry ) k yšetřonému bodu e zdáenosti. o () = + = + = ( ) Výsedný průběh momentu iktiní nosník Z tbuek určíme fiktiní nosník ytoříme n něm spojité trojúheníkoé ztížení odpoídjící trem eikostí momentům skutečného q 0 =. Určíme průběh posoucích si momentů n fiktiním T f () of () (stejná znménkoá konence jko u T tedy ). Pozn.: prosesteníprůběhů posoucích si momentů yužiji metody skádání obrzců od obdéníku odečítám trojúheník. q 0 = q () = q 0
4 T f () = q 0 q () = q 0 q 0 ) = ( of () = q 0 q 0 = q 0 = = = = q 0 = ( ) Hodnoty posoucí síy momentu e etknutí fiktiního T f () of (). ( ) T f () = = ( ) of () = = Ohyboá čár pootočení unkce ohyboé čáry pootočení pro obecný bod () = of() ϕ() = T f() = = ( ) ) ( n konci bodě () = of() = StnoímesisourekciR bodě,kde = 0 sisou rekci R bodě, kde =. R / / R sí momentoá podmínk k bodu R = / R sí momentoá podmínk k bodu R = / Sečteme šechny momenty ze (kdné směry ) k yšetřonému bodu e zdáenosti. oment bodě pro = 0 je = 0 moment bodě pro = je = 0. () = R = () = R = () = R ( ) = ( ) = ( ) Výsedný průběh momentu R ϕ() = T f() = / / Příkd Vyšetřete nosník ztížený de obrázku. Určete posunutí uprostřed pootočení n obou koncích. Vyřešte pomocí metody fiktiního. Znáte:,. Určete: (/), ϕ(0), ϕ() () ϕ() iktiní nosník Z tbuek určíme fiktiní nosník ytoříme n něm dojté spojité trojúheníkoé ztížení odpoídjící trem eikostí momentům skutečného s mimem uprostřed =. Pro určení posunutí pootočení bodech, nám stčí určit hodnoty posoucí síy momentu pro kždý z těchto bodů (stejná znménkoá konence jko u T tedy ). q m = R f / / R f n fiktiním / / R f = q m = = = R f
5 od pro = 0 od pro = / T f (0) = R f = of (0) = 0 T f (/) = R f q m = of (/) = R f q m = od pro = T f () = R f q m = 8 od pro = 0 of () = 0 (0) = of(0) = 0 = 0 = = ϕ m od pro = / od pro = (/) = of(/) ϕ(/) = T f(/) () = of() = = 0 = 0 8 = 8 = ϕ() = T f() = = ϕ() = ϕ(0) (0) ϕ(0) ϕ() () (/) Příkd ϕ(/) / / Vyšetřete nosník ztížený de obrázku. Určete posunutí pootočení n přeisém konci. Vyřešte pomocí metody fiktiního. Znáte: q,,. Určete: (0) q Stnoíme sisou rekci R bodě, kde = + sisou rekci R bodě, kde =. R R R sí momentoá podmínk k bodu R = q R sí momentoá podmínk k bodu R = q(+ ) Sečteme šechny momenty zpr (kdné směry ) k yšetřonému bodu e zdáenosti. oment bodě pro = 0 je = 0 moment bodě pro = + je = 0. () = q = q () = q () = q( )+R ( ) = = q q (q+q ).( ) = = q( ) Výsedný průběh momentu iktiní nosník q Z tbuek určíme fiktiní nosník ytoříme n něm spojité trojúheníkoé prboické ztížení odpoídjící trem eikostí momentům skutečného s mimemndpodporou = q.prourčeníposunutí pootočení bodu nám stčí určit hodnoty posoucí síy momentu pro tento bod, což odpoídá sisé sioé rekci T f (0) momentu of (0) e etknutí fiktiného (stejná znménkoá konence jko u T tedy ). q
6 Příkd q 0 = q Vyšetřete nosník ztížený de obrázku. Určete posunutí pootočení n přeisém konci. Vyřešte pomocí metody fiktiního. Znáte:,,. Určete: (0) Soženou soustu, která je ronoáze, je nutno rozděit n dě části, které jsou tké ronoáze, dopočítt zební síu R f. Rf Rf of(0) q0 = q Tf(0) iktiní nosník Z momentoé podmínky n eé části koem bodu dopočítáme zební síu R f R f q 0 = 0 R f q = 0 R f = q Ze sisé sioé podmínky n pré části dopočítáme sioou rekci T f (0) T f (0) R f q 0 = 0 T f (0) q q = 0 T f (0) = q( + ) Z momentoé podmínky koem bodu n pré části dopočítáme momentoou rekci of (0) of (0) R f q 0 = 0 of (0) q q = 0 od pro = 0 (0) = of(0) of (0) = q( + 8 ) = q ( + 8 ) = q ( + ) Vzební sí R f od pro = 0 7 Příkd (0) = of(0) R f = = ( + ) = ( + ) Vyšetřete nosník ztížený de obrázku. Určete posunutí pootočení n přeisém konci. Vyřešte pomocí metody fiktiního. Znáte:,,. Určete: (0) iktiní nosník Vzební sí R f od pro = 0 R f = (0) = of(0) = ( + ) (0) ϕ(0) = (+ )
7 8 Příkd Vyšetřete nosník ztížený de obrázku. Určete posunutí pootočení n přeisém konci. Vyřešte pomocí metody fiktiního. Znáte: q,,. Určete: (0) q iktiní nosník Vzební sí R f od pro = 0 (0) = of(0) R f = q( ) = q ( 8 + ) = q ( + ) 7
Reakce. K618 FD ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní charakter a bude v průbehu semestru
Poznámky ke cvičení z předmětu Pružnost pevnost na K618 D ČVU v Praze (pracovní verze). ento materiá má pouze pracovní charakter a bude v průbehu semestru postupně dopňován. Autor: Jan Vyčich E mai: vycich@fd.cvut.cz
Téma Přetvoření nosníků namáhaných ohybem
Pružnost psticit,.ročník bkářského studi Tém Přetvoření nosníků nmáhných ohbem Přetvoření nosníků - tížení nerovnoměrnou tepotou Přetvoření nosníků tížení siové Zákdní vth předpokd řešení Vth mei sttickými
Téma 9 Přetvoření nosníků namáhaných ohybem II.
Pružnost psticit,.ročník kářského studi Tém 9 Přetvoření nosníků nmáhných ohem. ohrov metod Přetvoření nosníků proměnného průřeu Sttick neurčité přípd ohu Viv smku n přetvoření ohýného nosníku Ktedr stvení
Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím
Sttik stvebních konstrukcí I.,.ročník bkářského studi Tém 3 Úvod ke stticky neurčitým prutovým konstrukcím Ktedr stvební mechniky Fkut stvební, VŠB - Technická univerzit Ostrv Osnov přednášky Stticky neurčité
Téma 8 Přetvoření nosníků namáhaných ohybem I.
Pružnost psticit, ročník kářského studi Tém 8 Přetvoření nosníků nmáhných ohem Zákdní vzth předpokd řešení Přetvoření nosníků od nerovnoměrného otepení etod přímé integrce diferenciání rovnice ohové čár
Posouvající síla V. R a. R b. osa nosníku. Kladné směry kolmé složky vnitřních sil. Výpočet nosníku v příčné úloze (ve svislé hlavní rovině xz)
Posouvjící sí Posouvjící síu v zdném průřezu c ze vypočítt jko gerický součet všech svisých si po jedné strně průřezu. Postupujei se z evé strny, do součtu se zhrnou kdně síy půsoící zdo nhoru, záporně
Stanovení přetvoření ohýbaných nosníků. Clebschova a Mohrova metoda
Stnovení přetvoření ohýnýh nosníků Ceshov Mohrov metod (pokrčování) (Mohrov nogie) Příkd Určete rovnii ohyové čáry pootočení nosníku stáého průřezu Ceshovou metodou. Stnovte veikost průhyu w pootočení
Téma 2 Úvod ke staticky neurčitým prutovým konstrukcím
Stvební mechnik,.ročník bkářského studi AST Tém Úvod ke stticky neurčitým prutovým konstrukcím Ktedr stvební mechniky Fkut stvební, VŠB - Technická univerzit Ostrv Osnov přednášky Stticky neurčité konstrukce,
Řešení úloh celostátního kola 49. ročníku fyzikální olympiády. Autořiúloh:P.Šedivý(1),L.Richterek(2),I.Volf(3)aB.Vybíral(4)
Řešení úoh ceostátního ko 49. ročníku fyzikání oympiády. Autořiúoh:.Šedivý(1),L.Richterek(),I.Vof(3)B.Vybír(4) 1.) Oznčme t 1, t, t 3čsyzábesků, v 1, v, v 3přísušnérychostistředukoue, veikost zrychení
PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ
Zdání PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ Příkd č. Uvžujte příhrdovou konstruki z Or., vypočítejte svisý posun v odě (znčený ). odře vyznčené pruty (pruty 3, 4, 5, 6 7) jsou ztíženy rovnoměrným otepením
Linearní teplotní gradient
Poznámky k semináři z předmětu Pružnost pevnost na K68 D ČVUT v Praze (pracovní verze). Tento materiá má pouze pracovní charakter a ude v průěhu semestru postupně dopňován. utor: Jan Vyčich E mai: vycich@fd.cvut.cz
Příklad 7 Průhyb nosníku - složitější případ
Příklad 7 Průhyb nosníku - složitější případ Zadání Nosník s proměnným průřezem je na obrázku. Průřezy a jsou obdélníkové, výška prvního průřezu je, násobkem výšky druhého průřezu. a) Pomocí metody integrace
Téma 6 Staticky neurčitý rovinný oblouk
ttik stveních konstrukcí I.,.ročník kářského studi Tém 6 tticky neurčitý rovinný oouk Zákdní vstnosti stticky neurčitého rovinného oouku Dvojkouový oouk Dvojkouový oouk s táhem Vetknuté oouky Přiižný výpočet
Pohybové možnosti volných hmotných objektů v rovině
REAKCE ohyové možnosti volných hmotných ojektů v rovině Stupeň volnosti n v : možnost vykont jednu složku posunu v ose souřdného systému neo pootočení. m [00] +x volný hmotný od v rovině: n v =2 (posun
Rovinné nosníkové soustavy. Pohyblivé zatížení. Trojkloubový nosník s táhlem Rovinně zakřivený nosník (oblouk) Příčinkové čáry
Stvení sttik,.ročník kářského studi Rovinné nosníkové soustvy Pohyivé ztížení Trojkouový nosník s táhem Rovinně zkřivený nosník (oouk) Příčinkové čáry Ktedr stvení mehniky Fkut stvení, VŠB - Tehniká univerzit
Téma 6 Spojitý nosník
Stvení mechnik.očník kářského studi AST Tém Sojitý nosník Zákdní vstnosti sojitého nosníku Řešení sojitého nosníku siovou metodou yužití symetie sojitého nosníku Kted stvení mechniky Fkut stvení ŠB - Technická
K618 FD ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní charakter a bude v průběhu semestru
Poznámky k semináři z předmětu Pružnost pevnost na K68 D ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní carakter a bude v průběu semestru postupně doplňován. Autor: Jan Vyčicl E mail:
Téma 5 Spojitý nosník
Stvení mechnik.očník kářského studi AST Tém 5 Spojitý nosník Zákdní vstnosti spojitého nosníku Řešení spojitého nosníku siovou metodou yužití symetie spojitého nosníku Kted stvení mechniky Fkut stvení
Á Ý Á Í Š š ů Š ž ú ř ž ú ř ř š ů ř ř ů Ů ř ů ň ů ř š é ů ž ř š ž é ř é ř š š ž ř ž ř ů ž ř ů ž ů é ř ž é ž ž ř ř ň ž ř ř ů š é ř ž ů ŠÍ é ř ň ů ř š é ř é ř š é ů ž š é ů é ú š é ž š š é é ř é é š ř ň
ú Í Š Š Ť Í Š Š ň Ó Š Í Í Š Í ž Í Í Í ú Š Ů Č Š Š Á Í Š ú Í Ť Ů Í ž ž Ť Š Í ž ú ž Č ž Ú ž ť Í Í ú Ú ž ú ú Í ž Í Í Í ú ú Ú Í Ó ú Í Ů ú ú Ú Ó Í Í Í ú ú ž ú Í ú ž Č Ú Í ň É Í ú Í ú Í Č ň ň Č Ú ň ň ž Í Í ž
Statika 2. Vetknuté nosníky. Miroslav Vokáč 2. listopadu ČVUT v Praze, Fakulta architektury. Statika 2. M.
3. přednáška Průhybová čára Mirosav Vokáč mirosav.vokac@kok.cvut.cz ČVUT v Praze, Fakuta architektury 2. istopadu 2016 Průhybová čára ohýbaného nosníku Znaménková konvence veičin M z x +q +w +ϕ + q...
5 kn/m. E = 10GPa. 50 kn/m. a b c 0,1 0,1. 30 kn. b c. Statika stavebních konstrukcí I. Příklad č. 1 Posun na nosníku
Sttik stveníh konstrukí I Příkl č. 1 Posun n nosníku Metoou jenotkovýh ztížení určete voorovný posun ou nosníku pole orázku. Nosník je vyroen z měkkého řev o moulu pružnosti 10 GP. 50 kn/m E = 10GP 0,1
Téma Přetvoření nosníků namáhaných ohybem
Pružnost plsticit,.ročník bklářského studi Tém Přetvoření nosníků nmáhných ohbem Zákldní vth předpokld řešení Přetvoření nosníků od nerovnoměrného oteplení etod přímé integrce diferenciální rovnice ohbové
SMR 2. Pavel Padevět
SR Pve Pdevět PRICIP VIRTUÁLÍCH PRACÍ Deformční metod tice thosti prt, princip virtáních posnů PRICIP VIRTUÁLÍCH POSUUTÍ (oecný princip rovnováhy) Stečný stv E; A [] Virtání práce vnějších posntí W e
Ohýbaný nosník - napětí
Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se
Elastické deformace těles
Eastické eformace těes 15 Na oceový rát ék L 15 m a průměru 1 mm zavěsíme závaží o hmotnosti m 110 kg přičemž Youngův mou pružnosti ocei v tahu E 16 GPa a mez pružnosti ocei σ P 0 Pa Určete reativní prooužení
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových
SMR 2. Pavel Padevět
SR Pve Pevět Přenášk č. Přenášk č. PRINCIP VIRTUÁLNÍCH PRCÍ Výpočet přetvoření n sttk určtý konstrukí Přenášk č. Dopňková vrtuání práe momentů Vv n výpočet eformí: oment Posouvjíí sí Normáové sí (přírové
-R x,a. Příklad 2. na nejbližší vyšší celý mm) 4) Výpočet skutečné plochy A skut 5) Výpočet maximálního napětíσ max 6) Porovnání napětí. Výsl.
Zákdy dimenzování prutu nmáhného prostým tkem them Th prostý tk-zákdy dimenzování Už známe:, 3 -, i i 3 3 ormáové npětí [P] konst. po výšce průřezu Deformce [m] ii E ově zákdní vzthy: Průřezová chrkteristik
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled
Nosné stavební konstrukce Výpočet reakcí
Stvení sttik 1.ročník klářského studi Nosné stvení konstrukce Výpočet rekcí Reálné ztížení nosných stveních konstrukcí Prut geometrický popis vnější vzy nehynost silové ztížení složky rekcí Ktedr stvení
Přednáška 10, modely podloží
Statika stavebních konstrukcí II.,.ročník kaářského studia Přednáška, modey podoží Úvod Winkerův mode podoží Pasternakův mode podoží Nosník na pružném Winkerově podoží, řešení OD atedra stavební mechaniky
Napětí v ohybu: Výpočet rozměrů nosníků zatížených spojitým zatížením.
Číslo projektu CZ.1.07/ 1.1.36/ 02.0066 Autor Pavel Florík Předmět Mechanika Téma Namáhání součástí na ohyb Metodický pokyn výkladový text s ukázkami Napětí v ohybu: Výpočet rozměrů nosníků zatížených
Téma 4 Výpočet přímého nosníku
Stavební statika, 1.ročník bakaářského studia Téma 4 Výpočet přímého nosníku Výpočet nosníku v osové úoze Výpočet nosníku v příčné úoze ve svisé a vodorovné havní rovině Výpočet nosníku v krutové úoze
Nosné stavební konstrukce, výpočet reakcí
Stvení sttik.ročník kářského studi Nosná stvení konstrukce Nosné stvení konstrukce výpočet rekcí Nosná stvení konstrukce souží k přenosu ztížení ojektu do horninového msívu n němž je ojekt zožen. Musí
Pohyblivé zatížení. Pohyblivé zatížení. Příčinkové čáry na prostém nosníku, konzole a spojitém nosníku s vloženými klouby
Stvní sttik,.ročník kářského stui Pohyivé ztížní zniká pojížěním vozi (vky, utomoiy, jřáy po stvní konstruki (mosty, jřáové ráhy, nájzové rmpy, pohy gráží. Pohyivé ztížní n prostém nosníku, konzo spojitém
Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem
Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je
PRUŽNOST A PLASTICITA
Doporučená itertur PRUŽOST A PLASTICITA Ing. Vdimír Michcová LPH 407/ te. 59 73 348 vdimir.michcov@vs.cz http://fst0.vs.cz/michcov Bend: Stvení sttik I., VŠBTU Ostrv 005 Podmínky zápočtu: Šmířák: Pružnost
Spojitý nosník. Příklady
Spojitý nosník Příklady Příklad, zadání A = konst. =, m I = konst. =,6 m 4 E = konst. = GPa q =kn / m F kn 3 = M = 5kNm F = 5kN 8 F3 = 8kN 4,5 . způsob řešení n p = (nepočítáme pootočení ve styčníku č.3)
Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB A) NOSNÍKY NA DVOU PODPORÁCH ZATÍŽENÉ SOUSTAVOU ROVNOBĚŽNÝCH SIL
Předmět: Ročník: Vytvoři: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 9. ČERVNA 2013 Název zpracovaného ceku: NAMÁHÁNÍ NA OHYB A) NOSNÍKY NA DVOU PODPORÁCH ZATÍŽENÉ SOUSTAVOU ROVNOBĚŽNÝCH SIL ÚLOHA 1
ANALÝZA KONSTRUKCÍ. zimní semestr
ANALÝZA KONSTRUKCÍ zimní semestr 2016-2017 ANKC analýza konstrukcí prof. Ing. Petr Konvalinka, CSc., FEng. katedra mechaniky vedoucí Experimentálního centra FSv, D1038 konzultace : pondělí 15:00 16:00
Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)
KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1
ANALÝZA KONSTRUKCÍ. zimní semestr
ANALÝZA KONSTRUKCÍ zimní semestr 2009-2010 ANKC analýza konstrukcí Prof. Ing. Petr Konvalinka, CSc. katedra mechaniky, B316 vedoucí Experimentálního centra FSv, D1038 konzultace : pondělí 8:00 9:00 hodin,
Stanovení přetvoření ohýbaných nosníků. Mohrova metoda (Mohrova analogie)
Stnovení přetvoření ohýnýh nosníků ohrov metod (ohrov nlogie) Přetvoření ohýnýh nosníků Posouzení z hledisk meze použitelnosti Ztížení, deforme w, φ Okrové podmínky (deforme) Šmiřák, S.: Pružnost plstiit
Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1
Střední průmysová škoa a Vyšší odborná škoa technická Brno, Sokoská 1 Šabona: Inovace a zkvaitnění výuky prostřednictvím ICT Název: Téma: Autor: Číso: Anotace: echanika, pružnost pevnost Nosníky stejné
Stavební mechanika 2 (K132SM02)
Stvení mecnik 2 (K132SM02) Přednáší: Jn Sýkor Ktedr mecniky K132 místnost D2016 e-mil: jn.sykor.1@fsv.cvut.cz konzultční odiny: Po 12-14 Kldné směry vnitřníc sil: Kldný průřez vnitřní síly jsou kldné ve
Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY
Předmět: Ročník: Vytvořil: Datum: MECHNIK PRVNÍ ŠČERBOVÁ M. PVELK V. 15. ZÁŘÍ 2012 Název zpracovaného celku: NOSNÍKY ) NOSNÍKY ZTÍŽENÉ OBECNOU SOUSTVOU SIL Obecný postup při matematickém řešení reakcí
Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.
Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech
4.4.3 Kosinová věta. Předpoklady:
443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější
Stavební mechanika 1 (K132SM01)
Stní mnik 1 (K132SM01) Přnáší: o. ng. Mtěj Lpš, P.D. Ktr mniky K132 místnost D2034 konzult Čt 9:30-11:00 -mil: mtj.lps@fs.ut.z ttp://m.fs.ut.z/~lps/ting/inx.tml Řáný trmín zápočtoé písmky j ÚTERÝ 25. un
Příklad 1 Osově namáhaný prut průběhy veličin
Příkld 1 Osově nmáhný prut průběhy veličin Zdání Oelový sloup složený ze dvou částí je neposuvně ukotven n obou koníh v tuhém rámu. Dolní část je vysoká, m je z průřezu 1 - HEB 16 (průřezová ploh A b =
1. Stanovení modulu pružnosti v tahu přímou metodou
. Stanovení moduu pružnost v tahu přímou metodou.. Zadání úohy. Určte modu pružnost v tahu přímou metodou pro dva vzorky různých materáů a výsedky porovnejte s tabukovým hodnotam.. Z naměřených hodnot
Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou
MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností
SMR 2. Pavel Padevět
SR Pve Pevět PRINCIP VIRTUÁLNÍCH PRACÍ Deformční meto jenošená eformční meto, Přetvárně nerčité konstrke POROVNÁNÍ OBECNÉ A JEDNODUŠENÉ DEF. ETODY V zjenošené eformční metoě (D) se zneává viv normáovýh
Úlohy rovnováhy staticky určitých konstrukcí
Úohy rovnováhy staticky určitých konstrukcí Úoha: Posoudit statickou určitost či navrhnout podepření konstrukce Určit síy v reakcích a ve vnitřních vazbách Předpokady: Konstrukce je ideaizována soustavou
SMR 2. Pavel Padevět
SR Pve Pevět PRICIP VIRTUÁLÍCH PRACÍ jenošená eformční meto, esiové vivy, Sčítání účinků ztížení ezi nesiové vivy vžjeme v D: viv posntí popor, viv tepoty. ESILOVÉ VLIVY Popštění popory vyvoává v sttiky
5.2.7 Odchylka přímky a roviny
57 Odchylk přímky roiny Předpokldy: 50, 506 Jk odchylk přímky roiny? o by měl definice splňot: podobně jko u osttních ěcí ji musíme přeést n něco co už umíme (si odchylku dou přímek), měl by být jednoznčná,
Zjednodušená deformační metoda (2):
Stavební mechanika 1SM Přednášky Zjednodušená deformační metoda () Prut s kloubově připojeným koncem (statická kondenzace). Řešení rovinných rámů s posuvnými patry/sloupy. Prut s kloubově připojeným koncem
ZDM RÁMOVÉ KONSTRUKCE
ioš Hüttner SR D rámové onstruce cvičení 0 adání D RÁOVÉ KONSTRUKCE Příad č. Vyresete průběhy vnitřních si na onstruci zobrazené na Obr.. Příad převzat z atedrové wiipedie (originá e stažení zde http://mech.fsv.cvut.cz/wii/images/d/de/dm_.pdf).
4.1 Shrnutí základních poznatků
4.1 Shrnutí zákadních poznatků V případech příčných deformací přímých prutů- nosníků se zabýváme deformací jejich střednice, tj. spojnice těžiště příčných průřezů. Tuto deformovanou křivku nazýváme průhybová
studentská kopie Př. 9 Složený členěný prut ze dvou úhelníků 15ε = 15 = 15...bezpečně třída 3 (nemusíme redukovat plochu)
Př. 9 Složený členěný prut e dou úhelníků Stnote únosnost prutu tořeného dojcí ronormenný úhelníků 9x8. Prut toří dgonálu příhrdoého tuždl sstémoá délk prutu je 4 m. Spojk P-8x8 jsou umístěn třetná prutu.
NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM)
NOSNÍK NA PRUŽNÉ PODLOŽÍ (WINKLEROVSKÉ) Uvažujeme spojitý nosník na pružných podporách. Pružná podpora - odpor je úměrný zatlačení. Pružné podpory velmi blízko sebe - jejich účinek lze nahradit spojitou
Výpočet vnitřních sil přímého nosníku II
Stveí sttik, 1.ročík kářského studi ýpočet vitřích si přímého osíku II ýpočet vitřích si osíků ztížeých spojitým ztížeím: příčé kosttí trojúheíkové spojité ztížeí, spojité ztížeí v osové úoze, mometové
Pohyblivé zatížení. Pohyblivé zatížení. Píinkové áry na prostém nosníku, konzole a spojitém nosníku s vloženými klouby
Stvní sttik,.roník káského stui Pohyivé ztížní Pohyivé ztížní Píinkové áry n prostém nosníku, konzo spojitém nosníku s vožnými kouy Ktr stvní mhniky Fkut stvní, VŠB Thniká univrzit Ostrv Vzniká pojížním
ČVUT SBÍRKA PŘÍKLADŮ STAVEBNÍ MECHANIKY
SBÍRKA PŘÍKLADŮ STAVEBNÍ MECHANIKY Ing. ALEŠ JÍRA, Ph.D. Ing. DAGMAR JANDEKOVÁ, Ph.D. Ing. ADÉLA HLOBILOVÁ Ing. ELIŠKA JANOUCHOVÁ Ing. LUKÁŠ ZRŮBEK ČVUT FAKULTA STAVEBNÍ ČVUT V PRAZE ČESKÉ VYSOKÉ UČENÍ
Ž ť ď ť ž ť ťď Ď ž ž ť Ž Č Č ž Ž ž Ď ť ť Ď ž ž ž Ď ž ť ť ž ž ž ž Í É Č ž ž ž ť ž Ď ž Ď ť ž ž ž ž ž ť ť Ď Ú ž ž Š ž ž ž ž ž ž ž ž Í Ž ž Í Č Ú ž Č ž ž Ž ž ž Ž ž Č Č ž ž ž ž ť ž Č Č ž ž ž ž Ř Šť ž Š Ž ž ž
ó ž é ě ž ž ř é ý ě ž š ž ř ý ř ž ý ř ý é é ř Ř ý š ř é ý ě ž ě ř é ý ě ž ž é ř é ý é ž ě ě ř é ě ý ž ó ž ó ě ř é ý ě ž é ř é ě ř é ě ý ž Ž ř é ě ž ž š ě é ř é ý ě ž ž š ě ř é ý ě ž ě ř é ý ě ž ž š ě ř
V = π f 2 (x) dx. f(x) 1 + f 2 (x) dx. x 2 + y 2 = r 2
Odození zorců pro ýpočet objemů porchů některých těles užitím integrálního počtu Objem rotčního těles, které znikne rotcí funkce y f(x) n interlu, b kolem osy x, lze spočítt podle zorce b V f (x) dx Porch
Ú É Á Č ď Ú ž Ů ž Á Á ž Á Ř É š Ú Ě Ě Ť ž Ú Í Č Ů Ú ů ž Ý ú ú Č ž ú ž ď ž ů ů ú š š ž Ů ž š Á ť Á ú Ů ž ť šť šť ž š ž ů ž ž Ů ž ž š ž š ž Ů Á šť šť ž šť ž š šť ž ž Ů Í ž ž ž š ž ŠÍ ž Á Ý š ž ž Ů ž ů Ů
š ž Ú ú š ž š ó ó š ď ž š š š ž ď Ž Í ž š Ž š Í ž š Ž ž ž ó ž š š š ó ž š š ž ó š ó ú š š š ž š ď š ž ó ú š Ž š ž É š š š š ž š š š š ž š š š Ž ž ž š š ž ž ň š Ž ú ž š š ň ž š ž ž š š Ř É š Ř Á É Ů Ž Í
Předpjatý beton Přednáška 4
Předpjatý beton Přednáška 4 Obsah Účinky předpětí na betonové prvky a konstrukce Staticky neurčité účinky předpětí Konkordantní kabel Lineární transformace kabelu Návrh předpětí metodou vyrovnání zatížení
1. práce z mechaniky statika, pružnost a pevnost
1. práe z mehniky sttik, pružnost pevnost 1) vetknutý nosník D: =1200N, =950N, =410Nm, =60, =80mm, =240mm, =320mm, mteriá: 11343, nmáhání: sttiké, odéník nežto s poměrem strn 1:2 2) vetknutý nosník D:
Téma 5 Spojitý nosník
Sttik stveních konstukcí..očník kářského studi Tém 5 Sojitý nosník Zákdní vstnosti sojitého nosníku Řešení sojitého nosníku siovou metodou yužití symetie sojitého nosníku Příčinkové čáy nhodié ztížení
Příklad 33 : Energie elektrického pole deskového kondenzátoru. Ověření vztahu mezi energií, kapacitou a veličinami pole.
Přík 33 : Energie eektrického poe eskového konenzátoru. Ověření vzthu mezi energií, kpcitou veičinmi poe. Přepokáné znosti: Eektrické poe kpcit eskového konenzátoru Přík V eskovém konenzátoru je eektrické
Stavební statika. Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava. Stavební statika, 1.ročník kombinovaného studia
Stvební sttik, 1.ročník kombinovného studi Stvební sttik Úvod do studi předmětu n Stvební fkultě VŠB-TU Ostrv Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit Ostrv Stvební sttik přednášející
Č Á ý é í íč í é ě Ž é ř Ž ří í í ě é ř š é ž ý ří Í í í ď ý Ž ě ě í ž é ř ě š é č Ž š ý ě é č Ž é ě š í ý é č Ž ý č é é ú ř ě Ž š é š ú ů ě Ž ů Ž ú ů ř é é ě č ě í Ž é ů í ěž é ú ď í é š í ů ř í ž í é
F7 MOMENT SETRVAČNOSTI
F7 MOMENT ETRVAČNOTI Evropský sociání fond Praha & EU: Investujeme do vaší budoucnosti F7 MOMENT ETRVAČNOTI V této části si spočteme některé jednoduché příkady na rotační pohyby a seznámíme se s někoika
M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)
5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete
Styčníkovou metodou vyřešte síly v prutech u soustavy na obrázku.
Styčníkovou metodou vyřešte síly v prutech u soustvy n obrázku. Př. 1,, = 3 m, b = 4 m, c = 5, d = m 1) výpočet úhlů b cos = /( + b ) 1/ sin = b/( + b ) 1/ = 0,6 = 0,8 (e) d b c (h) cos = /[e + ] 1/ e
Stavební mechanika, 2.ročník bakalářského studia AST. Téma 4 Rovinný rám
Stvební mechnik,.ročník bklářského studi AST Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit
Pružnost a plasticita II
Pružnost a pasticita II 3. ročník bakaářského studia doc. Ing. artin Krejsa, Ph.D. Katedra stavební echaniky Neineární chování ateriáů, podínky pasticity, ezní pastická únosnost Úvod, zákadní pojy Teorie
5.2.9 Vzdálenost bodu od roviny
5..9 zdálenost bodu od roiny ředpokldy: 508 Opkoání z minulé hodiny (definice zdálenosti bodu od přímky): Je dán přímk p bod. zdáleností bodu od přímky p rozumíme zdálenost bodu od bodu, který je ptou
28 m. Obsahy a obvody rovinných obrazců 1) Délky základen lichoběžníku jsou Určete obsah plochy lichoběžníku. c = 8 10 metrů, výška v má velikost
Obsh obvod rovinných obrzců 1) élk záklden lichoběžníku jsou Určete obsh ploch lichoběžníku. 8 = 4, 10 metrů, 7 c = 8 10 metrů, výšk v má velikost 5 4,8 10 metrů. ) Pozemek tvru obdélníku je dočsně přerušen
ů ů ď
ň ň ň ú ť É Ň ž ů ů ď ď ň ň ť ň ž Ě Í ň Ú ď ž ň ž ě ě Ú ž ž ž ď ž ž Ž ď ď ň ž É Ě ž ž Ž Š ď ď ž ě ž Ě ž ď ž ň ě ě ž Š ž ž ň Ě ž ž Ú Ú Š Ě ž ž ě Ž ě ě Í ě Ú ž ň ž ž Ť Ť ž ě ž Ž ě ě ď ž ě ě ě ď ž ž ž ž ě
Mezní napětí v soudržnosti
Mení napětí v soudržnosti Pro žebírkovou výtuž e stanovit návrhovou hodnotu meního napětí v soudržnosti vtahu: = η η ctd kde je η součinite ávisý na kvaitě podmínek v soudržnosti a pooe prutu během betonáže
ť í ď ů ě í ž í ž í í ě í ů í úř í ú í ří í ů ú í íí í ř í ž ě ří ú í í ž ě í ů ú ě í í í ž é í ž í ří í ú í ě í í Ú ě í úř ř ž ů ž š í ř í í í úř í ž
ě úř í úř ř í Ú Í Í ě Úř í úř í úř ří š í ú í í í ř í é í ě ší ř ů í ú í ří í ž í ž í í ě í ů ž ě í í š ě šíú ě ú í íí í ř í ú í ř í í ě í ů í ó í Ú ě í ů í í ě í ů ě í ů í í ě í í ů í ří ř ě ří é í ž
Správné řešení písemné zkoušky z matematiky- varianta A Přijímací řízení do NMgr. studia učitelských oborů 2010
právné řešení písemné koušky mtemtiky- vrint A Přijímcí říení do NMgr. studi učitelských oborů Příkld. Vyšetřete průběh funkce v jejím mimálním definičním oboru nčrtněte její grf y Určete pritu (sudá/lichá),
1.5. DYNAMIKA OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA
.5. OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA.5. ZÁKLADNÍ ROVNICE DYNAMIKY PRO ROTAČNÍ POHYB Fz F Z výsednce zrychujících s F m.a n m a t a n r z F Zrychující moment M F. r F. r z z z m.a t r6,5cm ρ r ω,ε r
VŠB Technická univerzita Ostrava Fakulta stavební Katedra stavební mechaniky. Pružnost a plasticita - příklady. Oldřich Sucharda
VŠB Technická univerzita strava Fakuta stavební Katedra stavební mechanik Pružnost a pasticita - příkad dřich Sucharda strava, září 0 bsah. Průřezové charakteristik..... Těžiště omené čár..... Těžiště
Kmitavý pohyb trochu jinak
Kmitavý pohyb trochu jinak JIŘÍ ESAŘ, PER BAROŠ Katedra fyziky, Pedaoická fakuta, JU České Budějovice Kmitavý pohyb patří mezi zákadní fyzikání děje. Většinou se tato část fyziky redukuje na matematický
ť č š ý ú č š ř š ř í ř ď ú ý š Ř ť ř ó ř š ř š š š ó ř ý ú Ž ý úřč š č
É í ř í í í ší č ý š ší í ř ší í í í í č č í í ý ů ř ď ý č ší í í í ý í í í č í č ší ší č íčí í ří ř í ř í č ý ť š í ř í ý í í ší ý í š ďč í š íč ý č í ďí í í ř í í í í š ý í ší Ž í č í ř í č í ří ší č
Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB
Předmět: Ročník: Vytvořil: Datum: MECHNIK DRUHÝ ŠČERBOVÁ M. PVELK V. 14. ČERVENCE 2013 Název zpracovaného celku: NMÁHÁNÍ N OHYB D) VETKNUTÉ NOSNÍKY ZTÍŽENÉ SOUSTVOU ROVNOBĚŽNÝCH SIL ÚLOH 1 Určete maximální
1.1.11 Rovnoměrný pohyb VI
1.1.11 onoměrný pohyb VI ředpokldy: 11 edgogická poznámk: Náledující příkld je dokončení z minulé hodiny. Sudeni by měli mí grf polohy nkrelený z minulé hodiny nebo z domo. ř. 1: er yjede edm hodin ráno
Stereometrie metrické vlastnosti 01
Stereometrie metrické vlstnosti 01 Odchylk dvou přímek Odchylk dvou různoběžek je velikost kždého z ostrých nebo prvých úhlů, které přímky spolu svírjí. Odchylk rovnoběžek je 0. Odchylk mimoběžných přímek
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ
ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,
Pohybové možnosti volných hmotných objektů v rovině
REAKCE Pohyové možnosti volných hmotných ojektů v rovině Stupeň volnosti n v : možnost vykont jednu složku posunu v ose souřdného systému neo pootočení. +x volný hmotný od v rovině: n v =2 (posun v oecném
Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:
.. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto
S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006
8. ELEKTRICKÉ STROJE TOČIVÉ rčeno pro posluchče bklářských studijních progrmů FS S t e j n o s měrné stroje Ing. Vítězslv Stýskl, Ph.D., únor 6 Řešené příkldy Příkld 8. Mechnické chrkteristiky Stejnosměrný
Stabilita a vzpěrná pevnost tlačených prutů
Pružnost psticit,.ročník kářského studi Stiit vzpěrná pevnost tčených prutů Euerovo řešení stiity přímého pružného prutu Ztrát stiity prutů v pružno-pstickém ooru Posouzení oceových konstrukcí n vzpěr