Limity funkcí. Spočtěte následující limity: x, (Demidovič 411). x a) lim x 0. , b) lim x 1. , c) lim. 2 x 2 x 1
|
|
- Michal Tábor
- před 5 lety
- Počet zobrazení:
Transkript
1 Spočtěte následující limity: Limity funkcí Příklady řešené pomocí Maple V 1. a) lim x 0 x x 2 x 1, b) lim x 1 x x 2 x 1, c) lim x x x 2 x 1, (Demidovič 411). Nejprve si zadefinujeme naší funkci, abychom se neupsali: > f:=x->(x^2-1)/(2*x^2-x-1): a) V takto jednoduchém případě stačí dosadit a dostáváme 1. Pro jistotu to necháme Maple spočítat: > limit(f(x), x=0); 1 Případ b) nás jasně navádí na L'Hospitala, a skutečně, po jedné derivaci dostáváme výsledek: 2/3. Maple také: > limit(f(x), x=1); 3 c) O výsledné limitě rozhodují koeficienty u nejvyšší mocniny - x^2. Dostáváme 1/2. > limit(f(x), x=infinity); Tak je snad vše v pořádku. Příště už budeme věřit tomu, co nám Maple spočítá. Můžeme si to ještě třeba ověřit obrázkem. Obrázek nám může také říct něco nového, zajímavého: > plot(f(x),x=-1..2, y= , discont=true);
2 I obrázek vypadá přesvědčivě. Zajímavější to ale bude v bodě -0,5: > limit(f(x), x=-.5); Float( undefined ) > limit(f(x), x=-.5, left); Float( ) > limit(f(x), x=-.5, right); Float( ) I v tomto případě snad můžeme počítači věřit lim x 0 ( 1 + x ) ( x ) ( x ) 1 x (Demidovič 412). Opět si nejprve zadefinujeme funkci: > f:=x->((1+x)*(1+2*x)*(1+3*x)-1)/x: potom necháme Maple spočíst příslušnou derivaci: > limit(f(x),x=0); 6 a nakonec si (pro lepší názor a pro kontrolu) nakreslíme obrázek: > plot(f,-2..1);
3 3. lim x 0 ( 1 + x ) 5 ( x ) (Demidovič 413). x 2 + x 5 Postup je stejný jako v předchozím příkladě (a většině příkladů dalších): > f:=x->((1+x)^5-(1+5*x))/x^2+x^5: > limit(f(x),x=0); > plot(f, ); 10
4 4. lim x 1 x 3 + x 2 x 3 x 2 x + 1 (Berman 276). > f:=x->(x^3+x-2)/(x^3-x^2-x+1): > limit(f(x),x=1); > limit(f(x),x=1,left); > limit(f(x),x=1,right); undefined > plot(f(x), x=-2..2, y= , discont=true);
5 5. lim x ( 2 x 3) 20 ( 3 x + 2 ) 30, (Demidovič 416). ( 2 x + 1) 50 > f:=x->((2*x-3)^20*(3*x+2)^30)/(2*x+1)^50: > limit(f(x),x=infinity); > evalf("); > Warning, incomplete string; use " to end the string > plot(f, );
6 [ Chyba v zobrazení. Proč? ] 6. lim x 0 root 3 ( 1 + x 2 ) root 4 ( 1 2 x ), (Berman 303*). x + x 2 > f:=x->(root[3](1+x^2)-root[4](1-2*x))/(x+x^2): > limit(f(x),x=0); 2 > plot(f(x), x=-3..1, y=-1..1, discont=true); 1
7 7. lim x 1 x m 1 x n 1, m a n celá (Berman 280). > f:=x->(x^m-1)/(x^n-1): > limit(f(x),x=1); Tak i tohle Maple V umí lim x 1 root n ( x) 1, m a n celá (Berman 302). root m ( x ) 1 > f:=x->(root[n](x)-1)/(root[m](x)-1): > limit(f(x),x=1); Error, (in root[n]) root expects its index, n, to be of type integer, but received n Tak teď už musíme zapracovat my. root n ( x ) = x > f:=x->(x^(1/n)-1)/(x^(1/m)-1): > limit(f(x),x=1); m n m n 1 n
8 9. lim x 0 ( 1 + m x ) n ( 1 + n x) m x 2, m i n přirozená (Demidovič 414). > f:=x->((1+m*x)^n-(1+n*x)^m)/x^2: > limit(f(x),x=0); 10. lim x m2 n 1 2 n2 m sin ( a + x ) sin ( a + 2 x ) sin( a) 2, (Demidovič 492). x > f:=x->(sin(a+x)*sin(a+2*x)-sin(a)^2)/x: > limit(f(x),x=0); 11. lim a b sin( a) 2 sin( b ) 2, (Berman 342). a 2 b 2 3 sin( a ) cos( a ) > f:=x->(sin(a)^2-sin(b)^2)/(a^2-b^2): > limit(f(x),a=b); 12. lim x π 3 cos( b ) sin( b) tan( x ) 3 3 tan( x), (Demidovič 492). π cos x + 6 > f:=x->(tan(x)^3-3*tan(x))/cos(x+pi/6): > limit(f(x),x=pi/3); -24 > plot(f(x),x=-pi..pi,y= ); b
9 13. lim a 0 sin( a n ), m a n přirozená (Berman 318). m sin( a) > f:=a->sin(a^n)/sin(a)^m: > limit(f(a),a=0); Tak to je špatné... Nezbývá, než zkoušet: > f:=a->sin(a^3)/sin(a)^3: > limit(f(a),a=0); lim a 0 sin( a n ) sin( a) m 1 > plot(f(x), x=-pi..pi, y=-3..3 );
10 > f:=a->sin(a^3)/sin(a)^2: > limit(f(a),a=0); 0 > plot(f(x), x=-pi..pi, y=-3..3 ); > f:=a->sin(a^3)/sin(a)^4: > limit(f(a),a=0); undefined
11 > limit(f(a),a=0,left); > limit(f(a),a=0,right); > plot(f(x), x=-pi..pi, y= , discont=true ); Grafy pro [n,n] vypadají skoro stejně, jako pro [3,3], pro [n,m], n>m jako pro [3,2] a pro [n,m], n<m jako pro [3,4]. Skutečně, správný výsledek je 0 pro n>m, 1 pro n=m a neex. pro n<m. Takovéto příklady je lepší spočítat ručně. Pro kontrolu nám ale můžou dobře posloužit grafy lim x k 1 + x ( m x ), (Berman 354). > f:=x->(1+k/x)^(m*x): > limit(f(x),x=infinity); e ( k m) 15. lim x 1 ( 1 x ) log x ( 2 ), (Berman 354). > f:=x->(1-x)*log[x](2): > limit(f(x),x=1); > plot(f, -0..2); ln( 2 )
12 > Použitá literatura: Demidovič: B. P. Demidovič, Sbornik zadač i upražněnij po matematičeskomu analyzu, 9,. vydání, Nauka, Moskva 1977 Berman: G. N. Berman, Sbornik zadač po kursu matematičeckogo analyza, 18. vydání, Nauka, Moskva 1975
10. cvičení - LS 2017
10. cvičení - LS 2017 Michal Outrata Příklad 1 Spočtěte následující itu daných posloupností: (a) (b) (c) n 3 +5n 2 n 3 6n 2 +3 n ; n 4 3n 2 6 n 4 + 3n 2 + 6; n 2 15n+2(1 n). 2(n 2) 3 2n 3 Příklad 2 Pro
1. Písemka skupina A...
. Písemka skupina A.... jméno a příjmení Načrtněte grafy funkcí (v grafu označte všechny průsečíky funkce s osami a asymptoty). y y sin 4 y y arccos ) Určete, jestli je funkce y ln prostá? ) Je funkce
sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx.
Použití mocniných řad Nejprve si ukážeme dvě jednoduchá použití Taylorových řad. Příklad Spočtěte následující limitu: ( ) sin(x) lim. x x ( ) Najdeme lim sin(x) x x pomocí mocninné řady pro funkci sin(x)
Derivace funkce a parciální derivace
Derivace funkce a parciální derivace Derivace funkce jedné proměnné Derivace vyšších řádů L Hospitalovo pravidlo Parciální derivace. p.1/18 Derivace funkce jedné proměnné Příklad 3.1.1 Vypočtěte z definice
Spojitost a limita funkce, limita posloupnosti
Spojitost a ita funkce, ita posloupnosti Spojitost funkce Limita funkcí Limita posloupností. p.1/14 Spojitost funkce Příklad 2.1.1 Vyšetřete spojitost funkce x sin 1 pro x 0, f(x) = x 1 pro x =0. Příklad
Limita ve vlastním bodě
Výpočty it Definice (a případné věty) jsou z knihy [] příklady z [] [] a []. Počítám u zkoušky dvacátou itu hlavu mám dávno už do čista vymytu papír se značkami skvěje z čela mi pot v proudech leje než
2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je
Derivace funkce a jej geometrický význam Je dána funkce f) 3 6 + 9 + a naším úkolem je určit směrnici tečny v bodě [; f)] Pro libovolné lze směrnici sečny danou body [; f)] a [; f)] spočítat jako f) f)
Průběh funkce jedné proměnné
Průběh funkce jedné proměnné Průběh funkce Newtonova metoda. p.1/8 Průběh funkce Příklad 4.1.1 Vyšetřete průběh funkce f(x) =ln 3 x. Příklad 4.1.2 Vyšetřete průběh funkce f(x) =arctg 1 x. Příklad 4.1.3
a n (z z 0 ) n, z C, (1) n=0
Mocniné řady Nechť 0, a 0, a, a 2,... jsou konečná komplexní čísla. Pak řadu funkcí a n ( 0 ) n, C, () naýváme mocninou řadou. Číslo 0 koeficienty mocniné řady. Onačme dále: se naývá střed mocniné řady,
NMAF 051, ZS Zkoušková písemná práce 26. ledna x. x 1 + x dx. q 1. u = x = 1 u2. = 1 u. u 2 (1 + u 2 ) (1 u 2 du = 2.
Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů Jméno a příjmení: Skupina: Příklad 4 Celkem bodů Bodů 5 6 8
MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel
MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní
I. 7. Diferenciál funkce a Taylorova věta
I. 7. Diferenciál funkce a Taylorova věta 343 I. 7. Diferenciál funkce a Taylorova věta Věta 26. Funkce f má v bodě x 0 diferenciál (je diferencovatelná v x 0 ) právě tehdy, když existuje vlastní derivace
Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )
Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x
Zápočtová písemka z Matematiky III (BA04) skupina A
skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 2. cvičení Teorie Věta (Aritmetika derivací). Necht a R a necht f a g jsou funkce definované na nějakém okolí bodu a. Necht existují f (a) R a g (a) R.
Limita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39
Limita funkce FIT ČVUT v Praze 3.týden (FIT) Limita funkce 3.týden 1 / 39 Definice funkce. Zobrazení (f, D f ), jehož definiční obor D f i obor hodnot H f je podmnožinou množiny reálných čísel, se nazývá
verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu
Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové
LEKCE10-RAD Otázky
Řady -ekv ne ŘADY ČÍSEL 1. limita posloupnosti (operace založená na vzdálenosti bodů) 2. supremum nebo infimum posloupnosti (operace založená na uspořádání bodů). Z hlavních struktur reálných čísel zbývá
- funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte. V obou případech vyzkoušejte Taylorovy řady
Vzorové řešení domácího úkolu na 6. 1. 1. Integrály 1 1 x2 dx, ex2 dx spočítejte přibližně následují metodou - funkce, které integrujete aproximujte jejich Taylorovými řadami a ty následně zintegrujte.
Výpočet excentrického klikového mechanismu v systému MAPLE 11 Tomáš Svoboda Technická fakulta Česká Zemědělská Univerzita
Výpočet excentrického klikového mechanismu v systému MAPLE 11 Tomáš Svoboda Technická fakulta Česká Zemědělská Univerzita ročník:2 studijní skupina:2 Page 1 Excentrický klikový mechanismus je zadán parametry
K rozpoznání růstu či klesání dané funkce určitém směru nám pomůže gradient, tj. vektor., ln(1 x2 + y 2 [ = y
VKM/IM 017/018 Určete da funkce fx y) ln1 x +y ) v bodě A 1 1 ve směru vektorů u 1 1 0 u 0 1 u 3 1 1 a u 4 1 roste či klesá a určete rychlost měny. Řešení: Funkce fx y) je definovány pro všechny body R
1) Spočítejte limitu pomocí l Hospitalova pravidla, pokud selˇze, spočítejte ji klasicky:
Příklady k desátému cvičení ) Spočítejte itu pomocí l Hospitalova pravidla pokud selˇze spočítejte ji klasicky:. 2. 3.. 5 + 3 2 8 π π sin 2 + ln(cos(3)) 3 2) Upravte na zlomek a pouˇzijte l Hospitalovo
1 L Hospitalovo pravidlo
L Hospitalovo pravidlo Věta.. Bud R R R {± }). Necht je splněna jedna z podmínek i) ii) f) g), g). Eistuje-li vlastní nebo nevlastní) f ) g ) Obdobné tvrzení platí i pro jednostranné ity., pak eistuje
Základy numerické matematiky. Interpolace a aproximace funkcí
Základy numerické matematiky Interpolace a aproximace funkcí Nejdříve se podíváme na interpolaci. Lagrangeovu interpolaci počítá Maple pomocí funkce interp. Jejími parametry jsou - soubor uzlů, funkčních
NMAF 051, ZS Zkoušková písemná práce 17. února ( sin (π 2 arctann) lim + 3. n 2. π 2arctan n. = lim + 3.
Jednotlivé kroky při výpočtech stručně ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 3 Celkem bodů Bodů 5 7 0
5. cvičení z Matematiky 2
5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými
Kapitola 9: Aplikace integrálů funkcí jedné proměnné
Sbírka příkladů Matematika II pro strukturované studium Kapitola 9: Aplikace integrálů funkcí jedné proměnné Chcete-li ukončit prohlížení stiskněte klávesu Esc. Chcete-li pokračovat stiskněte klávesu Enter..
3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim
3 a b s = (a + b) 2 f(s) 3,46 4,680 3,93-2,9422 3,93 4,680 4,2962-2,034 4,2962 4,680 4,4886-0,0954 4,4886 4,680 4,5848 3,2095 4,4886 4,5848 4,5367,0963 4,4886 4,5367 4,526 0,427 4,4886 4,526 4,5006 0,508
Takže platí : x > 0 : x y 1 x = x+1 y x+1 x < 0 : x y 1 x = x+1 y x+1 D 1 = {[x,y] E 2 : x < 0, x+1 y 1 x}, D 2 = {[x,y] E 2 : x > 0, 1 x y x+1}.
E. Brožíková, M. Kittlerová, F. Mráz: Sbírka příkladů z Matematik II (206 II. Diferenciální počet funkcí více proměnných II.. Definiční obor funkce z = f(, Určete definiční obor funkcí a zakreslete jej
NMAF 051, ZS Zkoušková písemná práce 4. února 2009
Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 4 Celkem bodů Bodů 4 4
1 Nulové body holomorfní funkce
Nulové body holomorfní funkce Bod naýváme nulový bod funkce f), jestliže f ) =. Je-li funkce f) holomorfní v bodě, pak le funkci f) v jistém okolí bodu rovinout v Taylorovu řadu: f) = n= a n ) n, a n =
K rozpoznání růstu či klesání dané funkce určitém směru nám pomůže gradient, tj. vektor., ln(1 x2 + y 2 [ = y
VKM/IM - 204/205 Určete, da funkce f(x, y) ln( x 2 +y 2 ) v bodě A, ve směru vektorů u, 0, u 2 0,, u 3, a u 4, 2 roste či klesá a určete rychlost měny. Řešení: Funkce f(x, y) je definovány pro všechny
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179
INTEGRÁLY S PARAMETREM
INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity
16 Fourierovy řady Úvod, základní pojmy
M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 16: Fourierovy řady 1 16 Fourierovy řady 16.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"
> Limit((1-cos(x))/x^2, x=0)=limit((1-cos(x))/x^2, x=0); x 2 2. x 0. = undefined. x 0
Matematická analýza Limity a nekonečné součiny V Maple není třeba rozlišovat mezi itou funkce a posloupnosti takže následující ita může být stejně tak dobře itou funkce i posloupnosti. Vše záleží na naší
JAK ČTEME Z DERIVACÍ PRŮBĚH PŮVODNÍCH FUNKCÍ? Pozn: veškeré funkce mají ve vnitřních bodech definičního oboru první derivaci. 1.
JAK ČTEME Z DERIVACÍ PRŮBĚH PŮVODNÍCH FUNKCÍ? Pozn: veškeré funkce mají ve vnitřních bodech definičního oboru první derivaci. 1. Monotonie (1) Dostaneme zadanou např. funkci y = sin x. (2) Když si funkci
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
MATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Petra Schreiberová, Ph.D. Ostrava 0 Ing. Petra Schreiberová, Ph.D. Vysoká škola báňská Technická
Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné
. Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x
Metody výpočtu limit funkcí a posloupností
Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou
Zimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 7. prosince 2014 Předmluva
Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer
Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady
Matematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
2. přednáška 8. října 2007
2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =
Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
Derivace a průběh funkce příklady z písemných prací
Derivace a průběh funkce příklady z písemných prací Vyšetřete průběh následuících funkcí. Příklad. = x +arctg( x ). D(f) =R.. Funkce e spoitá na R. 3. Funkce není lichá, sudá, ani periodická.. lim x ±
. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.
Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo
Matematická analýza 1, příklady na procvičení (Josef Tkadlec, )
Matematická analýza, příklady na procvičení (Josef Tkadlec, 6.. 7) Reálná čísla. Určete maximum, minimum, supremum a infimum následujících množin: Z; b) M = (, ), 5 ; c) M =, Q; d) M = { + n : n N}; e)
7. Aplikace derivace
7. Aplikace derivace Verze 20. července 2017 Derivace funkce se využívá při řešení úloh technické praxe i teorie. Uvedeme několik z nich: vyčíslení hodnot funkce, výpočet limity, vyšetřování průběhu funkce
Diferenciální rovnice II
Diferenciální rovnice II Cílem tohoto kurzu je ukázat si různé příklady použití počítačového algebraického systému Maple při řešení obyčejných diferenciálních rovnic. řádu a soustav obyčejných diferenciálních
Zimní semestr akademického roku 2015/ ledna 2016
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Zimní semestr akademického roku 015/016 5. ledna 016 Obsah Cvičení Předmluva iii
( ) ( ) ( ) x Užití derivace. Předpoklady: 10202, 10209
.. Užití derivace Předpoklad:, 9 Pedagogická poznámka: Hodinu dělíme na dvě polovin jednu na tečn a normál, druhou na L Hospitalova pravidla. Už při zavádění derivace, jsme si ukázali, že hodnota derivace
Matematika II. (LS 2009) FS VŠB-TU Ostrava. Bud te. A = a + 1 2, B = 1. b + 1. y = x 2 + Bx 3A. a osou x.
Program 2. Aplikace určitého integrálu zadání 1. y = x 2 + Bx 3A y = ln(bx), x = 1/A a x = 3A Vypočítejte její obsah. 3. Určete obsah plochy ohraničené parametricky zadanou křivkou (tzv. cykloidou) x(t)
18 Fourierovy řady Úvod, základní pojmy
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 18: Fourierovy řady 7 18 Fourierovy řady 18.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"
Funkce zadané implicitně
Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf
Funkcionální řady. January 13, 2016
Funkcionální řady January 13, 216 f 1 + f 2 + f 3 +... + f n +... = f n posloupnost částečných součtů funkcionální řada konverguje na množine M konverguje posloupnost jeho částečných součtů na množine
Průběh funkce pomocí systému MAPLE.
Průběh funkce pomocí systému MAPLE. Vyšetřování průběhu funkce je komplení a někdy velmi obtížná úloha. V konkrétních aplikacích nás většinou zajímají jen některé otázky týkající se průběhu dané funkce.
Parametrické rovnice křivek v E 2
Parametrické rovnice křivek v E Příklad : Křivka K je dána parametrickými rovnicemi : x = ϕ (t) = + t, y = ϕ (t) = t 3 t3, t R. Proved te následující úkoly: ) Určete tečný vektor ke křivce K v bodě P,
Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff
Derivace funkce Derivace je základním pojmem v diferenciálním počtu. Má uplatnění tam, kde se zkoumá povaha funkčních závislostí určitých proměnných (veličin). V matematice, ekonomii, fyzice ale i v jiných
Průběh funkce pomocí systému MAPLE.
Průběh funkce pomocí systému MAPLE. Vyšetřování průběhu funkce je komplení a někdy velmi obtížná úloha. V konkrétních aplikacích nás většinou zajímají jen některé otázky týkající se průběhu dané funkce.
Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011
Diferenciál funkce Derivace vyšších řádů L Hospitalovo pravidlo Jiří Fišer 22. a 23. března 2011 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT2 Přednáška č. 6 22. a 23. března 2011 1 / 18 y ω(h) dy O x Obrázek:
Homogenní rovnice. Uvažujme rovnici. y = f(x, y), (4) kde
Homogenní rovnice Uvažujme rovnici kde y = f(, y), (4) f(λ, λy) = f(, y), λ. Tato rovnice se nazývá homogenní rovnice 1. řádu. Ukážeme, že tuto rovnici lze převést substitucí na rovnici se separovanými
Přijímací zkouška na navazující magisterské studium 2015
Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční
Diferenciální počet funkcí jedné proměnné
Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =
Tabulkové limity. n! lim. n n) n + lim. n + n β = 0. n + a n = 0. lim. (d) Pro α > 0 (tj. libovolně velké) a pro β > 0 (tj.
1 Limity posloupností 1. (a) pro a > 1 je (c) Pro β > 0 a a > 1 Tabulkové ity n! n n = 0 a n n! = 0. n β a n = 0. (d) Pro α > 0 (tj. libovolně velké) a pro β > 0 (tj. libovolně malé) ln α n n β = 0. (e)
Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace
Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace
1 LC - numerické řešení integrálu - rozšíření
Pomůcka pro cvičení: 2. semestr Bc studia Numerické řešení integrálu-funkce daná tabelovanými hodnotami, funkce daná analyticky 1 LC - numerické řešení integrálu - rozšíření Pro numerický výpočet určitého
Derivace funkce Otázky
funkce je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako směrnici tečny grafu
VIDEOSBÍRKA DERIVACE
VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x. Zderivuj funkci y = e sin2 (x 2 ). Zderivuj funkci y = x +2x 2 +sin x x 5. Zderivuj funkci y = cos2
Substituce ve vícenásobném integrálu verze 1.1
Úvod Substituce ve vícenásobném integrálu verze. Následující text popisuje výpočet vícenásobných integrálů pomocí věty o substituci. ěl by sloužit především studentům předmětu ATEAT k přípravě na zkoušku.
, 1. skupina (16:15-17:45) Jméno: se. Postup je třeba odůvodnit (okomentovat) nebo uvést výpočet. Výsledek bez uvedení jakéhokoliv
42206, skupina (6:5-7:45) Jméno: Zápočtový test z PSI Nezapomeňte podepsat VŠECHNY papíry, které odevzdáváte Škrtejte zřetelně a stejně zřetelně pište i věci, které platí Co je škrtnuto, nebude bráno v
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
Implicitní funkce. 2 + arcsin(x + y2 ) = arccos(y + x 2 ), [0, 0] , 5] stacionární bod?
Implicitní funkce V následujících úlohách ukažte, že uvedená rovnice určuje v jistém okolí daného bodu [ 0, y 0 ] implicitně zadanou funkci proměnné. Spočtěte první a druhou derivaci této funkce v bodě
Derivace funkce DERIVACE A SPOJITOST DERIVACE A KONSTRUKCE FUNKCÍ. Aritmetické operace
Derivace funkce Derivace je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako
Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,
Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,
diferenciální rovnice verze 1.1
Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování
Primitivní funkce, určitý integrál, nevlastní integrály
Primitivní funkce, určitý integrál, nevlastní integrály Program Maple může být velmi dobrým pomocníkem při hledání primitivních funkcí i při výpočtu určitých integrálů. Přesto se neobejdeme bez dobré znalosti
Zkouška ze Základů vyšší matematiky ZVMTA (LDF, ) 60 minut. Součet Koeficient Body
Zkouška ze Základů vyšší matematiky ZVTA (LDF, 8.2.202) 60 minut 2 3 4 5 6 7 Jméno:................................. Součet Koeficient Body. [6 bodů] a) Definujte pojem primitivní funkce. Co musí platit,
Zlín, 23. října 2011
(. -. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 3. října 0 Postup při vyšetřování průběhu funkce. Definiční obor funkce,
Derivace goniometrických. Jakub Michálek,
Derivace goniometrických funkcí Jakub Michálek, Tomáš Kučera Shrnutí Odvodí se základní vztahy pro derivace funkcí sinus a cosinus za pomoci věty o třech limitách, odvodí se také dvě důležité limity. Vypočítá
Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),
Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako
Chyby nepřímých měření
nepřímé měření: Chyby nepřímých měření chceme určit veličinu z hodnot jiných veličin na základě funkční vztahu máme změřené veličiny pomocí přímých měření (viz. dříve) včetně chyb: x±σ x, y±σ y,... známe
Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:
PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se
Určete (v závislosti na parametru), zda daný integrál konverguje, respektive zda konverguje. dx = t 1/α 1 dt. sin x α dx =
. cvičení http://www.karlin.mff.cuni.cz/ kuncova/ kytaristka@gmail.com Teorie Věta 1 (Abelovo-Dirichletovo kritérium konveregnce Newtonova integrálu). Necht a R, b R a necht a < b. Necht f : [a, b) R je
Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.
1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co
To je samozřejmě základní pojem konvergence, ale v mnoha případech je příliš obecný a nestačí na dokazování některých užitečných tvrzení.
STEJNOMĚRNÁ KONVERGENCE Zatím nebylo v těchto textech věnováno příliš pozornosti konvergenci funkcí, at jako limita posloupnosti nebo součet řady. Jinak byla posloupnosti funkcí nebo řady brána jako. To
Kristýna Kuncová. Matematika B2
(8) Funkce více proměnných Kristýna Kuncová Matematika B2 Kristýna Kuncová (8) Funkce více proměnných 1 / 19 Parciální derivace Definice Derivaci funkce f : R R v bodě a definujeme jako limitu f f (a +
Primitivní funkce, určitý integrál, nevlastní
Počítačový algebraický systém Maple jako pomůcka při studiu předmětu Matematika I a II. Primitivní funkce, určitý integrál, nevlastní integrály Program Maple může být velmi dobrým pomocníkem při hledání
Uzavřené a otevřené množiny
Teorie: Uzavřené a otevřené množiny 2. cvičení DEFINICE Nechť M R n. Bod x M nazveme vnitřním bodem množiny M, pokud existuje r > 0 tak, že B(x, r) M. Množinu všech vnitřních bodů značíme Int M. Dále,
Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0
Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud
Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.
Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými
VIDEOSBÍRKA DERIVACE
VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos 3x 3. Zderivuj funkci y = 3 e sin2 (x 2 ). Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y
Přijímací zkouška na navazující magisterské studium 2018
Přijímací zkouška na navazující magisterské studium 2018 Řešení příkladů pečlivě odůvodněte. Příklad 1 (2 bodů) Studijní program: Studijní obory: Varianta A Matematika MMUI Navrhněte deterministický konečný
f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů
3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)
Internetová adresa osobní stránky: http://www.mat.fme.vutbr.cz/home/klaska E-mail: klaska@um.fme.vutbr.cz
3 MAPLEOVSKÁ CVIČENÍ PRO ZÁKLADNÍ KURZ MATEMATIKY RNDr. Jiří Klaška, Dr. Internetová adresa osobní stránky: http://www.mat.fme.vutbr.cz/home/klaska E-mail: klaska@um.fme.vutbr.cz Úvod Maple je program,
Matematika vzorce. Ing. Petr Šídlo. verze
Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............
1. sin(x + y) = sin(x) cos(y) + cos(x) sin(y) pro x, y R, cos(x + y) = cos(x) cos(y) sin(x) sin(y) pro x, y R;
3. Elementární funkce. Věta C. Existují funkce sin(x) a cos(x) z R do R a číslo π (0, ) tak, že platí: 1. sin(x + y) = sin(x) cos(y) + cos(x) sin(y) pro x, y R, cos(x + y) = cos(x) cos(y) sin(x) sin(y)
Pavlína Matysová. 5. listopadu 2018
Soubor řešených úloh Vyšetřování průběhu funkce Pavlína Matysová 5. listopadu 018 1 Soubor řešených úloh Tento text obsahuje 7 úloh na téma vyšetřování průběhu funkce. Každé úloha je řešena dvěma způsoby