6.1 Systémy hromadné obsluhy
|
|
- Martina Kopecká
- před 8 lety
- Počet zobrazení:
Transkript
1 6. Systémy hromadé obsluhy Proces usoojováí áhodě i hromadě vziajících ožadavů a obsluhu se azývá roces hromadé obsluhy. Předmětem teorie hromadé obsluhy, ědy taé ozačovaé jao teorie frot (z aglicých slov queueig theory), je matematicé rozracováí a aalyzováí systémů osytujících hromadou obsluhu ějaých zařízeí. Systém hromadé obsluhy je obsluhové zařízeí, osytující obsluhu určitého druhu. Do tohoto zařízeí vstuují záazíci, ožadující orétí obsluhu. Zde je uté odotout, že od ojmem záazíci se rozumí eje lidé, ale i eživé věci. Proto se taé ědy místo ojmu záazíci oužívá termí ožadavy a obsluhu. Po obsloužeí záazíci oouštějí systém hromadé obsluhy. Obsluhové zařízeí se může sládat z jedoho ebo více míst, a terých se osytuje orétí obsluha. Tato místa se azývají liy obsluhy. Systém hromadé obsluhy (SHO) je záladí teoreticý model ro realizaci obslužých rocesů. SHO je tvořeý obslužými aály, teré osytují obsluhu ožadavům, řicházejícím ve vstuím roudu. o uočeí obsluhy trvající staoveou dobu se aál uvolňuje a realizovaý ožadave odchází ve výstuím roudu. Poud v oamžiu říchodu ožadavu eí volý žádý aál, řadí se ožadave do froty. Obr. 6.: Systém hromadé obsluhy (A vstu ožadavů do systému, B odmítuté ožadavy, C realizovaé oložy) Systém hromadé doravy je vždy tvoře ásledujícími rvy: vstuí roud; frota; obslužé aály; výstuí roud. A) Podle vstuího roudu dělíme SHO ásledově: ) odle očtu ožadavů: a) omezeý b) eomezeý
2 ) odle ovahy: a) determiisticý b) stochasticý 3) odle druhu obsluhy: a) stejorodý všechy ožadavy ožadují stejý druh obsluhy; b) růzorodý ožadavy ožadují růzé druhy obsluhy; 4) odle říchodu: a) jedotlivě b) suiově 5) odle itezity vstuu: a) ostatí b) romělivá B) Podle druhu obsluhy: ) odle froty: a) ohraičeé b) eohraičeé ) odle doby zdržeí: a) omezeý b) eomezeý 3) odle zůsobu odchodu z froty: a) FIFO rvý říjde, rvý odejde b) LIFO osledí řijde, rvý odejde c) SIFO áhodé ořadí odchode d) PRI odle riorit (atributů) e) GE obecé řazeí froty 4) odle ředosti olože: a) slabé b) silé C) Vzhledem a síť SHO se dělí: a) aralelí řazeí b) sériové řazeí c) ombiovaé řazeí
3 D) Vzhledem a obsluhu se SHO dělí: ) odle ovahy doby obsluhy: a) determiisticý b) stochasticý ) odle itezity obsluhy: a) ostatí b) roměé 3) odle očtu aálů: a) roměý b) ostatí Při ávrhu SHO a sebe arážejí dva rotichůdé ožadavy: záazí chce čeat co ejratší dobu, což zameá co ejvětší aacitu; saha reduovat álady a miimalizovat očet obslužých aálů. 6.. Možosti aalyticého řešeí stochasticého systému hromadé obsluhy Předoládá se, že ravděodobost výsytu více ež jedoho ožadavu a obsluhu je v daém oamžiu ulová. Taové roudy ožadavů se ozačují jao ordiárí. Přitom se zavádí tzv. arametr roudu ožadavů (t). Proud ožadavů je stacioárí, je-li ost. Tz., že ravděodobost výsytu určitého očtu ožadavů v itervalu <t; t+ t> ezávisí a t, ale ouze a délce časového itervalu t. Dále budeme uvažovat ouze se stacioárími Marovovými rocesy. Pro matematicý ois systému hromadé obsluhy otřebujeme zát ásledující iformace: - iformace o říchodu záazíů - iformace o době obsluhy - iformace o očtu obsluhových lie - iformace o záazících, teří emohou být v době svého říchodu oamžitě obsloužei Podle výše uvedeých ritérií lze systémy hromadé obsluhy lasifiovat do ěolia ategorií. Nejoužívaější je tzv. Kedallova lasifiace systémů hromadé obsluhy. 6.. Kedallova lasifiace systémů hromadé obsluhy V této lasifiaci jsou systémy tříděy odle tří hlavích hledise: - tyu stochasticého rocesu oisujícího říchod ožadavů obsluze - záoa rozložeí dély obsluhy - očtu obsluhových lie, jež jsou záazíům disozici Iformace o těchto třech charateristiách je zaódováa ve tvaru
4 X/Y/, de a místě X a Y jsou velá ísmea a je řirozeé číslo (oř. symbol ), začící očet lie obsluhy. Výzam ísme X a Y je vysvětle v ásledující Tabulce. Tab. 6.: Charateristiy Kadallovy lasifiace. Písmeo M E K K N X Výzam, dosazeo za Poissoův roces říchodů, tj. exoeciálí rozložeí (avzájem ezávislých) itervalů mezi říchody Erlagovo rozložeí itervalů mezi říchody (s arametry a ) Rozložeí χ itervalů mezi říchody ( stuňů volosti) Y Exoeciálí rozložeí doby obsluhy Erlagovo rozložeí doby obsluhy (s arametry a ) Rozložeí χ doby obsluhy D Pravidelé determiisticé říchody Kostatí doba obsluhy Obecý říad žádé ředolady Obecé, tj. jaéoliv G o rocesu říchodů rozložeí doby obsluhy GI Reuretí roces říchodů - Dále se budeme zabývat ouze systémem M/M/, eboť teto systém odovídá ejčastěji řešeému roblému - ožadavy a obsluhu tvoří Poissoův roces, doba obsluhy má exoeciálí rozděleí a očet lie je Řešeí jedoduchého systému hromadé obsluhy tytu M/M/ Pro řešeí říladu ředoládejme, že máme disozici jedu frotu ro shromažďováí ožadavů obsluhy a dva obslužé aály s áhodými událostmi a vstuu a výstuu. Předoládejme, že doba obsluhy je ezávislá a očtu čeajících ožadavů. Čeající ožadavy jsou zracovávaé v ořadí v jaém řicházejí (FIFO). Pro řešeí těchto systémů oužíváme běžě teorie Marovovsých řechodů, teré odrobě řeší ařílad [Lida, 99], [Piata, 98]. Nejčastěji se říchod řídí exoeciálím rozděleím ravděodobosti s hustotou ravděodobosti: f t ( t) e ro t > Pro další výočet zavedeme další ozačeí a otřebé vztahy z [Lida,99]: očet obslužých aálů očet ožadavů v systému - středí itezita říchodu ožadavu a je to středí očet výzamých událostí, teré astaou za časovou jedotu t ravděodobost, že v době t až t+ t vstouí do froty ový ožadave, - středí itezita obsluhy je středí očet záazíů, teré je lia schoa obsloužit za časovou jedotu t ravděodobost, že obsluhovaý ožadave bude obsloužeý v době t až t+ t.
5 Podíl itezity říchodu ožadavu a itezity obsluhy ozačíme β. β. (6.) Doraví itezitu můžeme vyjádřit vztahem: Poud < je středí doba říchodu větší ež středí doba obsluhy a eoroste očet ožadavů ve frotě, o taovémto systému můžeme říci že je stabilizovaý. Pro další výočty je uto staovit ravděodobost, že v systému eí žádý ožadave ( ): β +!! Pravděodobost, že v systému je ožadavů, dy latí β!, je možo staovit ( ) ( ). (6.4) v říadě, že v systému je rávě ožadavů () je ravděodobost tohoto stavu: (6.5) Teto stav je možo charaterizovat jao ravděodobost toho, že říchozí ožadave ebude muset čeat ve frotě. Pa můžeme vyjádřit záladí statisticé arametry systému hromadé obsluhy M/M/. Středí očet obsazeých lie obsluhy: ν β (6.6) Průměrý očet ožadavů ve frotě: Q (6.7) ( ) Průměrý očet ožadavů v systému: L Q +ν (6.8) Průměrá doba čeáí ve frotě: EW (6.9) Průměrá doba obytu v systému: ER EW + (6.) (6.) (6.3)
6 6..4 Přílad řešeí stochasticého systému hromadé obsluhy tyu M/M/ Zadáí: K čerací staici ohoých hmot se dvěmi stojay řijíždí aždých 8 seud jede automobil. Doba obsluhy jedoho automobilu trvá růměrě,5 miuty. Za ředoladu, že říchody záazíů tvoří Poissoův roces, vyočtěte: - ravděodobost, že u čerací staice ebude žádý automobil, - ravděodobost, že u čerací staice budou rávě automobily, - středí očet automobilů čeajících ve frotě, - středí očet obsazeých stojaů, - středí rostoj jedoho automobilu ve frotě, - středí dobu, terou stráví řidič jedoho automobilu u čerací staice, Vyočtěte všechy uvedeé veličiy ro říad zdvojásobeí očtu stojaů ze a 4 a výsledy avzájem orovejte. Řešeí: Určeí :. středí očet automobilů za hodiu Určeí : středí očet záazíů, teré je lia schoa obsloužit za hodiu 6 4 4,5,5 6 Určeí β: β [] 4 Určeí : vyhovuje odmíce stabilizace systému [], Pravděodobost, že u čerací staice ebude žádý automobil, vyočteme odle (6.3): β +!! + + 4! 48 48,33 Pravděodobost, že u čerací staice budou dva automobily, vyočteme odle (6.4): []
7 β.! o 4!,33,567 [] Pravděodobost, že automobil, terý řijede čerací staici, bude muset čeat, vyočteme odle (6.5):,567.,97 [] 48 Středí očet automobilů, čeajících ve frotě vyočteme odle (6.7):,9375 Q,498 3,6 [] ( ) (,9375) Středí očet obsazeých stojaů u čerací staice (tj. očtu obsluhovaých) vyočteme odle (6.6): ν β,87 [] 4 Středí očet automobilů u čerací staice celem vyočteme odle (6.8): L γ + ν 3,6 +,87 5,48 [] Středí rostoj jedoho automobilu ve frotě se vyočte odle (6.9):,97 EW, 3 h.4 Středí doba ER, terou stráví jede záazí v systému, se vyočte odle (6.): ER EW +,3 +, 344 h 4 Výsledy ro říad zdvojásobeí očtu stojaů u čerací staice jsou v ásledující tabulce Tab. 6., de je očet stojaů (tj. obsluhových lie). Tab. 6.: Výsledy říladu. Q ν L EW ER,94,3,57 3,6,88 5,5,3,344 4,47,49,93,,88,3, K obdobým výsledů je možo dosět omocí hodot, teré jsou výsledem simulačího exerimetu, terý je ostave a modelu systému hromadé obsluhy se stejými arametry a s ostuy osaými v ásledujícím textu.
MODELY HROMADNÉ OBSLUHY Models of queueing systems
MODELY HROMADNÉ OBSLUHY Models of queueig systems Prof. RNDr. Ig. Miloš Šeda, Ph.D. Vysoé učeí techicé v Brě, Faulta strojího ižeýrství, Ústav automatizace a iformatiy e-mail: seda@fme.vutbr.cz Abstrat
VíceVícekanálové čekací systémy
Vícekaálové čekací systémy taice obsluhy sestává z ěkolika kaálů obsluhy, racujících aralelě a avzájem ezávisle. Vstuy i výstuy systému mají oissoovský charakter. Jedotky vstuující do systému obsadí ejrve
Více3. část: Teorie hromadné obsluhy. Ing. Michal Dorda, Ph.D.
3. část: Teorie hromadé obsluhy Ig. Michal Dorda, h.d. Zálady teorie pravděpodobosti Náhodý pous je děj, jehož výslede eí ai při dodržeí všech předepsaých podmíe předem zám. Náhodý jev je výsledem áhodého
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
VíceTento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254
Evroský sociálí od Praha & EU: Ivestujeme do vaší budoucosti eto materiál vzikl díky Oeračímu rogramu Praha Adatabilita CZ..7/3../3354 Maažerské kvatitativí metody II - ředáška č.3 - Queuig theory teorie
VíceAnalytické modely systémů hromadné obsluhy
Aalytcé odely systéů hroadé obsluhy ředěte teore hroadé obsluhy Kedallova lasface - ty SHO: X / Y / c / d / X ty stochastcého rocesu, terý osue říchody Y ty stochastcého rocesu terý osue délu obsluhy c
Více12. Regrese Teoretické základy
Regese Jedím z hlavích úolů matematicé statistiy je hledáí a studium závislostí mezi dvěma či více oměými Závisle oměá se zavidla ozačuje Y a ezávisle oměé X,, X i,i Závislosti mezi Y a suiou oměých X
VíceBRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY
VYSOKÉ UČEÍ TECHICKÉ V BRĚ BRO UIVERSITY OF TECHOLOGY FAKULTA STROJÍHO IŽEÝRSTVÍ ÚSTAV AUTOMATIZACE A IFORMATIKY FACULTY OF MECHAICAL EGIEERIG ISTITUTE OF AUTOMATIO AD COMPUTER SCIECE MODELY HROMADÉ OBSLUHY
VíceVYUŽITÍ TEORIE HROMADNÉ OBSLUHY PŘI SIMULOVÁNÍ MIMOŘÁDNÝCH UDÁLOSTÍ
16. medziárodá vedecká koerecia Riešeie krízových situácií v šeciickom rostredí, Fakulta šeciáleho ižiierstva ŽU, Žilia, 1. - 2. jú 211 VYUŽITÍ TEORIE HROMADNÉ OBSLUHY PŘI SIMULOVÁNÍ MIMOŘÁDNÝCH UDÁLOSTÍ
VíceNárodní informační středisko pro podporu kvality
Národí iformačí středisko ro odoru kvality Testováí zůsobilosti a výkoosti výrobího rocesu RNDr. Jiří Michálek, Sc Ústav teorie iformace a automatizace AVČR UKAZATELE ZPŮSOBILOSTI 3 UKAZATELE ZPŮSOBILOSTI
Více7 VYUŽITÍ METOD OPERAČNÍ ANALÝZY V TECHNOLOGII DOPRAVY
7 VYUŽITÍ METOD OERAČNÍ ANALÝZY V TECHNOLOGII DORAVY Operačí aalýza jao jeda z oblatí apliovaé matematiy achází vé široé uplatěí v průmylových a eoomicých apliacích. Jedím z oborů, ve teré hraje ezatupitelou
VíceMarkovovy řetězce s diskrétním časem (Discrete Time Markov Chain)
Stochastcé rocesy Marovovy řetězce s dsrétím časem (Dscrete Tme Marov Cha) Stochastcý roces Stochastcým rocesem {X(t), tr} je moža áhodých velč X(t) závslých a jedom arametru t. Stavový rostor : moža možých
VícePRAVDĚPODOBNOST ... m n
RVDĚODONOST - matematická discilía, která se zabývá studiem zákoitostí, jimiž se řídí hromadé áhodé jevy - vytváří ravděodobostí modely, omocí ichž se saží ostihout rocesy, ovlivěé áhodou. Náhodé okusy:
VícePřednáška č. 10 Analýza rozptylu při jednoduchém třídění
Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě
VíceNáhoda. Pravděpodobnost výhry při sázce na barvu: p = 18/37 = 0,486 Průměrný zisk při n sázkách částky č: - n.č + 2.č.n.p = n.č.
Náhoda při i hřeh Martigale: Vsadíšřeěme dolar a barvu, terou si vybereš (červeáči čerá) a budeš stále sázet je a i. Roztočíš ruletu a čeáš Poud prohraješ, zdvojásobíš sázu, taže vsadíš příště dolary.
Více5. Lineární diferenciální rovnice n-tého řádu
5 3.3.8 8:44 Josef Herdla lieárí difereciálí rovice -tého řádu 5. Lieárí difereciálí rovice -tého řádu (rovice s ostatími oeficiety) ( ), a,, a (5.) ( ) ( ) y a y a y ay q L[ y] y a y a y a y, q je spojitá
VíceJihočeská univerzita v Českých Budějovicích. Pedagogická fakulta PRAVDĚPODOBNOSTNÍ MODELY KOLEM NÁS BAKALÁŘSKÁ PRÁCE. Radka Glücksmannová
Jihočesá uiverzita v Česých Budějovicích Pedagogicá faulta PRAVDĚPODOBNOSTNÍ MODELY KOLEM NÁS BAKALÁŘSKÁ PRÁCE Rada Glücsmaová Česé Budějovice, rosiec 7 Na tomto místě bych ráda oděovala vedoucímu baalářsé
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná vybraná rozdělení
S1P áhodá roměá vybraá rozděleí PRAVDĚPODOBOST A STATISTIKA áhodá roměá vybraá rozděleí S1P áhodá roměá vybraá rozděleí Vybraá rozděleí diskrétí P Degeerovaé rozděleí D( ) áhodá veličia X s degeerovaým
VíceElektrické přístroje. Přechodné děje při vypínání
VŠB - Techická uiverzita Ostrava Fakulta elektrotechiky a iformatiky Katedra elektrických strojů a řístrojů Předmět: Elektrické řístroje Protokol č.5 Přechodé děje ři vyíáí Skuia: Datum: Vyracoval: - -
Více3. Charakteristiky a parametry náhodných veličin
3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo
Více3. Decibelové veličiny v akustice, kmitočtová pásma
3. Decibelové veličiy v akustice, kmitočtová ásma V ředchozí kaitole byly defiováy základí akustické veličiy, jako ař. akustický výko, akustický tlak a itezita zvuku. Tyto veličiy ve v raxi měí o moho
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBOST A STATISTIKA Degeerovaé rozděleí D( ) áhodá veličia X s degeerovaým rozděleím X ~D(), R má základí rostor Z = { } a ravděodobostí fukci: ( ) 1 0 Charakteristiky: středí hodota: E(X ) roztyl:
VíceSTATISTIKA. Základní pojmy
Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci
VíceZávislost indexů C p,c pk na způsobu výpočtu směrodatné odchylky
Závislost indexů C,C na zůsobu výočtu směrodatné odchyly Ing. Renata Przeczová atedra ontroly a řízení jaosti, VŠB-TU Ostrava, FMMI Podni, terý chce usět v dnešní onurenci, musí neustále reagovat na měnící
VícePřednáška č. 2 náhodné veličiny
Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující
VíceDefinice obecné mocniny
Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma
Více8.1.2 Vzorec pro n-tý člen
8.. Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Myslím, že jde o jedu z velmi pěých hodi. Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým
Více8.1.2 Vzorec pro n-tý člen
8 Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým příladům z IQ testů, teré studeti zají
Vícemůžeme toto číslo považovat za pravděpodobnost jevu A.
RVDĚODONOST - matematická discilía, která se zabývá studiem zákoitostí, jimiž se řídí hromadé áhodé jevy - vytváří ravděodobostí modely, omocí ichž se saží ostihout áhodé rocesy. Náhodé okusy: rocesy,
VíceTeorie hromadné obsluhy
4..5 Teorie hromadé obluhy Radim Faraa Podlady pro výuu pro aademicý ro 3/4 Obah Teorie hromadé obluhy Klaiiace ytémů hromadé obluhy Sytém hromadé obluhy M/M// / /FIFO Sytém hromadé obluhy M/M/// Sytém
Více2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT
2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic
VíceOdhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
VíceMATICOVÉ HRY MATICOVÝCH HER
MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem
VíceASYNCHRONNÍ STROJE. Obsah
VŠB TU Ostrava Fakulta elektrotechiky a iformatiky Katedra obecé elektrotechiky ASYCHROÍ STROJE Obsah. Výzam a oužití asychroích motorů 2. rici čiosti asychroího motoru 3. Rozděleí asychroích motorů 4.
Více1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL
Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,
Více8.2.10 Příklady z finanční matematiky I
8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do
Víceveličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou
1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i
VíceBudeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
Více8.3.1 Vklady, jednoduché a složené úrokování
8..1 Vklady, jedoduché a složeé úrokováí Předoklady: 81 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží
VíceDeskriptivní statistika 1
Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky
VíceZápadočeská univerzita FAKULTA APLIKOVANÝCH VĚD
Záadočesá uverzta FKULT PLIKOVNÝCH VĚD Obsah: Pravděodobostí modelováí očítačových systémů geerováí a využtí áhodých čísel (Mote Carlo metody), matematcé (marovsé) modely 3 Zálady teore systémů hromadé
Více6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.
6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola
Více1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.
Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.
VíceKatedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava ENERGETIKA U ŘÍZENÝCH ELEKTRICKÝCH POHONŮ. 1.
Katedra obecé eletrotechiy Faulta eletrotechiy a iformatiy, VŠB - TU Ostrava EERGETIKA U ŘÍZEÝCH EEKTRICKÝCH POHOŮ Předmět : Rozvody eletricé eergie v dolech a lomech. Úvod: Světový tred z hledisa eletricé
Více2. Úvod do indexní analýzy
2. Úvod do idexí aalýzy 2.. Motivace Tato kaitola se zabývá srováváím ukazatelů v datových souborech, které se liší buď časově ebo rostorově ebo věcě. Nejdůležitější je srováváí ukazatelů z časového hlediska.
VíceNáhodný výběr 1. Náhodný výběr
Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti
VíceSměrnice 1/2011 Statistické vyhodnocování dat, verze 3 Verze 3 je shodná s původní Směrnicí 1/2011 verze 2, za čl. 2.3 je vložen nový odstavec
Směrice /0 Statitické vyhodocováí dat, verze 3 Verze 3 e hodá ůvodí Směricí /0 verze, za čl..3 e vlože ový odtavec. Statitické metody ro zkoušeí zůobiloti Statitická aalýza oužívaá ro aalýzu výledků zkoušky
VícePravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí
VíceS k l á d á n í s i l
S l á d á í s i l Ú o l : Všetřovat rovováhu tří sil, působících a tuhé těleso v jedom bodě. P o t ř e b : Viz sezam v desách u úloh a pracovím stole. Obecá část: Při sládáí soustav ěolia sil působících
VíceNEPARAMETRICKÉ METODY
NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost
Více2. TEORIE PRAVDĚPODOBNOSTI
. TEORIE PRAVDĚPODOBNOSTI V prax se můžeme setat s dvojím typem procesů. Jeda jsou to procesy determstcé, u terých platí, že př dodržeí orétích vstupích podmíe obdržíme přesý, předem zámý výslede (te můžeme
Více12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
VíceHYDROMECHANICKÉ PROCESY. Doprava tekutin Čerpadla a kompresory (přednáška) Doc. Ing. Tomáš Jirout, Ph.D.
HROMECHANICKÉ PROCES orava tekti Čeradla a komresory (ředáška) oc. Ig. Tomáš Jirot, Ph.. (e-mail: Tomas.Jirot@fs.cvt.cz, tel.: 435 68) ČERPALA Základy teorie čeradel Základí rozděleí čeradel Hydrostatická
VíceProblémy hodnocení výkonnosti a způsobilosti řízení procesů v rámci nesplnění normality rozdělení dominantního znaku jakosti
Jiří Zmatlík 1, Pavel Zdvořák Problémy hodoceí výkoosti a zůsobilosti řízeí rocesů v rámci eslěí ormality rozděleí domiatího zaku jakosti Klíčová slova: eshodý rodukt, zaky jakosti měřitelé a zaky jakosti
Více2. Náhodná veličina. je konečná nebo spočetná množina;
. Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité
VíceDvojný integrál. Dvojný integrál na obdélníkové oblasti
Dvojý itegrál Zatímo itegračím oborem jeorozměrého itegrálu bl iterval, u vojého itegrálu je třeba raovat s vojrozměrými obor. Může to být obélíová oblast, ale i složitější útvar jao ař. ruh, ruhová výseč
Více6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3.
Zálady matematiy Kombiatoria. KOMBINATORIKA 8.. Záladí pojmy 8... Počítáí s fatoriály a ombiačími čísly 8.. Variace 8.. Permutace 85.. Kombiace 87.5. Biomicá věta 89 Úlohy samostatému řešeí 9 Výsledy úloh
VíceTECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH
ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav
Více11 TESTOVÁNÍ HYPOTÉZ Základní pojmy
EOVÁNÍ YPOÉZ. Základí ojmy V Kaitole jsme se sezámili s ostuem, jak odhadout ezámé arametry základího souboru oulace v říadě, že emáme k disozici všechy jeho rvky, ale je jeho část - áhodý výběr. V raxi
VíceMARKOVOVSKÉ ŘETĚZCE Stochastické procesy Markovovské řetězce s diskrétním časem DTMC Discrete Time Markov Chain...
OBSAH MARKOVOVSKÉ ŘETĚZCE... 2 5.1 Stochasticé procesy... 2 5.2 Marovovsé řetězce s disrétím časem DTMC Discrete Time Marov Chai... 2 5.2.1 Defiice Marovovsého řetězce... 3 5.2.2 Matice přechodu... 4 5.2.3
Více10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI
Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou
VíceCvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu
Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý
VíceNáhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.
Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího
Více4EK311 Operační výzkum. 4. Distribuční úlohy LP část 2
4EK311 Operačí výzkum 4. Distribučí úlohy LP část 2 4.1 Dopraví problém obecý model miimalizovat za podmíek: m z = c ij x ij i=1 j=1 j=1 m i=1 x ij = a i, i = 1, 2,, m x ij = b j, j = 1, 2,, x ij 0, i
Více8. Analýza rozptylu.
8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,
VícePosouzení struktury strojní sestavy pomocí teorie hromadných obsluh
Projekt zpracová s podporou FRVŠ. Posouzeí struktury strojí sestavy pomocí teorie hromadých obsluh 1 Základí údaje Ve stavebí praxi se velmi často vyskytuje požadavek rychle a objektivě posoudit strukturu
Vícejako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých
9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie
VíceTestování statistických hypotéz
Testováí statstckých hyotéz Př statstckých šetřeích se často setkáváme s roblémy tohoto druhu () Máme zjstt, zda dva daé vzorky ocházejí z téhož ZS. () Máme rozhodout, zda rozdíly hodot růměrů (res. roztylů)
VíceCvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu
Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia
VícePři sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací
3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací
VíceP2: Statistické zpracování dat
P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu
Více3. Lineární diferenciální rovnice úvod do teorie
3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se
VíceSměrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu
Směrce /0 Stattcké vyhodocováí dat, verze 4 Verze 4 e hodá e Směrcí /0 verze 3, ouze byla rozšířea o robutí aalýzu. Stattcké metody ro zkoušeí zůoblot Cílem tattcké aalýzy výledků zkoušek ř zkouškách zůoblot
VíceOdhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
VíceSA4. Popis konstrukce a funkce STAVEBNICE HYDRAULICKÝCH HC 7100 11/98. pmax 31 MPa Q 0,5-42 dm 3. min -1 Nahrazuje HC 7100 5/95
STAVEBNICE HYDRAULICKÝCH AGREGÁTŮ ŘADY SA4 HC 7100 11/98 max 31 MPa Q 0,5-42 dm 3. mi -1 Nahrazuje HC 7100 5/95 Sestaveí hydraulického agregátu zákazickým zůsobem z tyizovaých odskui Objemy ádrží 10 až
VíceDIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce
DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem ukce, gra ukce De: Fukcí reálé proměé azýváme pravidlo, které každému reálému číslu D přiřazuje právě jedo reálé číslo y H Toto pravidlo začíme ejčastěji
VíceIng. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228)
Stavebí statka - vyučující Dooručeá lteratura Ig. Vladmíra chalcová, h.d. Katedra stavebí mechaky (228) místost: LH 47/ tel.: (59 732) 348 e mal: vladmra.mchalcova@vsb.c www: htt://fast.vsb.c/mchalcova
Více6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY
6 VYBRANÁ ROZDLENÍ DISKRÉTNÍ NÁHODNÉ VELIINY Rozdleí áhodé veliiy je edis, terým defiujeme ravdodobost jev, jež lze touto áhodou veliiou osat. Záladím rozdleím oisujícím výbry bez vraceí je hyergeometricé
VíceTOKY V GRAFU MAXIMÁLNÍ TOK SÍTÍ, MINIMALIZACE NÁKLADŮ SPOJENÝCH S DANOU HODNOTOU TOKU, FIXNÍ NÁKLADY, PŘEPRAVNÍ (TRANSHIPMENT) PROBLÉM.
TOKY V GRAFU MAXIMÁLNÍ TOK SÍTÍ, MINIMALIZACE NÁKLADŮ SPOJENÝCH S DANOU HODNOTOU TOKU, FIXNÍ NÁKLADY, PŘEPRAVNÍ (TRANSHIPMENT) PROBLÉM. Graf je útvar, terý je možo zázorit obrázem v roviě pomocí bodů (uzly
Více1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků
1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,
VícePro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).
STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,
VíceSekvenční logické obvody(lso)
Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách
Víceodhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.
10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé
Více10.3 GEOMERTICKÝ PRŮMĚR
Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo
Více11. INDUKTIVNÍ STATISTIKA
Pravděodobost a statstka. INDUKTIVNÍ STATISTIKA Iduktví statstka Průvodce studem Navážeme a katolu 7 a ukážeme, jak racovat se soubory, jejchž všechy rvky ejsou zámy. Předokládaé zalost Pojmy z ředchozích
Vícei 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky
Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí
VíceZhodnocení přesnosti měření
Zhodoceí přesosti měřeí 1. Chyby měřeí Měřeím emůžeme ikdy zjistit skutečou (pravou) hodotu s měřeé veličiy. To je způsobeo edokoalostí metod měřeí, měřicích přístrojů, lidských smyslů i proměých podmíek
Více14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou
4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,
Vícek(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln
Číselé řady - řešeé přílady ČÍSELNÉ ŘADY - řešeé přílady A. Součty řad Vzorové přílady:.. Přílad. Určete součet řady + = + 6 + +.... Řešeí: Rozladem -tého čleu řady a parciálí zlomy dostáváme + = + ) =
VíceVÝMĚNA VZDUCHU A INTERIÉROVÁ POHODA PROSTŘEDÍ
ÝMĚNA ZDUCHU A INTERIÉROÁ POHODA PROSTŘEDÍ AERKA J. Fakulta architektury UT v Brě, Poříčí 5, 639 00 Bro Úvod Jedím ze základích požadavků k zabezpečeí hygieicky vyhovujícího stavu vitřího prostředí je
VíceDoc. Ing. Dagmar Blatná, CSc.
PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj
Více1 PSE Definice základních pojmů. (ω je elementární jev: A ω (A ω) nebo (A );
1 PSE 1 Náhodý pokus, áhodý jev. Operace s jevy. Defiice pravděpodobosti jevu, vlastosti ppsti. Klasická defiice pravděpodobosti a její použití, základí kombiatorické vzorce. 1.1 Teoretická část 1.1.1
VíceGeometrická optika. Vznikají tak dva paprsky odražený a lomený - které spolu s kolmicí v místě dopadu leží v jedné rovině a platí:
Geometrická optika Je auka o optickém zobrazováí. Byla vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým ejsou potřeba zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost
VíceChemie cvičení 3 Soustavy s chemickou reakcí
U 8 - Ústav oesí a zaovatelsé tehiy FS ČUT Chemie vičeí 3 Soustavy s hemiou eaí A. Reačí ietia 3/ eatou obíhá eae A + B C. oetae láty A a vstuu do eatou je,3 mol/l a láty B, mol/l. Ja se změí eačí yhlost,
Více66. ročník matematické olympiády III. kolo kategorie A. Liberec, března 2017
66. ročí matematicé olympiády III. olo ategorie A Liberec, 26. 29. březa 2017 MO 1. Na hromádce leží 100 očíslovaých diamatů, z ichž 50 je pravých a 50 falešých. Pozvali jsme svérázého zalce, terý jediý
VíceČeské vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika
České vysoké učeí techické v Praze Fakulta dopraví Semestrálí práce Statistika Čekáí vlaku ve staicích a trase Klado Ostrovec Praha Masarykovo ádraží Zouzalová Barbora 2 35 Michálek Tomáš 2 35 sk. 2 35
Více4. Opakované pokusy a Bernoulliho schema
4 Opové pousy Beroulliho schem Pozám: V ěterých příldech v odstvcích 2 3 jsme počítli prvděpodobosti áhodých jevů, teré byly výsledem opoví áhodého pousu Npř házeí dvěm micemi je stejé jo dv hody jedou
VíceVzorový příklad na rozhodování BPH_ZMAN
Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha
Více3.4.7 Můžeme ušetřit práci?
3.4.7 Můžeme ušetřit práci? Předpolady: 030404 Pomůcy: Pedaoicá pozáma: Hodia je oraizováa jao supiová práce. Třída je rozdělea a čtyřčleé supiy, aždý ze čleů má jedu možost ozultovat se mou ebo mě předat
Více