MODEL VRSTEVNATÉHO NOSNÍKU PRO DEFORMAČNÍ METODU
|
|
- Julie Marková
- před 8 lety
- Počet zobrazení:
Transkript
1 ODELOVÁNÍ V ECHANICE OSTRAVA, KVĚTEN 5 ODEL VRSTEVNATÉHO NOSNÍKU PRO DEFORAČNÍ ETODU ODEL OF LAYERED BEA FOR DIRECT STIFFNESS ETHOD Pet Fntí, Rostsv íde, Ldě Bdečo 3 Abstt Čáne se věnje odvození, mpementc ověření sttcého mode vstevntého pt po obecno defomční metod. Jeho účeem je modeování zejmén oíových spojů nosníů s více vstvm. Kíčová sov vstevntý pt, obecná defomční metod Abstct The ppe s focsed on devton, mpementton nd vefcton of sttc mode of yeed bem fo dect stffness method. Its ppose s mny to mode the pnned jonts of yeed bems. Keywods yeed bem, pnned jonts, dect stffness method Úvod Nosníy sožené z vstev vzájemně povázných pžným oíy jso ve stvebctví běžné zejmén dřevěných oceobetonových onstcí. Koíy mjí fnc zjštění částečného (deáně úpného) přenos smy mez přehým vstvm, vz ob.. Bez oíů by vstevntý nosní s odděeným vstvm nes jen ztížení dné smo únosností jednotvých vstev. Díy oíům, potžmo díy přenos smy mez vstvm, jeho únosnost význmně vzoste. Je čen, mmo jné, thostí oíových spojů jejch četností. Tento příspěve je změřen n detnější modeování vstevntých ptů s pžným oíovým spoj pávě s ohedem n tyto vstnost. Ob. : Vstevntý postě ožený nosní s pžným oíy Ing. Pet Fntí, Ph.D., Vysoé čení techcé v Bně, Ft stvební, Ústv stvební mechy, e-m: tnf@centm.cz Ing. Rostsv íde, Ph.D., dtto, e-m: zde.@fce.vtb.cz 3 Ing. Ldě Bdečo, Ph.D., dtto, e-m: bdeco.@fce.vtb.cz
2 ODELOVÁNÍ V ECHANICE OSTRAVA, KVĚTEN 5 ode ode pt je oncpován jo sttcý, neání ovnný, fngjící v ámc obecné defomční metody, vz npř. []. Rozšíření je povedeno pomocí obohcení styčníů o m hozontáních posnů, de m je počet vstev pt, vz ob.. Ob. : Styční pt po nosní s pět vstvm Kždý styční t má m + stpňů vonost, což odpovídá tzv. nečtým posvům,,..., m, w, φ. Tj. styční je vžován jo vstevntý, mjící spoečný svsý posn pootočení, přčemž ždé vstvy může docházet ůzným hozontáním posnům. Vstvy jso ve styční povázány hozontáním pžnm s thostm, epezentjícím thost oíového spoje po dno dvojc přehých vstev. Po vstevntý styční tedy ze sestvt mtc thost K vedeno ve výz: m m m m R w K + O ϕ, () de je veto posvů styční, R je veto styčníových s. Kždý vstevntý pt s ze předstvt jo spn m (nevstevntých) ptů espetve vstev n dné excentctě e. Excentcé přpojení vstvy ze chápt jo pvoúhý ám o výšce ovné excentctě e s thým stojm, vz ob. 3. Tto ze sndno odvodt, že po mtc thost tohoto pt vzhedem těžštní ose vstevntého pt ptí: ( ), ˆ,, b b b e b c b b R K e K K + ()
3 ODELOVÁNÍ V ECHANICE OSTRAVA, KVĚTEN 5 de K c je mtce thost náhdního pt vstvy (mtce thost nevstevntého pt s novo excentcto, vz npř. []) K e je sož mtce thost vzá díy jednotové (dné) excentctě, po teo ptí: e K b e, b b e b b e e w e ϕ w b e ϕb b b b b Rˆ b, (3) de EA / je nomáová thost náhdního pt vstvy, E je mod pžnost vstvy symboem A je oznčen její půřezová poch. Ob. 3: Ptový mode vstvy Jednotvé mtce thost náhdních ptů vstev se sjednotí do mtce thost vstevntého pt obdobným způsobem, jo se ozjí mtce thost pt v mtc thost mode. 3 Agotms Výpočet defomcí pobíhá nogcy s postpem v obecné defomční metodě s dobným ozšířením, jeož vstevntý styční má ovněž mtc thost. Seství se tedy mtce thost styčníů mtce thost vstevntých ptů. Násedně se tyto ozjí do mtce thost mode. Seství se veto ztížení ptní se ojové podmíny. Vyřeší se sostv ovc. Podobněj ze sestvení mtce thost mode ozepst (n s je počet styčníů): ) Aoje se mtce thost mode K o ozmě n d n s (m + ). ) Po všechny styčníy: ) Aoje seství se mtce thost styční K, de (). b) tce styční se ozje (přčte) do mtce mode K. 3) Po všechny vstevnté pty: ) Aoje se mtce thost pt K b o ozmě (m + ). b) Po všechny vstvy: ) Aoje se mtce thost vstvy K b (o ozmě 6). ) Seství se mtce thost náhdního pt vstvy K c,b. ) Seství se mtce příspěvů thost vvem excentcty K e,b. 3
4 ODELOVÁNÍ V ECHANICE OSTRAVA, KVĚTEN 5 v) Obě mtce se ozjí do mtce thost vstvy K b. v) tce thost vstvy se ozje do mtce thost pt K b. c) tce thost pt se ozje do mtce thost mode K. 4) Uptní se ojové podmíny (typcy nováním nedgonáních espetve nstvením jednoty dgonáních čenů mtce thost n řádcích sopcích, teé přísší zbáněným posvům). 4 Ověření ode by ověřován n onvegenc řešení půhyb onzoy nevstevntého nosní bez vžování smyového přetvoření. Je- popsný mode oetně odvozen mpementován, msí půhyb onzoy vstevntého nosní onvegovt tomto řešení se zvyšjící se thostí oíových spojů se zvyšjícím se počtem (deáně evdstntně) ozděených styčníů. Obdobně, př nové thost, má půhyb vycházet stejně jo půhyb smosttných vstev. Po půhyb onzoy onstntního půřez, ztížené příčno so F n voném onc ptí: 3 F w, (4) 3 EI což dává výsedný půhyb w.9593 m př vžování dooného popojení vstev půhyb w m př vžování nespopůsobících vstev po onzo déy 5 m, s modem pžnost E GP obdéníovým půřezem šířy b. m výšy h.3 m, ztíženo so F N. ode dává hodnot w.96 m př třech evdstntních vstvách eementech (espetve oíových spojích) s thostí 89 N/m, což odpovídá odchyce.%. Odpovídjící onvegenční gf je znázoněn n ob. 4. w [m] [N/m] Ob. 4: Konvegence půhyb voného once onzoy w př vzůstjící thost oíového spoje po eementů tř evdstntní vstvy (semogtmcý gf). Chování mode př nové thost odpovídá teoetcé hodnotě, vz ob. 5. Dopňme, že půhyb once onzoy pochopteně závsí n ozmístění oíových spojů s styčníů. Rychost onvegence po doone popojené vstvy je význě ovvněn počtem vstev. Čím více vstev, tím vyšší thost počt eementů je zpotřebí dosžení přjtené odchyy od vedeného teoetcého řešení. 4
5 ODELOVÁNÍ V ECHANICE OSTRAVA, KVĚTEN 5 w [m] [N/m] Ob. 5: Vývoj půhyb voného once onzoy w po mé thost oíového spoje po eementů tř evdstntní vstvy. 5 ávě Čáne se věnov modeování ověření vstností ptového mode vícevstvého nosní optřeného pžným oíovým spoj. ode by fomován v ámc obecné defomční metody ozšířením stpňů vonost styčníů. Ověření mode ázo, že po mtní teoetcé hodnoty půhyb vybného nosní dává mode spávné výsedy. Dopňme vš, že mode, t j je fomován, tpí dobno vdo. V úsecích mez pty není zčen ( zjsté je pošen) podmín vzájemného dote sosedících vstev nosní, což tvoří pobém zejmén př potntí vstev. Toto potntí ze v ámc neáního mode emnovt zvedením dosttečného počt mezehých styčníů s novo thostí oíového spoje. Poděování Tento příspěve vz z fnnční podpoy Gntové genty Česé epby, pojet GAČR 5-7S, pojet LO48 AdS UP Poočé mteáy, onstce technooge, podpoovného stestvem šoství, mádeže těovýchovy Česé epby v ámc Náodního pogm džtenost I. Ltet [] KADLČÁK, J., KYTÝR, J. Stt stvebních onstcí II., ndteství VUTIU, Bno,. ISBN
SMR 2. Pavel Padevět
SR Pve Pdevět PRICIP VIRTUÁLÍCH PRACÍ Deformční metod tice thosti prt, princip virtáních posnů PRICIP VIRTUÁLÍCH POSUUTÍ (oecný princip rovnováhy) Stečný stv E; A [] Virtání práce vnějších posntí W e
Téma 5 Spojitý nosník
Stvení mechnik.očník kářského studi AST Tém 5 Spojitý nosník Zákdní vstnosti spojitého nosníku Řešení spojitého nosníku siovou metodou yužití symetie spojitého nosníku Kted stvení mechniky Fkut stvení
Téma 5 Obecná deformační metoda příhradové konstrukce
Stti tveníh ontí II, 3.oční ářého tdi SI ém 5 Oená defomční metod příhdové onte Chteiti příhdové onte vo výpočtového mode Aný pt Aný ptové otvy Příd výpočt Potoové příhdové onte Kted tvení mehniy Ft tvení,
POUŽITÍ PRINCIPU VIRTUÁLNÍCH PRACÍ PRO VÝPOČET PŘETVOŘENÍ
POUŽITÍ PRINCIPU VIRTUÁLNÍCH PRACÍ PRO VÝPOČET PŘETVOŘENÍ PRINCIP VIRTUÁLNÍCH PRACÍ Ve sttce jsme defnovl vrtuální prác jo prác síly př vrtuálních posunech neo jo prác slové dvojce př vrtuálním pootočení,
Téma 6 Spojitý nosník
Stvení mechnik.očník kářského studi AST Tém Sojitý nosník Zákdní vstnosti sojitého nosníku Řešení sojitého nosníku siovou metodou yužití symetie sojitého nosníku Kted stvení mechniky Fkut stvení ŠB - Technická
SMR 2. Pavel Padevět
SR Pve Pevět PRINCIP VIRTUÁLNÍCH PRACÍ Deformční meto jenošená eformční meto, Přetvárně nerčité konstrke POROVNÁNÍ OBECNÉ A JEDNODUŠENÉ DEF. ETODY V zjenošené eformční metoě (D) se zneává viv normáovýh
SMR 2. Pavel Padevět
SR Pve Pevět PRICIP VIRTUÁLÍCH PRACÍ jenošená eformční meto, esiové vivy, Sčítání účinků ztížení ezi nesiové vivy vžjeme v D: viv posntí popor, viv tepoty. ESILOVÉ VLIVY Popštění popory vyvoává v sttiky
Stanovení přetvoření ohýbaných nosníků. Mohrova metoda (Mohrova analogie)
Stnovení přetvoření ohýnýh nosníků ohrov metod (ohrov nlogie) Přetvoření ohýnýh nosníků Posouzení z hledisk meze použitelnosti Ztížení, deforme w, φ Okrové podmínky (deforme) Šmiřák, S.: Pružnost plstiit
POSOUZENÍ ÚNOSNOSTI PRŮŘEZU VE SMYKU řešený příklad pro BO009
POSOUZENÍ ÚNOSNOSTI PRŮŘEZU E SYKU řešený přílad pro BO009 Posouzení průřezu prostého nosníu na posouvající síly. Průřez nosníu je dvouose symetricý, onstantní po celé délce. Pásnice a stojina jsou z onstruční
Stavební mechanika, 2.ročník bakalářského studia AST. Téma 4 Rovinný rám
Stvební mechnik,.ročník bklářského studi AST Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit
STATIKA STAVEBNÍHO SYSTÉMU VAREA MODUL
VAEA ODUL s.r.o., áměstí, 766 Štramberk, Č:85 95 5, DČ: CZ 85 95 5 Zapsána KS v Ostravě, oddíl C, vložka 7 STATKA STAVEBÍHO SYSTÉU VAEA ODUL Požité podklady: Zpráva statika a statický výpočet ng. Aleandr
Téma 9 Přetvoření nosníků namáhaných ohybem II.
Pružnost psticit,.ročník kářského studi Tém 9 Přetvoření nosníků nmáhných ohem. ohrov metod Přetvoření nosníků proměnného průřeu Sttick neurčité přípd ohu Viv smku n přetvoření ohýného nosníku Ktedr stvení
ÚSTAV MECHANIKY A MATERIÁLŮ FD ČVUT. DOC. ING. MICHAL MICKA, CSc. PŘEDNÁŠKA 2
ÚSTAV ECHANIKY A ATERIÁLŮ FD ČVUT DOC ING ICHAL ICKA, CSc PŘEDNÁŠKA 2 ÚSTAV ECHANIKY A ATERIÁLŮ FD ČVUT PŘÍKLADY STATICKY NEUTČITÝCH KONSTRUKCÍ Vetnutý tuhý olou s mezlehlou mostovou Lngerův trám (netuhý
Téma Přetvoření nosníků namáhaných ohybem
Pružnost psticit,.ročník bkářského studi Tém Přetvoření nosníků nmáhných ohbem Přetvoření nosníků - tížení nerovnoměrnou tepotou Přetvoření nosníků tížení siové Zákdní vth předpokd řešení Vth mei sttickými
Téma 8 Pohyblivé zatížení
Stvení stt, roční ářsého stud Tém 8 Pohyvé ztížení Příčnové čáry n prostém nosníu, onzoe spojtém nosníu s voženým ouy Pohyvé vozdo n prostém nosníu Nepřímé pohyvé ztížení Ktedr stvení mehny Fut stvení,
Téma 5 Spojitý nosník
Sttik stveních konstukcí..očník kářského studi Tém 5 Sojitý nosník Zákdní vstnosti sojitého nosníku Řešení sojitého nosníku siovou metodou yužití symetie sojitého nosníku Příčinkové čáy nhodié ztížení
Stanovení přetvoření ohýbaných nosníků. Clebschova a Mohrova metoda
Stnovení přetvoření ohýnýh nosníků Ceshov Mohrov metod (pokrčování) (Mohrov nogie) Příkd Určete rovnii ohyové čáry pootočení nosníku stáého průřezu Ceshovou metodou. Stnovte veikost průhyu w pootočení
Staticky určité případy prostého tahu a tlaku
Spoehvost nosné onstruce Ztížení: -stáé G součnte ztížení G -proěnné Q.součnte ztížení Q Ztížení: -chrterstcé -návrhové G,V, + Pevnost - chrterstcá y z prcovního r. -návrhová (souč.spoehvost t. Posouzení
Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.
.4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli
Téma 5 Rovinný rám. Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám
Stvební mechnik,.ročník bklářského studi AST Tém 5 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit
Téma 8 Přetvoření nosníků namáhaných ohybem I.
Pružnost psticit, ročník kářského studi Tém 8 Přetvoření nosníků nmáhných ohem Zákdní vzth předpokd řešení Přetvoření nosníků od nerovnoměrného otepení etod přímé integrce diferenciání rovnice ohové čár
STROJNÍ A ZÁMEČNICKÉ SVĚRÁKY MACHINE AND BENCH VISES
TROJNÍ ZÁMEČNICKÉ VĚRÁKY TROJNÍ MCINE ND ZÁMEČNICKÉ BENC VIE VĚRÁKY MCINE ND BENC VIE 147 TROJNÍ ZÁMEČNICKÉ VĚRÁKY BION-BI vyrábí široý sortiment strojníc, přesnýc, brusičsýc zámečnicýc svěráů Všecny
3.4.3 Množiny bodů dané vlastnosti I
3.4.3 Množiny odů dné vlstnosti I Předpoldy: 3401 Něteé z těchto množin už známe. J je definován užnice ( ; )? Množin všech odů oviny, teé mjí od středu vzdálenost. Předchozí vět znmená dvě věci: Vzdálenost
Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.
Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce
Řešený příklad - Nechráněný nosník zajištěný proti klopení
Řešený příl - Nehráněný nosní zjištěný proti lopení Nvrhněte prostý nosní s rozpětí 6,, viz obráze, ztížený rovnoěrný spojitý ztížení. Stálé ztížení je 3,8 N/, proěnné ztížení q 5,8 N/. Stbilitu tlčené
Statika stavebních konstrukcí I. Téma 6 Nosné lano. Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita Ostrava
Stt stveních onstrucí I. Tém 6 Nosné lno Ktedr stvení mechny Fult stvení, VŠB - Techncá unverzt Ostrv Osnov přednášy Pojem nosného ln Oecné vlstnost příčně ztíženého nosného ln Lno ztížené svslým odovým
MODELOVÁNÍ HŘÍDELOVÉ SOUSTAVY S ČELNÍMI OZUBENÝMI KOLY. Ing. Karel Jiřička ČVUT v Praze, fakulta strojní
MODELOVÁNÍ HŘÍDELOVÉ SOUSAVY S ČELNÍM OZUBENÝM KOLY ng. Kel Jřč ČVU Pze, fult stoní 1. Úod Po sestoání pohyboých onc dsétních soust e hodné yít z Lngngeoých onc duhého duhu fomuloných po zobecněné souřdnce
1. Stanovení modulu pružnosti v tahu přímou metodou
. Stanovení moduu pružnost v tahu přímou metodou.. Zadání úohy. Určte modu pružnost v tahu přímou metodou pro dva vzorky různých materáů a výsedky porovnejte s tabukovým hodnotam.. Z naměřených hodnot
Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/
Střední půmyslová šola a Vyšší odboná šola technicá Bno, Soolsá 1 Šablona: Inovace a zvalitnění výuy postřednictvím ICT Název: Téma: Auto: Číslo: Anotace: Mechania, pužnost pevnost Záladní duhy namáhání,
Téma 2 Úvod ke staticky neurčitým prutovým konstrukcím
Stvební mechnik,.ročník bkářského studi AST Tém Úvod ke stticky neurčitým prutovým konstrukcím Ktedr stvební mechniky Fkut stvební, VŠB - Technická univerzit Ostrv Osnov přednášky Stticky neurčité konstrukce,
Řešení úloh celostátního kola 49. ročníku fyzikální olympiády. Autořiúloh:P.Šedivý(1),L.Richterek(2),I.Volf(3)aB.Vybíral(4)
Řešení úoh ceostátního ko 49. ročníku fyzikání oympiády. Autořiúoh:.Šedivý(1),L.Richterek(),I.Vof(3)B.Vybír(4) 1.) Oznčme t 1, t, t 3čsyzábesků, v 1, v, v 3přísušnérychostistředukoue, veikost zrychení
Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím
Sttik stvebních konstrukcí I.,.ročník bkářského studi Tém 3 Úvod ke stticky neurčitým prutovým konstrukcím Ktedr stvební mechniky Fkut stvební, VŠB - Technická univerzit Ostrv Osnov přednášky Stticky neurčité
Prvky betonových konstrukcí BL01 10 přednáška
Prvy betonových onstrucí BL0 0 přednáša ŠTÍHLÉ TLAČENÉ PRVKY chování štíhlých tlačených prutů chování štíhlých onstrucí metody vyšetřování účinů 2. řádu ŠTÍHLÉ TLAČENÉ PRVKY POJMY ztužující a ztužené prvy
IV. Zatížení stavebních konstrukcí rázem
Jiří Máca - atedra echaniy - B35 - tel. 435 45 aca@fsv.cvt.cz 1. Klasicá teorie ráz. Nedoonale pržný ráz - sostava s 1 SV 3. Doonale nepržný ráz - sostava s 1 SV 4. Sostavy s více stpni volnosti 5. Přílady
GEOMETRIC PROGRAMMING IN EVALUATING OF EXPERIMENTAL DATA GEOMETRICKÉ PROGRAMOVÁNÍ PŘI VYHODNOCOVÁNÍ EXPERIMENTÁLNĚ STANOVENÝCH DAT
40. MEZINÁRODNÍ KONFERENCE EXPERIMENTÁLNÍ ANALÝZY NAPĚTÍ 40 th INTERNATIONAL CONFERENCE EXPERIMENTAL STRESS ANALYSIS 3. 6. VI. 2002, PRAHA/PRAGUE, CZECH REPUBLIC GEOMETRIC PROGRAMMING IN EVALUATING OF
-R x,a. Příklad 2. na nejbližší vyšší celý mm) 4) Výpočet skutečné plochy A skut 5) Výpočet maximálního napětíσ max 6) Porovnání napětí. Výsl.
Zákdy dimenzování prutu nmáhného prostým tkem them Th prostý tk-zákdy dimenzování Už známe:, 3 -, i i 3 3 ormáové npětí [P] konst. po výšce průřezu Deformce [m] ii E ově zákdní vzthy: Průřezová chrkteristik
Nosné stavební konstrukce, výpočet reakcí
Stvení sttik.ročník kářského studi Nosná stvení konstrukce Nosné stvení konstrukce výpočet rekcí Nosná stvení konstrukce souží k přenosu ztížení ojektu do horninového msívu n němž je ojekt zožen. Musí
SMR 2. Pavel Padevět
SR Pve Pevět Přenášk č. Přenášk č. PRINCIP VIRTUÁLNÍCH PRCÍ Výpočet přetvoření n sttk určtý konstrukí Přenášk č. Dopňková vrtuání práe momentů Vv n výpočet eformí: oment Posouvjíí sí Normáové sí (přírové
Ochrana před úrazem elektrickým proudem Společná hlediska pro instalaci a zařízení. 1. Definice
ČSN EN 61 140 Ochrn před úrzem elektrickým proudem Společná hledisk pro instlci zřízení Tto mezinárodní norm pltí pro ochrnu osob zvířt před úrzem elektrickým proudem. Je určen pro poskytnutí zákldních
SMR 1. Pavel Padevět
MR 1 Pvel Pdevět PŘÍHRADOVÉ KONTRUKCE REAKCE A VNITŘNÍ ÍLY PŘÍHRADOVÉ KONTRUKCE jsou prutové soustvy s kloubovým vzbm. Příhrdová konstrukce je tvořen z přímých prutů nvzájem spojených ve styčnících kloubovým
Server Internetu prostøednictvím slu eb (web, e-mail, pøenos souborù) poskytuje data. Na na í pracovní stanici Internet
Server Internetu prostøednictvím slu eb (web, e-mail, pøenos souborù) poskytuje data. Na na í pracovní stanici Internet
1.5. DYNAMIKA OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA
.5. OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA.5. ZÁKLADNÍ ROVNICE DYNAMIKY PRO ROTAČNÍ POHYB Fz F Z výsednce zrychujících s F m.a n m a t a n r z F Zrychující moment M F. r F. r z z z m.a t r6,5cm ρ r ω,ε r
Teorie elektrických ochran
Teore elektrckých ochran Elektrcká ochrana zařízení kontrolující chod část energetckého systému (G, T, V) = chráněného objektu, zajstt normální provoz Chráněný objekt fyzkální zařízení pro přenos el. energe,
Stavební statika. Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava. Stavební statika, 1.ročník kombinovaného studia
Stvební sttik, 1.ročník kombinovného studi Stvební sttik Úvod do studi předmětu n Stvební fkultě VŠB-TU Ostrv Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit Ostrv Stvební sttik přednášející
Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám
Sttik stvebních konstrukcí I.,.ročník bklářského studi Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická
podle ust a násl. zák. č. 89/2012 Sb., občanský zákoník, ve znění pozdějších předpisů Článek I.
Jkub Hnik nr. 15.1.1974 bytem: U Potok 170, 273 53 Hostouň nr. 31.1.1979 bytem: Lidečská 387, 155 21 Prh Zličín (dále jen budoucí oprávněný ) IČ: 00234397 Kldenská 119, 273 53 Hostouň bnkovní spojení:
Téma 6 Staticky neurčitý rovinný oblouk
ttik stveních konstrukcí I.,.ročník kářského studi Tém 6 tticky neurčitý rovinný oouk Zákdní vstnosti stticky neurčitého rovinného oouku Dvojkouový oouk Dvojkouový oouk s táhem Vetknuté oouky Přiižný výpočet
Nosné stavební konstrukce Výpočet reakcí
Stvení sttik 1.ročník klářského studi Nosné stvení konstrukce Výpočet rekcí Reálné ztížení nosných stveních konstrukcí Prut geometrický popis vnější vzy nehynost silové ztížení složky rekcí Ktedr stvení
LTT označení vyš. X šíř. X h. popis
LTT označení vyš. X šíř. X h. popis LTT 501 1970 x 300 x 520 Šatní skříňka s nožkami LTT 502 1970 x 600 x 520 Šatní skříňka s nožkami LTT 503 1970 x 900 x 520 Šatní skříňka s nožkami LTT 504 1970 x 1200
G,F J C,B H,I G,F C,B 1 E,D H,I F H C
Montážní návod / Montážny návod G,F C,B H,I 2 G,F 6 C,B E,D 5 H,I 7 G F H C D 2 B E Montážní návod / Montážny návod 2 M 2 B D N F I 8 D 5 F B M N Montážní návod / Montážny návod K 9 L 9 5 9 P 9 O 5 O 2
Reakce. K618 FD ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní charakter a bude v průbehu semestru
Poznámky ke cičení z předmětu Pružnost penost n K8 D ČVUT Prze (prconí erze). Tento mteriá má pouze prconí chrkter bude průbehu semestru postupně dopňoán. utor: Jn Vyčich E mi: ycich@fd.cut.cz Příkd reize:.
Dopravní společnost Zlín - Otrokovice, s.r.o.
7 9 linka 8 - - - Platnost od.. do 8.. 7 8 9 7 7 7 7 7 7 7 7 Neděle.. a 8.. Podvesná XVII/8, 7 Zlín, tel.: 77 7 9, fa: 77, http://www.dszo.cz Poznámky: Pracovní dny L a Z -.7.-.8., 9. a.. Provoz. a.. jako
Téma 1 Deformace staticky určitých prutových konstrukcí
Stavební mechanka, 2.ročník bakaářského studa AST Téma 1 Deformace statck určtých prutových konstrukcí Katedra stavební mechank Fakuta stavební, VŠB - Techncká unverzta Ostrava Stavební statka - přednášející
Šikmý nosník rovnoměrné spojité zatížení. L průmětu. zatížení kolmé ke střednici prutu (vítr)
Šikmý nosník Šikmý nosník rovnoměrné spojité ztížení ztížení kolmé ke střednii prutu (vítr) q h - ztížení kolmé ke střednii prutu (vítr) - ztížení svislé zdáno n délku prutu (vlstní tíh) - ztížení svislé
Mechanické vlastnosti materiálů.
Mechancké vastnost materáů. Obsah přednášky : tahová zkouška, zákadní mechancké vastnost materáu, prodoužení př tahu nebo taku, potencání energe, řešení statcky neurčtých úoh Doba studa : as hodna Cí přednášky
Nejistoty v mìøení III: nejistoty nepøímých mìøení
Nestoty v ìøeí III: estoty epøíých ìøeí MÌØIÍ TEHNIK V èácích [] a [] by podá pøehed soèasých ázorù a probeatk estot v ìøeí obecì a pøedstave zpùsob výpoèt estot pø éì ároèých pøíých ìøeích. Teto tøetí
Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou
MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností
4. Fourierovy řady Studijní text. 4. Fourierovy řady. A. Základní pojmy
4. Fourierovy řdy Studijní text 4. Fourierovy řdy A. Zádní pojmy Při řešení tehniýh úoh se čsto setáváme s periodiými funemi. Nejjednodušším netriviáním přídem periodiýh funí jsou zádní goniometrié fune
Výstavba a oprava komunikace Na Lávkách Rekonstrukce MK ul. Pod Branou, Kostelec nad Orlicí Rekonstrukce MK ul. Riegrova 1. Etapa, Kostelec nad Orlicí
VÝSLEDEK POSOUZENÍ SPLNĚNÍ PODMÍNEK ÚČASTI V ZADÁVACÍM ŘÍZENÍ u účstník (dodvtele): HABAU CZ s.r.o. veřejná zkázk Tto veřejná zkázk je zdáván v souldu se zákonem č. 134/2016 Sb., o zdávání veřejných zkázek,
Pružnost a plasticita II
Pružnost a pasticita II 3. ročník bakaářského studia doc. Ing. artin Krejsa, Ph.D. Katedra stavební echaniky Neineární chování ateriáů, podínky pasticity, ezní pastická únosnost Úvod, zákadní pojy Teorie
Téma Přetvoření nosníků namáhaných ohybem
Pružnost plsticit,.ročník bklářského studi Tém Přetvoření nosníků nmáhných ohbem Zákldní vth předpokld řešení Přetvoření nosníků od nerovnoměrného oteplení etod přímé integrce diferenciální rovnice ohbové
APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ
APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ Brnislv Lcko VUT v Brně, Fkult strojního inženýrství, Ústv utomtizce informtiky, Technická 2, 616 69 Brno, lcko@ui.fme.vutbr.cz Abstrkt Příspěvek podává
M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)
5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete
Téma 1 Obecná deformační metoda, podstata DM
Sttik stveních konstrukcí II., 3.ročník klářského studi Tém 1 Oecná deformční metod, podstt D Zákldní informce o výuce hodnocení předmětu SSK II etody řešení stticky neurčitých konstrukcí Vznik vývoj deformční
České vysoké učení technické v Praze Fakulta biomedicínského inženýrství
Česé vysoé učení technicé v Praze Faulta biomedicínsého inženýrství Úloha KA03/č. 3: Měření routícího momentu Ing. Patri Kutíle, Ph.D., Ing. Adam Žiža (utile@bmi.cvut.cz, ziza@bmi.cvut.cz) Poděování: Tato
Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav:
Truhlář Michl 7.. 005 Lbortorní práce č.8 Úloh č. 7 Měření prmetrů zobrzovcích soustv: T = ϕ = p = 3, C 7% 99,5kP Úkol: - Změřte ohniskovou vzdálenost tenké spojky přímou Besselovou metodou. - Změřte ohniskovou
Téma 11 Obecná deformační metoda řešení rovinných rámů
Stvení mehni,.roční ářého tdi AS ém Oená deformční metod řešení rovinnýh rámů rnforme prmetrů deforme onovýh i z oáního do goáního ořdniového ytém zpět Goání mtie thoti goání vetor onovýh i prt Výpočet
Š Ě É ě ě ů ď č ě ě Č Á č ě ě ě é ě é ř ů č ě ý ř ů ě é ř é é ř ú č é ý é ů é č ř ě Ť ů ý ý ů č ě ď é ě ý é é é ř ď ý ř ť ř é ě ň ť č ďě č ě ý é č ě ř ň ů ě ř ě ě ě é ů é é č ě ů é č ě é ě ď č ý ě ů ů
Přímá montáž SPŘAHOVÁNÍ OCELOBETONOVÝCH STROPŮ. Hilti. Splní nejvyšší nároky.
SPŘAHOVÁNÍ OCELOBETONOVÝCH STROPŮ Hilti. Splní nejvyšší nároky. Spřhovcí prvky Technologie spřhovcích prvků spočívá v připevnění prvků přímo k pásnici ocelového nosníku, nebo připevnění k pásnici přes
ů š š ů Ú ů š É š š ů ť É Ž ů Í ó ň š š É Ú š Ů Ž Í š ů ňš Í ů ů š Š Š ó ů Í Ž Č š š š Č Č š Ů Í Í Í Í š š š Ž Ů š Š ů Ů Í Š Š š Č Ž ů Ž š Ú ó É Ž É Ú Ž Í š Í Ú ů Ú š Ú š Ú ů Ž Ú ů Ž š š š ů Í Ů š Ů Ú
2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU
VŠB T Ostrava Faklta elektrotechnky a nformatky Katedra obecné elektrotechnky. ELEKTCKÉ OBVODY STEJNOSMĚNÉHO POD.. Topologe elektrckých obvodů.. Aktvní prvky elektrckého obvod.3. Pasvní prvky elektrckého
Ď Ů Ň ž Ů ž ň ž ž ž Č Č Ď Č ž Ě ž ž ž ž ň ž ž ž ž ž ž ž Ě ň ž ž ž ž Ďž ň ž Č Č ň Č Ď Ě Ň Č Ň ž ž ž Ů ň Ň ž ň ň ž ň ň ň ž ň ž Č ž ž Ř ž ž ž ž ň ž ž ž ž Ř ž ň ž ž ž ž ž ž ž Ě Ě Ě Č ž Ď Ř ž ň ň Ř ž ž ž ž
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje
EEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité ozložení náboje Pete Doumashkin MIT 006, překlad: Jan Pacák (007) Obsah. SPOJITÉ OZOŽENÍ NÁBOJE.1 ÚKOY. AGOITMY PO ŘEŠENÍ POBÉMU ÚOHA 1: SPOJITÉ OZOŽENÍ
7.3.7 Přímková smršť. Předpoklady: 7306
737 Přímkoá smršť Předpokldy 7306 Pedgogiká poznámk Hodin znikl jko reke n prní průhod učenií Třeoni se třídou 42011 Ukázlo se, že studenti mjí prolémy s přiřzením spráného ektoru k různým druhům roni
SMR 2. Pavel Padevět
SR 2 Pvel Pevět PRINCIP VIRTUÁLNÍCH PRACÍ Silová meto Rámová konstruke, symetriké konstruke Prinipy pro symetriké konstruke ztížené oeným ztížením. Symetriká konstruke ntimetriké ztížení. Os symetrie
P P P S. P P P ix ix ix ix iy iy iy iy iz iz iz iz
54 9 Sestvování pohybových rovnic metodmi nlyticé mechniy Obecná rovnice dynmiy Pro ždé těleso romě prcovních setrvčných sil uvážíme i prcovní setrvčné momenty s tím, že setrvčné síly umístíme do těžišť
Definice limit I
08 Definice limit I Předpokld: 006 Pedgogická poznámk: N úvod je třeb upozornit, že tto hodin je ze strn studentů snd nejvíce sbotovnou látkou z celé studium (podle rekcí 4B009) Jejich ochot brát n vědomí
Přibližné řešení algebraických rovnic
Přblžné řešení lgebrcých rovnc Algebrcou rovncí stupně n nzýváme rovnc =, tj n n x x x =, de n N, x C, oefcenty P n,,, n R, Budeme prcovt s tzv normovou lgebrcou rovncí ( = ) n n x x x = Řešením (ořenem)
7 Mezní stavy použitelnosti
7 Mezní stavy použitenosti Cekové užitné vastnosti konstrukcí mají spňovat dva zákadní požadavky. Prvním požadavkem je bezpečnost, která je zpravida vyjádřena únosností. Druhým požadavkem je použitenost,
Nilfisk Centrální vysavače Více, než jen obyčejné vysávání
Nilfis Centrlní vysvče Více, než jen obyčejné vysvní Více než jen obyčejný vysvč Vysvní je přirozenou součstí úlidu Všeho domu či bytu Je nprosto běžné, že si mnoho lidí vysvní spojuje s nepříjemnou zušeností.
Pohybové možnosti volných hmotných objektů v rovině
REAKCE Pohyové možnosti volných hmotných ojektů v rovině Stupeň volnosti n v : možnost vykont jednu složku posunu v ose souřdného systému neo pootočení. +x volný hmotný od v rovině: n v =2 (posun v oecném
Laboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami:
Truhlář Michl 3 005 Lbortorní práce č 6 Úloh č 5 p 99,8kP Měření odporu, indukčnosti vzájemné indukčnosti můstkovými metodmi: Úkol: Whetstoneovým mostem změřte hodnoty odporů dvou rezistorů, jejich sériového
Výslednice, rovnováha silové soustavy.
Výslednce, ovnováha slové soustavy. Základy mechanky, 2. přednáška Obsah přednášky : výslednce a ovnováha slové soustavy, ovnce ovnováhy, postoová slová soustava Doba studa : as 1,5 hodny Cíl přednášky
Orientační odhad zatížitelnosti mostů pozemních komunikací v návaznosti na ČSN a TP200
Orientční odhd ztížitelnoti motů pozemních komunikcí v návznoti n ČSN 73 6222 TP200 Úvod Ztížitelnot motů PK e muí tnovit jedním z náledujících potupů podle ČSN 73 6222, kpitol 6 : - podrobný ttický výpočet
Použitelnost. Obvyklé mezní stavy použitelnosti betonových konstrukcí podle EC2: mezní stav omezení napětí, mezní stav trhlin, mezní stav přetvoření.
Použitelnost Obvylé mezní stavy použitelnosti betonových onstrucí podle EC2: mezní stav omezení napětí, mezní stav trhlin, mezní stav přetvoření. je potřebné definovat - omezující ritéria - návrhové hodnoty
Napětí horninového masivu
Npětí honinového msivu pimání npjtostí sekundání npjtostí účinky n stbilitu podzemního díl Dále můžeme uvžovt * bobtnání honiny * teplotní stv honiny J. Pušk MH 6. přednášk 1 Pimání npjtost gvitční (vyvolán
ANALYTICKÁ GEOMETRIE
Technická niverzit v Liberci Fklt přírodovědně-hmnitní pedgogická Ktedr mtemtiky didktiky mtemtiky NLYTICKÁ GEOMETRIE Pomocný čební text Petr Pirklová Liberec, listopd 2015 NLYTICKÁ GEOMETRIE LINEÁRNÍCH
TAŠKY A PŘÍSLUŠENSTVÍ K NOTEBOOKU. Kensington
TAŠKY A PŘÍSLUŠENSTVÍ K NOTEBOOKU Kensington TAŠKY A PŘÍSLUŠENSTVÍ K NOTEBOOKU Po pohodl mobiln ncelře. Kensington vnm potřeb sočsnosti, dy se stvj notebooy po živtele pimnm pcovištěm. Letdlo, vl, to či
APLIKACE DLOUHODOBÉHO SLEDOVÁNÍ STAVEB PŘI OCEŇOVÁNÍ NEMOVITOSTÍ
Ing. Igor Neckř APLIKACE DLOUHODOBÉHO SLEDOVÁNÍ STAVEB PŘI OCEŇOVÁNÍ NEMOVITOSTÍ posluchč doktorského studi oboru Soudní inženýrství FAST VUT v Brně E-mil: inec@volny.cz Přednášk n konferenci znlců ÚSI
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla)
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 23TVVM hoogenizce (sěšovcí prvidl) Hoogenizce Stvební teriály sou z hledisk zstoupení doinntních složek několikfázové systéy: Dvoufázové trice, vzduch (póry)
Mechatronické systémy s elektronicky komutovanými motory
Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current
Přednáška 1 Obecná deformační metoda, podstata DM
Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí
Rámové bednění Framax Xlife
999764015-06/2014 cs Odborníci n bednění. Rámové bednění Frmx Xlife Informce pro uživtele Návod k montáži použití 9764-449-01 Úvod Informce pro uživtele Rámové bednění Frmx Xlife Úvod by Dok Industrie
14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1
14/10/2015 Z Á K L A D N Í C E N Í K Z B O Ž Í Strana: 1 S Á ČK Y NA PS Í E XK RE ME N TY SÁ ČK Y e xk re m en t. p o ti sk P ES C Sá čk y P ES C č er né,/ p ot is k/ 12 m y, 20 x2 7 +3 c m 8.8 10 bl ok
KONSTRUKTIVNÍ GEOMETRIE. Mgr. Petra Pirklová, Ph.D. kmd.fp.tul.cz Budova G, 4. patro
KONSTRUKTIVNÍ GEOMETRIE Mg. Pet Piklová, Ph.D. kmd.fp.tul.cz Budov G, 4. pto SYLBUS. Mongeovo pomítání.. nltická geometie v E 3. 3. Vektoová funkce jedné eálné poměnné. Křivk. 4. Šoubovice - konstuktivní
Kmitání, vlnění, akustika 1. Kmitavý pohyb
Kiání, vnění, usi. Kivý pohb. Poje ivého pohbu Děj, eý se opuje v učié čsové inevu. Opuje-i se pvideně nějý pohbový sv nzýváe ho peiodicý pohb. Mění-i se pvideně s čse jiná fziání vsnos (epo, eeicé npěí,
1.1 Barevná podoba loga 1. 1.2 Černobílá verze a varianta ve stupních šedi 1. 1.3 Rozkres loga 2. 1.4 Ochranná zóna a minimální velikost loga 3
1 Logo 2 Obsh 1 1.1 Bev podob og 1 1.2 Čeobí veze vt ve stpíh šed 1 1.3 Rozes og 2 1.4 Oh zó í veost og 3 1.5 Logo poddové poše 4 1.6. Zzé ode og 5 Píso bevost 6 2.1 Píso v og 6 2.2 Bevost 6 3 Přídy požtí
Pružnost a plasticita II
Pružnost plsticit II. ročník klářského studi doc. In. Mrtin Krejs, Ph.D. Ktedr stvení mechnik Řešení nosných stěn pomocí Airho funkce npětí inverzní metod Stěnová rovnice ΔΔ(, ) Stěnová rovnice, nzývná