GEOMETRIC PROGRAMMING IN EVALUATING OF EXPERIMENTAL DATA GEOMETRICKÉ PROGRAMOVÁNÍ PŘI VYHODNOCOVÁNÍ EXPERIMENTÁLNĚ STANOVENÝCH DAT

Rozměr: px
Začít zobrazení ze stránky:

Download "GEOMETRIC PROGRAMMING IN EVALUATING OF EXPERIMENTAL DATA GEOMETRICKÉ PROGRAMOVÁNÍ PŘI VYHODNOCOVÁNÍ EXPERIMENTÁLNĚ STANOVENÝCH DAT"

Transkript

1 40. MEZINÁRODNÍ KONFERENCE EXPERIMENTÁLNÍ ANALÝZY NAPĚTÍ 40 th INTERNATIONAL CONFERENCE EXPERIMENTAL STRESS ANALYSIS VI. 2002, PRAHA/PRAGUE, CZECH REPUBLIC GEOMETRIC PROGRAMMING IN EVALUATING OF EXPERIMENTAL DATA GEOMETRICKÉ PROGRAMOVÁNÍ PŘI VYHODNOCOVÁNÍ EXPERIMENTÁLNĚ STANOVENÝCH DAT 1 Úvod Tomáš Mreš 1 Vyhodnocování nměřených dt provedených experimentů se sebou přináší celou řdu problémů. Jedním tovým vážným problémem je npříld stnovení prmetrů mteriálových modelů z experimentálně zísných dt. Zde ve své prvé podsttě jde o problém njít tové hodnoty prmetrů modelu, by součet druhých mocnic rozdílu nměřených hodnot hodnot odpovídjících hlednému modelu byl minimální. Tto chvlně známá metod zvná jo metod nejmenších čtverců spdá mezi úlohy o nlezení minim dné funce. Mtemticých metod zbývjících se problémem nlezení minim dné funce je celá řd, ne všechny jsou vš zcel vhodné řešení onrétních úolů. V přípdě řešení nší úlohy je v drtivé většině přípdů hledán extrém funce mjící tvr součtu součinů mocnin hledných prmetrů. Řešením úlohy tového tvru se zbývá metod zvná Geometricé progrmování. Termín progrmování se z historicých důvodů používá pro oznčení mtemticé formulce prmetricých optimlizčních úloh pro metody jejich řešení. Geometricé progrmování je jednou tovou formulcí metodou. Již od čsů Pierre de Fermt Pierre de Fermt [-má] * 1601, Beumont de Lomgne, 12. I. 1665, Cstres.) je známo, že jisté nerovnosti pomáhjí řešit speciální optimlizční úlohy. V šedesátých letech dvcátého století pánové Peterson, Duffin Zener precizně popsli využití vlstností nerovnosti uvádějící vzth mezi váženým ritmeticým průměrem váženým geometricým průměrem, teré se říá geometricá nerovnost, řešení prmetricé optimlizční úlohy shor uvedeného tvru. V letech sedmdesátých byl postup shor citovné práce znčně zobecněn pnem D. J. Wildem n řešení úloh následujícího typu. min X ν g 0, g 0 = m 0 při splnění vedlejších podmíne mjících tvr µ, M = n h, 1) de z = 1 nebo 1 0 < z g z 1, = 1, 2,..., q), 2) g = m i=m 1 +1 µ, 3) de q je počet vedlejších podmíne 2), m 0 počet členů cílové funce, m m 1 ) počet členů -té vedlejší podmíny, m = m q je celový počet členů M je počet návrhových veličin X µ. 1 ing. Tomáš Mreš, Ústv mechniy, Česé vysoé učení technicé, Technicá 4, Prh 6, e-mil: mres@sgi.fsid.cvut.cz 163

2 2 Geometricé progrmování Termín progrmování se z historicých důvodů používá pro oznčení mtemticé formulce prmetricých optimlizčních úloh pro metody jejich řešení. Geometricé progrmování je jednou tovou formulcí metodou. Zmíněná formulce je, j shor vidno, vyjádřen v třídě funcí mjících tvr součtu součinů mocnin návrhových proměnných X µ známých oeficientů c i. Již od čsů Pierre de Fermt 2 je známo, že jisté nerovnosti pomáhjí řešit speciální optimlizční úlohy. V šedesátých letech dvcátého století pánové Peterson, Duffin Zener [Geometric Progrmming: Theory nd Appliction. New Yor, J.Wiley 1967.] precizně popsli využití vlstností nerovnosti uvádějící vzth mezi váženým ritmeticým průměrem váženým geometricým průměrem, teré se říá geometricá nerovnost, řešení prmetricé optimlizční úlohy shor uvedeného tvru, v přípdě, že oeficienty c i jsou všechny ldné ftory z jsou rovny jedné. Postup řešení úlohy shor uvedené pro oeficienty c i obou znméne pro hodnoty z rovny jedné či méně jedné) byl sestven n záldě shor citovné práce pnem D. J. Wildem [Globlly Optiml Design. New Yor, John Wiley nd Sons 1978.] v letech sedmdesátých. Geometricá nerovnost říá že, vážený ritmeticý průměr je nejméně t veliý jo vážený geometricý průměr, tedy pltí m U i U i, 4) de U i jsou libovolná nezáporná čísl jsou libovolné ldné váhy, teré splňují podmínu normy Geometricá nerovnost se nvíc stává rovností právě dyž δ 1 + δ δ m = 1. 5) U 1 = U 2 =... = U m. 6) Princip využití geometricé nerovnosti 4) řešení primární úlohy 1), 2) 3 si uážeme n úloze nlézti minimum funce g 0 dné vzthem 1) 4, de všechny vystupující oeficienty c i jsou ldné n terou nejsou uvleny žádné vedlejší podmíny vyjm podmíny ldnosti návrhových veličin X µ. 5 Uvžujme tedy primární úlohu min g, 7) g = u 1 + u u m, de u i = c i X i1 1 X i X im M, 8) c i > 0, X µ > 0, i = 1, 2,..., m), µ = 1, 2,..., M). 9) Položením dostáváme geometricou nerovnost 4) ve tvru u 1 + u u m u i = U i 10) u1 δ 1 ) δ1 u2 δ 2 ) δ Pierre de Fermt [-má] * 1601, Beumont de Lomgne, 12. I. 1665, Cstres. 3 Této úloze se v teorii geometricého progrmování říá primární úloh. 4 Funce g 0 slove primární funce. 5 Proměnné X µ se nzývjí primární proměnné. um δ m ) δm. 11) 164

3 Doszením z u i dle 8) do posledního vzthu dostáváme de g V, X µ ) = c1 δ 1 ) δ1 c2 δ 2 ) δ2... cm δ m ) δm X D 1 1 X D X D M M, 12) D µ = iµ, µ = 1, 2,..., M). 13) Funci V, X µ ) proměnných δ 1, δ 2,..., δ m X 1, X 2,..., X M se říá předduální funce. Lze doázt, 6 že minimum nší funce g je rovno mximu duální funce vδ) duálních proměnných při splnění M + 1 lineárních vedlejších podmíne. Tedy de min g = gx µ) = mx V, X µ ) = V, X µ) = v mx, 14) X µ,x µ v ) = c1 při splnění lineárních vedlejších podmíne δ 1 v mx = mx v ), 15) ) δ1 ) δ2 ) δm c2 cm..., δ 2 δ m iµ = 0, µ = 1, 2,..., M), 16) = 1, 17) 0 7, i = 1, 2,..., m). 18) Této úloze se říá úloh duální. Vzhledem tomu, že funce v má při uvžování c i > 0 0 mximum ve stejném bodě jo funce 8 ln v, hledáme mximum onávní 9 funce ln v při splnění lineárních vedlejších podmíne 16), 17) 18). Je-li nvíc počet M primárních proměnných X j o jednu menší nežli počet m členů u i funce g, 10 potom vedlejší podmíny duální úlohy mjí pouze jedno řešení duální úloh se reduuje n řešení soustvy lineárních rovnic, což je sutečnost stojící zdůrznit. Njdeme-li bod, v němž duální funce v) doshuje svého vázného mxim, p minimlizční bod primární úlohy X 11 nlezneme užitím podmíny, že geometricá nerovnost se stává rovností jedině pltí-li 12 6 Derivcí logritmu prvé strny výrzu 12). 7 Je-li = 0, potom uvžujeme ci ) δi = 1. 8 Funce ln x je onávní n onvexní množině všech ldných čísel x. Proto pro c i > 0 i = 1, 2,..., m) 0 i = 1, 2,..., m) je funce ln vδ) funcí onávní. 9 Přičemž si uvědomme vlittivní rozdíl mezi problémem nlezení globálního extrému původní neonvexní funce, o teré nevíme, oli má loálních extrémů, problémem nlezení mxim onávní funce, de toto mximum je mximem jediným. 10 Čehož lze dosáhnout vhodnou formlizcí původní úlohy funční optimlizce zejmén vhodnou formulcí onstručních cílů vhodným sestvením mtemticého modelu, či jistými mtemticými obrty v průběhu trnsformce funční optimlizční úlohy n úlohu prmetricé optimlizce. 11 Zde X = X 1, X 2,..., X M ). 12 Srvn. vyjádření 6) n str

4 u i X ) δ i = K, 19) de K je onstnt shodná pro všechn i. Tto podmín vede n vzth pro nlezení minimlizujícího bodu primární úlohy X µ ve tvru c i X i1 1 X i X im M = vδ ) δ i, i = 1, 2,..., m) ) Vezmeme-li v úvhu shor položené podmíny c i > 0, X µ > 0, i = 1, 2,..., m), µ = 1, 2,..., M), 21) potom zlogritmováním vzthů 20) dostáváme soustvu lineárních rovnic pro proměnné ln X µ M iµ ln X µ = ln vδ ) δ i c i ). 22) V přípdě úlohy s vedlejšími podmínmi je nutné použít metodu Lgrngeových multipliátorů vznilý problém řešit opět užitím geometricé nerovnosti. 3 Obecná úloh geometricého progrmování Postup řešení obecné úlohy geometricého progrmování 23) ž 26) byl n záldě shor předstvené filozofie využití geometricé nerovnosti zejmén n záldě práce pánů Peterson, Duffin Zener vytvořen pnem Wildem v sedmdesátých letech dvcátého století. Shodně jo v přípdě úlohy 7) n str. 164 je primární úloh nlezení minim funce při splnění vedlejších podmíne mjících tvr m 0 M g 0 = c i µ, 23) X µ > 0 14, µ = 1, 2,..., M), 24) 0 < z g z 1, = 1, 2,..., q), 25) de z = 1 nebo 1 g = m i=m 1 +1 µ, 26) de q je počet vedlejších podmíne 25), m 0 počet členů cílové funce, m m 1) počet členů -té vedlejší podmíny m = m q je celový počet členů, převeden n řešení duální úlohy nlézti mximum duální funce vδ) dné vzthem 27) při splnění duálních vedlejších podmíne 29), 30) 31). Tto duální úloh má tvr mx v, v = σ δ 1,...,δ m m ci ) σi q =1 λ h ) σ, 27) 13 V tomto vzthu δ = δ 1, δ 2,..., δ m) znčí mximlizční bod duální úlohy. 14 Tto podmín vyplývá z odvození vzthu mezi primární duální úlohou geometricého progmování. V přípdě proměnných X µ nbývjících obou znméne je možné použít substituci X µ = X + µ X µ, de X + µ > 0, X µ >

5 de λ = z m i=m 1 +1 σ i, h = při splnění lineárních vedlejších podmíne m i=m 1 +1 σ i, = 1, 2,..., q), σ i = sgn c i, i = 1, 2,..., m), 28) σ i iµ = 0, µ = 1, 2,..., M), 29) m 0 σ i = σ 30) 0, i = 1, 2,..., m). 31) Řešení této duální úlohy se zčíná rozřešením vedlejších podmíne 29) 30), dy z onstntu σ se volí číslo +1 či 1 t, by byl splněn podmín 31). Tímto dostáváme vyjádření duálních proměnných ve tvru 15 = d i + d ij r j, i = 1, 2,..., m), 32) de r j, j = 1, 2,..., m M 1, jsou tzv. bázové proměnné, teré mjí vyhovovt podmínce ldnosti duálních proměnných d i + d ij r j 0, i = 1, 2,..., m). 33) Duální funce, jo funce záldních proměnných, má nyní tvr de vr) = σ m ci ) σi q =1 λ h ) σ, 34) λ = z m i=m 1 +1 σ i, h = m i=m 1 +1 σ i, = 1, 2,..., q), σ i = sgn c i, i = 1, 2,..., m) 35) = d i + d ij r j, i = 1, 2,..., m). Následuje řešení úlohy njíti mximum této funce vr) při splnění vedlejších podmíne d i + d ij r j 0, i = 1, 2,..., m). 36) 15 K zísání tohoto řešení je vhodné použít tzv. singulárního rozldu mtice soustvy. 167

6 Duální cílová funce vš v tomto přípdě není obecně onávní funcí ne vždy zde zísáme onávní funci prostým zlogritmováním funce vr). Pltí vš poznám o možnosti úprvy počtu primárních proměnných z jistých oolností té počtu členů v primární funci primárních vedlejších podmínách, tím reduovt duální úlohu n řešení soustvy lineárních rovnic. N závěr je nutné určit hodnoty primárních proměnných X µ, v nichž primární funce doshuje svého vázného minim. Obdobně jo v disutovném přípdě funce s ldnými oeficienty c i lze tyto proměnné určit ze vzthů X ij j = σ i δ iσvδ ), i = 1, 2,..., m 0 ), 37) X ij j = σ i δ i λ δ ), i = m 1 + 1, m 1 + 2,..., m ), = 1, 2,..., q), 38) de δ je vetor duálních proměnných, v nichž duální funce v doshuje svého mxim. Poslední soustvu nelineárních rovnic lze opět zlogritmováním převést n soustvu lineárních rovnic Závěr Vyhodnocování nměřených dt provedených experimentů se sebou přináší celou řdu problémů. Jedním tovým vážným problémem je npříld stnovení prmetrů mteriálových modelů z experimentálně zísných dt. Zde ve své prvé podsttě jde o problém njít tové hodnoty prmetrů modelu, by součet druhých mocnic rozdílu nměřených hodnot hodnot odpovídjících hlednému modelu byl minimální. Tto chvlně známá metod zvná jo metod nejmenších čtverců spdá mezi úlohy o nlezení minim dné funce. Mtemticých metod zbývjících se problémem nlezení minim dné funce je celá řd, ne všechny jsou vš zcel vhodné řešení onrétních úolů. V přípdě řešení nší úlohy je v drtivé většině přípdů hledán extrém funce mjící tvr součtu součinů mocnin hledných prmetrů. Řešením úlohy tového tvru se zbývá metod zvná Geometricé progrmování. Termín progrmování se z historicých důvodů používá pro oznčení mtemticé formulce prmetricých optimlizčních úloh pro metody jejich řešení. Geometricé progrmování je jednou tovou formulcí metodou. V předložené práci se rozebírá filozofie využití geometricé nerovnosti řešení jistého v prxi experimentátor čsto se vysytujícího) typu extremální úlohy podává se prticý návod postupu jejího řešení. 5 Poděování Autor si dovoluje n tomto místě vyjádřit své poděování GAČR 106/00/1477 z podporu jíž se mu dostlo. 16 Vzhledem σ i = sgn c i, i = 1, 2,..., m). 168

Summer Workshop of Applied Mechanics. Přibližné řešení nelineární a nekonvexní funkční optimalizační úlohy

Summer Workshop of Applied Mechanics. Přibližné řešení nelineární a nekonvexní funkční optimalizační úlohy Summer Workshop of Applied echnics June 2002 Deprtment of echnics Fculty of echnicl Engineering Czech Technicl University in Prgue Přibližné řešení nelineární nekonvexní funkční optimlizční úlohy ing.

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

7 KONVOLUCE, KORELACE A AUTOKORELACE 1. 7 Konvoluce a Fourierova transformace konvoluce. Korelace, autokorelace

7 KONVOLUCE, KORELACE A AUTOKORELACE 1. 7 Konvoluce a Fourierova transformace konvoluce. Korelace, autokorelace 7 KONVOLUCE, KORELACE A AUTOKORELACE 7 Konvoluce Fourierov trnsformce onvoluce. Korelce, utoorelce 7. Definice onvoluce Konvolucí f( f ( f ( dvou funcí f (, f (, E N, se rozumí integrál f( f ( f ( f (

Více

8. cvičení z Matematiky 2

8. cvičení z Matematiky 2 8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,

Více

Přibližné řešení algebraických rovnic

Přibližné řešení algebraických rovnic Přblžné řešení lgebrcých rovnc Algebrcou rovncí stupně n nzýváme rovnc =, tj n n x x x =, de n N, x C, oefcenty P n,,, n R, Budeme prcovt s tzv normovou lgebrcou rovncí ( = ) n n x x x = Řešením (ořenem)

Více

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x. VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

4 Mřížka tvořená body, mřížková funkce a její Fourierova transformace, reciproká mřížka

4 Mřížka tvořená body, mřížková funkce a její Fourierova transformace, reciproká mřížka 4 Mříž tvořená body, mřížová funce její Fourierov trnsformce, reciproá mříž Reciproé vetory bázi reciproých vetorů používl již olem r 880 J W Gibbs ve svých přednášách o vetorové nlýze [], str 0, 83 Do

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

( s) ( ) ( ) ( ) Stabilizace systému pomocí PID regulátoru. Řešený příklad: Zadání: Uvažujme řízený systém daný přenosovou funkcí

( s) ( ) ( ) ( ) Stabilizace systému pomocí PID regulátoru. Řešený příklad: Zadání: Uvažujme řízený systém daný přenosovou funkcí tbilizce ytému pomocí regulátoru Řešený příld: Zdání: Uvžujme řízený ytém dný přenoovou funcí ) ožte, že je ytém netbilní. ) Nvrhněte dnému ytému regulátor, terý bude ytém tbilizovt. ) Úpěšnot vého nárhu

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOL BÁŇSKÁ TECHICKÁ UIVERZIT OSTRV FKULT STROJÍ MTEMTIK II V PŘÍKLDECH CVIČEÍ Č 0 Ing Petra Schreiberová, PhD Ostrava 0 Ing Petra Schreiberová, PhD Vysoá šola báňsá Technicá univerzita Ostrava

Více

Úlohy školní klauzurní části I. kola kategorie C

Úlohy školní klauzurní části I. kola kategorie C 52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.

Více

f k nazýváme funkční řadou v M.

f k nazýváme funkční řadou v M. 6. Funční řdy posloupnosti. Bodová stejnoměrná onvergence. Nechť pro N jsou f omplení či reálné funce omplení či reálné proměnné, teré mjí společný definiční obor M. Posloupnost {f ; N} nzýváme funční

Více

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním

Více

P P P S. P P P ix ix ix ix iy iy iy iy iz iz iz iz

P P P S. P P P ix ix ix ix iy iy iy iy iz iz iz iz 54 9 Sestvování pohybových rovnic metodmi nlyticé mechniy Obecná rovnice dynmiy Pro ždé těleso romě prcovních setrvčných sil uvážíme i prcovní setrvčné momenty s tím, že setrvčné síly umístíme do těžišť

Více

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306 7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu

Více

M - Příprava na 3. zápočtový test pro třídu 2D

M - Příprava na 3. zápočtový test pro třídu 2D M - Příprv n. ápočtový test pro třídu D Autor: Mgr. Jromír JUŘEK Kopírování jkékoliv dlší využití výukového mteriálu je povoleno poue s uvedením odku n www.jrjurek.c. VARIACE 1 Tento dokument byl kompletně

Více

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem 2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice

Více

Definice. Nechť k 0 celé, a < b R. Definujeme. x < 1. ϕ(x) 0 v R. Lemma [Slabá formulace diferenciální rovnice.] x 2 1

Definice. Nechť k 0 celé, a < b R. Definujeme. x < 1. ϕ(x) 0 v R. Lemma [Slabá formulace diferenciální rovnice.] x 2 1 9. Vriční počet. Definice. Nechť k 0 celé, < b R. Definujeme C k ([, b]) = { ỹ [,b] : ỹ C k (R) } ; C 0 ([, b]) = { y C ([, b]) : y() = y(b) = 0 }. Důležitá konstrukce. Shlzovcí funkce (molifiér, bump

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2) 5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete

Více

G( x) %, ν%, λ. x, x, N, N nezáporné přídatné proměnné, ( ) 2 Matematické programování

G( x) %, ν%, λ. x, x, N, N nezáporné přídatné proměnné, ( ) 2 Matematické programování Matematicé programování Označení a definice veličin. opt i/maimalizace w, Žádaná hodnota,transpozice, relace typu nebo Inde diagonální formy vetoru. Obecná omezovací podmína Γ ( ( = ( Є, R, y podmíny typu

Více

Přehled základních vzorců pro Matematiku 2 1

Přehled základních vzorců pro Matematiku 2 1 Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

Matematika II: Testy

Matematika II: Testy Mtemtik II: Testy Petr Schreiberová Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Mtemtik II - testy 69. Řy 9 - Test Ktedr mtemtiky deskriptivní geometrie, VŠB - Technická univerzit

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

3.2. LOGARITMICKÁ FUNKCE

3.2. LOGARITMICKÁ FUNKCE .. LOGARITMICKÁ FUNKCE V této kpitole se dovíte: jk je definován ritmická funkce (ritmus) jké má ákldní vlstnosti; důležité vorce pro práci s ritmickou funkcí; co nmená ritmovt odritmovt výr. Klíčová slov

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25 56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

6. Určitý integrál a jeho výpočet, aplikace

6. Určitý integrál a jeho výpočet, aplikace Aplikovná mtemtik 1, NMAF071 6. Určitý integrál výpočet, plikce T. Slč, MÚ MFF UK ZS 2017/18 ZS 2017/18) Aplikovná mtemtik 1, NMAF071 6. Určitý integrál 1 / 13 6.1 Newtonův integrál Definice 6.1 Řekneme,

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná Vybraná spojitá rozdělení

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná Vybraná spojitá rozdělení PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Vybrná spojitá rozdělení Zákldní soubor u spojité náhodné proměnné je nespočetná množin. Z je tedy podmnožin množiny reálných čísel (R). Distribuční funkce

Více

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce. Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce

Více

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4) KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázi zákldní vzdělávání Jroslv Švrček kolektiv Rámcový vzdělávcí progrm pro zákldní vzdělávání Vzdělávcí oblst: Mtemtik její plikce Temtický okruh: Nestndrdní plikční

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26

LDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26 Určitý integrál Zákldy vyšší mtemtiky LDF MENDELU Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu http://kdemie.ldf.mendelu.cz/cz

Více

NMAF061, ZS Písemná část zkoušky 25. leden 2018

NMAF061, ZS Písemná část zkoušky 25. leden 2018 Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 3 4 5 6 Celkem bodů Bodů 6 6 4

Více

2.1 - ( ) ( ) (020201) [ ] [ ]

2.1 - ( ) ( ) (020201) [ ] [ ] - FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé

Více

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice 59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní

Více

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.

Více

1. Pokyny pro vypracování

1. Pokyny pro vypracování 1. Pokyny pro vyprcování Zvolený příkld z druhé kpitoly vyprcujte písemně (nejlépe vysázejte pomocí LATEXu) dodejte osobně po předchozí domluvě milem n krbek@physics.muni.cz. Dále si vyberte tři z jednodušších

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice 59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní

Více

3.4.9 Konstrukce čtyřúhelníků

3.4.9 Konstrukce čtyřúhelníků 3.4.9 Konstruce čtyřúhelníů Předpoldy: 030408 Trojúhelníy byly určeny třemi prvy. Př. 1: Obecný čtyřúhelní je dán délmi všech svých čtyř strn. Rozhodni, zd je určen nebo ne. Nejjednodušší je vzít čtyři

Více

Křivkový integrál funkce

Křivkový integrál funkce Kpitol 6 Křivkový integrál funkce efinice způsob výpočtu Hlvním motivem pro definici určitého integrálu funkce jedné proměnné byl úloh stnovit obsh oblsti omezené grfem dné funkce intervlem n ose x. Řd

Více

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností

Více

1. LINEÁRNÍ ALGEBRA 1.1. Matice

1. LINEÁRNÍ ALGEBRA 1.1. Matice Lineární lgebr LINEÁRNÍ LGEBR Mtice Zákldní pojmy Mticí typu m/n nzýváme schém mn prvků, které jsou uspořádány do m řádků n sloupců: n n m/n = = = ( ij ) m m mn V tomto schémtu pro řádky sloupce užíváme

Více

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje. 4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost

Více

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11 Mticový počet zákldní pojmy Mtice je obdélníkové schém tvru 2...... n 2 22. 2n A =, kde ij R ( i =,,m, j =,,n ) m m2. mn ij R se nzývjí prvky mtice o mtici o m řádcích n sloupcích říkáme, že je typu m/n

Více

7 Analytická geometrie

7 Analytická geometrie 7 Anlytiká geometrie 7. Poznámk: Když geometriké prolémy převedeme pomoí modelu M systému souřdni n lgeriké ritmetiké prolémy pk mluvíme o nlytiké geometrii neo též o metodě souřdni užité v geometrii.

Více

26. listopadu a 10.prosince 2016

26. listopadu a 10.prosince 2016 Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální

Více

OBECNÝ URČITÝ INTEGRÁL

OBECNÝ URČITÝ INTEGRÁL OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 (Souřdnicové výpočty) 1 ročník bklářského studi studijní progrm G studijní obor G doc Ing Jromír Procházk CSc listopd 2015 1 Geodézie 1 přednášk č7 VÝPOČET SOUŘADNIC JEDNOHO

Více

Riemannův určitý integrál.

Riemannův určitý integrál. Riemnnův určitý integrál. Definice 1. Budiž

Více

Logaritmická funkce teorie

Logaritmická funkce teorie Výukový mteriál pro předmět: MATEMATIKA reg. č. projektu CZ..07/..0/0.0007 Logritmická funkce teorie Eponenciální funkce je funkce prostá, proto k ní eistuje inverzní funkce. Tto inverzní funkce se nzývá

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

2.3. DETERMINANTY MATIC

2.3. DETERMINANTY MATIC 2.3. DETERMINANTY MATIC V této kpitole se dozvíte: definici determinntu čtvercové mtice; co je to subdeterminnt nebo-li minor; zákldní vlstnosti determinntů, používné v mnoh prktických úlohách; výpočetní

Více

FI: JARO 2017 Verze: 9. února 2017

FI: JARO 2017 Verze: 9. února 2017 FI: JARO 7 Verze: 9. únor 7 Přednášky k předmětu MB Autor: Romn Šimon Hilscher Přednášející: Petr Hsil Obsh Přehled přednášek podle strny ukončení iii. Polynomy interpolce.. Interpolce.. Lgrngeův interpolční

Více

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci

Více

Matematika II: Listy k přednáškám

Matematika II: Listy k přednáškám Mtemtik II: Listy k přednáškám Rdomír Pláček, Petr Schreiberová, Petr Volný Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Kpitol 1 Integrální počet funkcí jedné proměnné 1.Řy 11

Více

Větu o spojitosti a jejich užití

Větu o spojitosti a jejich užití 0..7 Větu o spojitosti jejich užití Předpokldy: 706, 78, 006 Pedgogická poznámk: Při proírání této hodiny je tře mít n pměti, že všechny věty, které studentům sdělujete z jejich pohledu neuvěřitelně složitě

Více

Logaritmické rovnice I

Logaritmické rovnice I .9.9 Logritmické rovnice I Předpokldy: 95 Pedgogická poznámk: Stejně jko u eponenciálních rovnic rozkldů n součin bereme ritmické rovnice jko nácvik výběru metody. Sestvujeme si rzenál metod n konci máme

Více

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem

Více

13. Exponenciální a logaritmická funkce

13. Exponenciální a logaritmická funkce @11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze

Více

Ohýbaný nosník - napětí

Ohýbaný nosník - napětí Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se

Více

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí 10 Určitý integrál 10.1 Riemnnův integrál Definice. Konečnou posloupnost {x j } n j=0 nzýváme dělením intervlu [,b], jestliže pltí = x 0 < x 1 < < x n = b. Body x 0,...,x n nzýváme dělícími body. Normou

Více

KVADRATICKÁ FUNKCE (vlastnosti, grafy)

KVADRATICKÁ FUNKCE (vlastnosti, grafy) KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t 7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách

Více

8.2.6 Geometrická posloupnost

8.2.6 Geometrická posloupnost 8.. Geometricá posloupost Předpoldy: 80, 80, 80, 807 Pedgogicá pozám: V hodiě rozdělím třídu dvě supiy ždá z ich dělá jede z prvích dvou příldů. Př. : Poločs rozpdu (dob z terou se rozpde polovi existujícího

Více

Křivkový integrál prvního druhu verze 1.0

Křivkový integrál prvního druhu verze 1.0 Křivkový integrál prvního druhu verze. Úvod Následující text popisuje výpočet křivkového integrálu prvního druhu. Měl by sloužit především studentům předmětu MATEMAT k příprvě n zkoušku. Mohou se v něm

Více

Matematika II: Aplikované úlohy

Matematika II: Aplikované úlohy Mtemtik II: Aplikovné úlohy Zuzn Morávková Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Mtemtik II - plikovné úlohy Ktedr mtemtiky deskriptivní geometrie, VŠB - Technická univerzit

Více

Matematika II: Listy k přednáškám

Matematika II: Listy k přednáškám Mtemtik II: Listy k přednáškám Rdomír Pláček, Petr Schreiberová, Petr Volný Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Kpitol 1 Integrální počet funkcí jedné proměnné 1.Řy 11

Více

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu.

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu. Přednášk 1 Určitý integrál V této přednášce se budeme zbývt určitým integrálem. Eistuje několik definic určitého integrálu funkce jedné reálné proměnné. Jednotlivé integrály se liší v tom, jké funkce lze

Více

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

MENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF

MENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF MENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF RNDr. Petr Rádl RNDr. Bohumil Černá RNDr. Ludmil Strá 0 Petr Rádl, 0 ISBN 97-0-77-9- OBSAH Předmluv... Poždvky k přijímcí zkoušce z mtemtiky..

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

13. Soustava lineárních rovnic a matice

13. Soustava lineárních rovnic a matice @9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky

Více

Základy teorie matic

Základy teorie matic Zákldy teorie mtic 1. Pojem mtice nd číselným tělesem In: Otkr Borůvk (uthor): Zákldy teorie mtic. (Czech). Prh: Acdemi, 1971. pp. 9--12. Persistent URL: http://dml.cz/dmlcz/401328 Terms of use: Akdemie

Více

Matematika pro informatiky

Matematika pro informatiky (FIT ČVUT v Praze) Konvexní analýza 13.týden 1 / 1 Matematika pro informatiky Jaroslav Milota Fakulta informačních technologíı České vysoké učení technické v Praze Letní semestr 2010/11 Extrémy funkce

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Komentovaný metodický list č. 1/4 Vytvořil: Ing. Oldřich Ševeček & Ing. Tomáš Profant, Ph.D.

Více

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení.

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení. 4. Booleov lger Booleov lger yl nvržen v polovině 9. století mtemtikem Georgem Boolem, tehdy nikoliv k návrhu digitálníh ovodů, nýrž jko mtemtikou disiplínu k formuli logikého myšlení. Jko příkld použijeme

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 67. ročník mtemtické olympiády Úlohy krjského kol ktegorie A 1. Pvel střídvě vpisuje křížky kolečk do políček tbulky (zčíná křížkem). Když je tbulk celá vyplněná, výsledné skóre spočítá jko rozdíl X O,

Více

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Skalární součin a ortogonalita Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad

Více

A DIRACOVA DISTRIBUCE 1. δ(x) dx = 1, δ(x) = 0 pro x 0. (1) Graficky znázorňujeme Diracovu distribuci šipkou jednotkové velikosti (viz obr. 1).

A DIRACOVA DISTRIBUCE 1. δ(x) dx = 1, δ(x) = 0 pro x 0. (1) Graficky znázorňujeme Diracovu distribuci šipkou jednotkové velikosti (viz obr. 1). A DIRACOVA DISTRIBUCE A Dircov distribuce A Definice Dircovy distribuce Dircovu distribuci δx) lze zvést třemi ekvivlentními způsoby ) Dirc [] ji zvedl vzthy δx) dx, δx) pro x ) Grficky znázorňujeme Dircovu

Více

Zkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p.

Zkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p. 1. V oboru reálných čísel řešte soustvu rovnic x 2 xy + y 2 = 7, x 2 y + xy 2 = 2. (J. Földes) Řešení. Protože druhou rovnici můžeme uprvit n tvr xy(x + y) = 2, uprvme podobně i první rovnici: (x + y)

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

Opakování ke státní maturitě didaktické testy

Opakování ke státní maturitě didaktické testy Číslo projektu CZ..7/../.9 Škol Autor Číslo mteriálu Název Tém hodiny Předmět Ročník/y/ Anotce Střední odborná škol Střední odborné učiliště, Hustopeče, Msrykovo nám. Mgr. Rent Kučerová VY INOVACE_MA..

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

Konstrukční uspořádání koleje

Konstrukční uspořádání koleje Konstrukční uspořádání koleje Otto Plášek, doc. Ing. Ph.. Ústv železničních konstrukcí stveb Tto prezentce byl vytvořen pro studijní účely studentů. ročníku mgisterského studi oboru Geodézie krtogrfie

Více

KŘIVKOVÉ INTEGRÁLY. Křivka v prostoru je popsána spojitými funkcemi ϕ, ψ, τ : [a, b] R jako množina bodů {(ϕ(t), ψ(t), τ(t)); t

KŘIVKOVÉ INTEGRÁLY. Křivka v prostoru je popsána spojitými funkcemi ϕ, ψ, τ : [a, b] R jako množina bodů {(ϕ(t), ψ(t), τ(t)); t KŘIVKOVÉ INTEGRÁLY Má-li se spočítt npř. spotřeb betonu n rovný plot s měnící se výškou, stčí spočítt integrál z této výšky podle zákldny plotu. o když je le zákldnou plotu nikoli rovná úsečk, le křivá

Více

vás seznámí s učivem, které v dané kapitole poznáte a které byste po jejím prostudování měli umět.

vás seznámí s učivem, které v dané kapitole poznáte a které byste po jejím prostudování měli umět. POKYNY KE STUDIU Pokyny ke studiu V úvodu si vysvětlíme jednotnou pevnou strukturu kždé kpitoly tetu, která by vám měl pomoci k rychlejší orientci při studiu Pro zvýrznění jednotlivých částí tetu jsou

Více

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož

Více