1 Modelování systémů 2. řádu



Podobné dokumenty
Diferenciální rovnice 3

Inverzní Laplaceova transformace

Přechodné děje 2. řádu v časové oblasti

25.z-6.tr ZS 2015/2016

Soustavy lineárních rovnic

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

CW01 - Teorie měření a regulace

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

9.4. Rovnice se speciální pravou stranou

Diferenciální rovnice

Matematika 3. m působíme silou F, uvedeme ho do pohybu a udělíme mu zrychlení a. Úkolem

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

Co je obsahem numerických metod?

9.7. Vybrané aplikace

Michal Fusek. 10. přednáška z AMA1. Ústav matematiky FEKT VUT, Michal Fusek 1 / 62

PŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY

Funkce komplexní proměnné a integrální transformace

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

Kapitola 11: Lineární diferenciální rovnice 1/15

9.2. Zkrácená lineární rovnice s konstantními koeficienty

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Připomenutí co je to soustava lineárních rovnic

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Drsná matematika III 6. přednáška Obyčejné diferenciální rovnice vyšších řádů, Eulerovo přibližné řešení a poznámky o odhadech chyb

Laplaceova transformace

Numerická matematika 1

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE

Tlumené a vynucené kmity

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,

Úvod do analytické mechaniky

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

Příklady pro předmět Aplikovaná matematika (AMA) část 1

9.5. Soustavy diferenciálních rovnic

7B. Výpočet limit L Hospitalovo pravidlo

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

Separovatelné diferenciální rovnice

12 Obyčejné diferenciální rovnice a jejich soustavy

Matematika I A ukázkový test 1 pro 2014/2015

(test version, not revised) 9. prosince 2009

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu

1 Rozdělení mechaniky a její náplň

Polynomy a interpolace text neobsahuje přesné matematické definice, pouze jejich vysvětlení

vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).

Matematika 3. Úloha 1. Úloha 2. Úloha 3

Úvod do zpracování signálů

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity

Newtonova metoda. 23. října 2012

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.

Odpružená sedačka. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

Matematika 4 FSV UK, LS Miroslav Zelený

Nastavení parametrů PID a PSD regulátorů

1 Mnohočleny a algebraické rovnice

9. cvičení z Matematické analýzy 2

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí

Nauka o Kmitání Přednáška č. 4

1 Mnohočleny a algebraické rovnice

Diskretizace. 29. dubna 2015

Diferenciální rovnice

Nejjednodušší, tzv. bang-bang regulace

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

1/15. Kapitola 12: Soustavy diferenciálních rovnic 1. řádu

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu

Teorie měření a regulace

Numerické řešení nelineárních rovnic

Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze

Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory

Komplexní analýza. Fourierovy řady. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

KMS cvičení 6. Ondřej Marek

X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky

KYBERNETIKA. Prof. Ing. Vilém Srovnal, CSc. Vysoká škola báňská Technická univerzita Ostrava

Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012

časovém horizontu na rozdíl od experimentu lépe odhalit chybné poznání reality.

Posloupnosti a řady. 28. listopadu 2015

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program

Diferenciální rovnice 1

Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce

Elektromechanický oscilátor

sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx.

Flexibilita jednoduché naprogramování a přeprogramování řídícího systému

Modelov an ı syst em u a proces

Experimentální dynamika (motivace, poslání, cíle)

f konverguje a g je omezená v (a, b), pak také konverguje integrál b a fg. Dirichletovo kritérium. Necht < a < b +, necht f : [a, b) R je funkce

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.

Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí

Transkript:

OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka řešení č. 6 17 9 Ukázka řešení č. 7 19 10 Ukázka řešení č. 8 20 11 Ukázka řešení č. 9 21 12 Porovnání pojmů kybernetika vs. matematika 22 13 Postup při určování chování systémů a při řešení diferenciální rovnice 23 i

1 MODELOVÁNÍ SYSTÉMŮ 2. ŘÁDU 1 Modelování systémů 2. řádu K popisu systémů máme v kybernetice k dispozici řadu možností, se kterými se seznámíte později. Cílem tohoto textu je konfrontace pojmů, se kterými se budete setkávat v matematice a v kybernetice, a které popisují stejnou věc. Jako příklad je popis systému diferenciální rovnicí y (t) + a y (t) + b y(t) = u(t) (1.1) kde y(t) je tzv. výstup ze systému, u(t) je tzv. vstup do systému, t je čas, a, b jsou parametry systému. Případně stejný systém popsán stavovým popisem, což je v matematice nazýváno soustava diferenciálních rovnic 1.řádu [ ] [ ] [ ] [ ] ẋ1 0 1 x1 0 = + u ẋ 2 b a x 2 1 y = [ 1 0 ] [ ] (1.2) x 1 x 2 A nebo další způsob, nazývaný obrazový přenos. F (p) = 1 p 2 + a p + b (1.3) Všechny způsoby popisují to samé (např. RLC obvod, matematické kyvadlo, závaží na pružině). V případě kyvadla by signál y = hel, y = rychlost, y = zrychlen. Řešením rovnic (1.1), (1.2), (1.3) je funkce y(t), tj. funkce popisující průběh úhlu ϕ pro čas t. Je důležité mít představu o tom, jak se systém chová aniž bychom museli řešit diferenciální rovnice, provádět simulace či experimenty. I proto se určují kořeny charakteristické rovnice (1.1), vlastní čísla matice z (1.2) nebo póly přenosu (1.3). Ačkoli se nazývají různě, jedná se o stejná čísla. Charakteristický polynom Při určování charakteristického polynomu vyjdeme z diferenciální rovnice bez pravé strany, tj. použijeme rovnici (1.1) s u(t) = 0. y + a y + b y = 0 Derivaci nahradíme mocninou, proměnnou y za λ λ 2 + a λ 1 + b }{{} λ 0 = 0 (1.4) =1 tj. λ 2 + a λ + b = 0 (1.5) Vlastní čísla matice [ 0 1 A = b a ] det(λi A) = λ 2 + a λ + b (1.6) 1

1 MODELOVÁNÍ SYSTÉMŮ 2. ŘÁDU Póly přenosu p 2 + a p + b = 0 (1.7) Na základě kořenů / vlastních čísel / pólů budeme znát chování systému bez nutnosti řešení diferenciální rovnice. Je však dobré vědět, že vědomost o chování systému z pouhé znalosti kořenů / vlastních čísel / pólů plyne z řešení diferenciální rovnice. 2

2 ŘEŠENÍ DIFERENCIÁLNÍ ROVNICE 2 Řešení diferenciální rovnice Výpočet řešení rovnice (1.1) y + a y + b y = u je rozdělen do částí: A) y H (t) odezva na počáteční podmínky (tj. odezva na minulé vstupy), v matematice nazýváno homogenní řešení, popisuje vlastní dynamiku systému B) y P (t) odezva na vstup, v matematice partikulární řešení (pokud je vstup u(t) nulový tento krok odpadá, tj. y p = 0) C) y(t) celé řešení je součet y(t) = y H (t) + y P (t) D) použití nejčastěji počátečních podmínek y(0) = y 0, y (0) = y 0, okrajových podmínek apod. 3

2 ŘEŠENÍ DIFERENCIÁLNÍ ROVNICE A) Odezva na počáteční podmínky Derivaci nahradíme mocninou, proměnnou y za λ λ 2 + a λ + b = 0 potom pro systém 2. řádu mohou nastat následující varianty chování varianta i: λ 1, λ 2 R a λ 1 λ 2 (a = λ 1 + λ 2, b = λ 1 λ 2 ) nekmitavá odezva y H (t) = C 1 e λ 1 t + C 2 e λ 2 t (2.1) varianta ii: λ = λ 1 = λ 2, λ R (a = 2λ, b = λ 2 ) nekmitavá odezva y H (t) = C 1 e λ t + C 2 t e λ t (2.2) varianta iii: λ 1,2 = α ± iβ (a = 2α, c = α 2 + β 2 ) kmitavá odezva y H (t) = C 1 e (α+iβ) t + C 2 e (α iβ) t = e α t (C 1 sin(β t) + C 2 cos(β t)) (2.3) Ve všech variantách C 1 a C 2 jsou konstanty, které jsou určeny z počátečních podmínek. Důležitou vlastností, které ovlivňuje chování celého systému, jsou znaménka reálných částí kořenů, tj. Re(λ 1 ), Re(λ 2 ), resp. Re(λ), resp. Re(α). Pokud jsou reálné části všech kořenů záporné, řekneme, že systém je stabilní. Pokud si spočítáme limitu y H pro t, zjistíme že platí následující varianta i: λ 1 < 0 λ 1 = λ 1 a λ 2 < 0 λ 2 = λ 2 ( varianta ii: λ < 0 λ = λ varianta iii α < 0 α = α lim y H(t) = lim t t C 1 e λ 1 t } {{ } + C 2 e λ 2 t } {{ } 0 0 ) = 0 (2.4) lim y H(t) = lim t t C 1 e} λ {{ } t t + C 2 e λ t = 0 (2.5) 0 }{{} 0 lim y H(t) = lim t t ( e α t } {{ } 0 (C 1 sin(β t) + C 2 cos(β t)) kde α odpovídá tlumení systému, β vlastní frekvenci kmitání. 4 ) = 0 (2.6)

2 ŘEŠENÍ DIFERENCIÁLNÍ ROVNICE Z matematického hlediska bychom řekli, že funkce pro t rostoucí do nekonečna konverguje. V kybernetice říkáme, že systém je stabilní. A naopak systém je nestabilní (řešení y H (t) diverguje) v případě, že kořeny jsou: varianta i: λ 1 > 0, λ 2 < 0 nebo λ 1 < 0, λ 2 > 0 nebo λ 1 > 0, λ 2 > 0 ( ) lim y H(t) = lim C 1 e λ 1 t + C 2 e λ 2 t = (2.7) t t varianta ii: λ > 0 varianta iii α > 0 ( lim y H(t) = lim C 1 e λ t + C 2 t e λ t) = (2.8) t t lim y H(t) = lim t t ( e α t }{{} (C 1 sin(β t) + C 2 cos(β t)) ) = (2.9) Nakonec uveďme systém tzv. na mezi stability, z matematického hlediska bychom řekli, že funkce pro t rostoucí do nekonečna nekonverguje. varianta iii α = 0 lim y H(t) = lim (C 1 sin(β t) + C 2 cos(β t)) (2.10) t t Výsledkem je kmitavý charakter se stále stejnou amplitudou. Systém je bez tlumení. 5

2 ŘEŠENÍ DIFERENCIÁLNÍ ROVNICE B) Odezva na vstup V případě, že vstup u(t) není nulový, tj. jedná se diferenciální rovnici s pravou stranou, jsou v zásadě dva způsobu nalezení odezvy na vstup (nalezení partikulárního řešení) (i) variance konstant (ii) odhad pravé strany Odhad pravé strany Vlastností systémů je snaha kopírovat vstupní signál (pravou stranu). Ovšem toto kopírování se plně projeví až poté, co přestane převládat odezva na počáteční podmínku. Odhad pravé strany je vhodný pouze pro některé typy vstupů, např: konstanta, sinus, kosinus, polynom, exponenciála. Odhadované partikulární řešení je pak řešením diferenciální rovnice, proto musí této rovnici vyhovovat, čili musíme stanovit y P a y P a spolu s odhadem y P dosadit do diferenciální rovnice. V kybernetice některé z těchto signálů používáme pro poznání chování systému, či pro tzv. identifikaci 1. Mezi, v kybernetice, často používané vstupy patří: jednotkový skok, Diracův impuls a sinusový signál. Jednotkový skok (v matematice konstanta) Také Heavisideova funkce je nespojitá funkce. u(t) = A pro t 0 = 0 jinak (2.11) Označení jednotkový skok je informativní, neboť velikost skoku může být různá (ve funkci (2.11) označeno A). V kybernetice mluvíme o odezvě na jednotkový skok, čili o přechodové charakteristice či přechodové funkci. Odhad pravé strany pro vstupní signál rovný jednotkovému skoku Odezvu na vstup (partikulární řešení) volíme ve tvaru: y P = K (2.12) kde K je konstanta, kterou potřebujeme určit, tj. y P = 0 a y P = 0. Odtud po dosazení (2.12) do (1.1) a za předpokladu, že u(t) = A, dostaneme: potom y P + a y P + b y P = A 0 + a 0 + b K = A y P = K = A b (2.13) (2.14) 1 Identifikace, v případě systému popsaného rovnicí (1.1), znamená stanovení neznámých koeficientů a, b. 6

2 ŘEŠENÍ DIFERENCIÁLNÍ ROVNICE Sinusový signál Sinusový signál se v kybernetice používá k získání bodu frekvenční charakteristiky. u(t) = A 1 sin(ω t) pro t 0 = 0 jinak (2.15) Odezvu na vstup (partikulární řešení) volíme ve tvaru: y P = A 2 sin(ωt + ϕ) (2.16) nebo y P = B 1 sin(ωt) + B 2 cos(ωt) (2.17) Diracův impuls Diracův impuls nabývá nenulové hodnoty v jediném bodě t = 0, v tomto bodě nabývá nekonečné hodnoty. Integrál této funkce je roven jedné. Diracův impuls není realizovatelný, proto se používá aproximace u(t) = 1 ε pro 0 t ε (2.18) = 0 jinak kde ε je zvolený parametr o malé hodnotě. V tomto případě není řešení úplně jednoduché a snáze se hledá za pomoci přenosu (1.3) a znalosti, že v Laplaceových proměnných pro výstup platí: Y (p) = F (p) U(p) (2.19) a že Diracův impuls je roven U(p) = 1, potom řešení je inverzní Laplaceova transformace 2 y(t) = L 1 (F (p)) (2.20) Druhá možnost je použít odezvu na jednotkový skok, neboť odezva na Diracův impuls je derivací odezvy na jednotkový skok. V kybernetice mluvíme o odezvě na jednotkový impuls, čili o impulsní charakteristice či impulsní funkci. 2 Laplaceova transformace pro známé funkce je v tabulkách 7

2 ŘEŠENÍ DIFERENCIÁLNÍ ROVNICE D) Použití počátečních podmínek Vyjdeme z celého řešení y(t) = y H (t) + y P (t). Např. pro dva různé kořeny (2.1) a konstantní pravou stranu (2.14) je celé řešení: y(t) = C 1 e λ 1 t + C 2 e λ 2 t } {{ } odezva na počáteční podmínky + A b }{{} odezva na konstantní vstup (2.21) kde neznámé konstanty C 1 a C 2 určíme z počátečních podmínek y(0) = y 0 a y (0) = y 0. Do rovnice řešení (2.21) dosadíme t = 0 a y(0) = y 0. Dále spočítáme derivaci y (t) = dy(t) dt = λ 1 C 1 e λ1 t + λ 2 C 2 e λ2 t. y 0 = C 1 e λ 1 0 + C 2 e λ 2 0 + A b y 0 = λ 1 C 1 e λ 1 0 + λ 2 C 2 e λ 2 0 (2.22) nebo-li [ 1 1 λ 1 λ 2 ] [ C1 C 2 ] [ y0 A = b y 0 ] (2.23) Odtud jsou C 1 = y 0 λ 2y+ Aλ 2 b λ 1 λ 2 (2.24) C 2 = y 0 λ 1y+ Aλ 1 b λ 2 λ 1 8

3 UKÁZKA ŘEŠENÍ Č. 1 3 Ukázka řešení č. 1 y + 3y + 2y = 6, y(0) = 5, y (0) = 0 (3.1) A) Odezva na minulé vstupy λ 2 + 3λ + 2 = 0 (3.2) Kořeny této rovnice jsou: λ 1 = 1 a λ 2 = 2. Systém je nekmitavý a stabilní (konvergentní). y H (t) = C 1 e t + C 2 e 2t (3.3) B) Odezva vstup Volíme ji kde K je konstanta, kterou potřebujeme určit, tj. y P = 0 a y P y P (t) = K (3.4) = 0. Odtud po dosazení dostaneme: y P + 3 y P + 2 y P = 6 0 + 3 0 + 2 K = 6 (3.5) potom y P = K = 6 2 = 3 (3.6) C) Celé řešení y(t) = C 1 e t + C 2 e 2t + 3 (3.7) D) Počáteční podmínky řešení je C 1 = 16 a C 2 = 8 5 = C 1 + C 2 + 3 0 = C 1 2 C 2 (3.8) Výsledné řešení y(t) = 16e t + 8e 2t + 3 (3.9) 9

3 UKÁZKA ŘEŠENÍ Č. 1 Zadání ve wolframalpha.com y + 3 y + 2 y = 6, y(0)=-5, y (0)=0 V časech t 0; 5 převládá vliv samotného systému, který je dán homogenním řešením: y(t) = C 1 e t + C 2 e 2t. Vstupní signál v těchto časech výsledek samozřejmě ovlivňuje, ale ne tolik. Od času t > 5 již převládá odezva na vstupní signál. 10

4 UKÁZKA ŘEŠENÍ Č. 2 4 Ukázka řešení č. 2 y + 3y + 2y = 6 sin(4 t), y(0) = 5, y (0) = 0 (4.1) Stejná rovnice, stejná odezva na minulé vstupy (počáteční podmínku), jiná odezva na vstup. Postup řešení je stejný jako předtím, jen trochu delší. Systém je nekmitavý a stabilní (konvergentní). Výsledné řešení y(t) = 730 85 e t + 323 85 e 2t 21 18 sin(4 t) cos(4 t) (4.2) 85 85 Kmitání v tomto grafu není způsobeno tím, že by systém byl kmitavý! Systém samotný je nekmitavý. Kmitání je způsobeno vstupním signálem u(t) = 6 sin(4 t). Zadání ve wolframalpha.com y + 3 y + 2 y = 6 sin(4 x), y(0)=-5, y (0)=0 V časech t 0; 5 převládá vliv samotného systému, který je dán homogenním řešením: y(t) = C 1 e t + C 2 e 2t. Vstupní signál v těchto časech výsledek samozřejmě ovlivňuje, ale ne tolik. Od času t > 5 již převládá odezva na vstupní signál. 11

5 UKÁZKA ŘEŠENÍ Č. 3 5 Ukázka řešení č. 3 y + 3y + 2y = 0, y(0) = 5, y (0) = 0 (5.1) Stejná rovnice, stejná odezva na minulé vstupy (počáteční podmínku), ale bez odezvy na vstup (bez pravé strany). A) Odezva na minulé vstupy λ 2 + 3λ + 2 = 0 (5.2) Kořeny této rovnice jsou: λ 1 = 1 a λ 2 = 2. Systém bude nekmitavý a stabilní. y H (t) = C 1 e t + C 2 e 2t (5.3) B) Odezva vstup Pravá strana je nulová, tj. odezva na vstup není přítomna. C) Celé řešení y(t) = C 1 e t + C 2 e 2t (5.4) D) Počáteční podmínky řešení je C 1 = 10 a C 2 = 5 5 = C 1 + C 2 0 = C 1 2 C 2 (5.5) Výsledné řešení y(t) = 10e t + 5e 2t (5.6) 12

5 UKÁZKA ŘEŠENÍ Č. 3 Zadání ve wolframalpha.com y + 3 y + 2 y = 0, y(0)=-5, y (0)=0 V tomto případě v časech t 0; 5 převládá vliv samotného systému, který je dán homogenním řešením: y(t) = C 1 e t + C 2 e 2t. Vstupní signál v těchto časech výsledek samozřejmě ovlivňuje, ale ne tolik. Od času t > 5 již tento vliv odezněl, proto je hodnota y(t) = 0. Všimněte si podobnosti této křivky s křivkou odezvy na skok. 13

6 UKÁZKA ŘEŠENÍ Č. 4 6 Ukázka řešení č. 4 y + 0, 4y + 1, 04y = 6, y(0) = 5, y (0) = 0 (6.1) A) Odezva na minulé vstupy λ 2 + 0, 4λ + 1, 04 = 0 (6.2) Kořeny této rovnice jsou: λ 1 = 0, 2 + i a λ 2 = 0, 2 i. Systém bude kmitavý a stabilní. y H (t) = e 0,2 t (C 1 sin(t) + C 2 cos(t)) (6.3) B) Odezva vstup Volíme ji kde K je konstanta, kterou potřebujeme určit, tj. y P = 0 a y P y P (t) = K (6.4) = 0. Odtud po dosazení dostaneme: y P + 0, 4 y P + 1, 04 y P = 6 0 + 0, 4 0 + 1, 04 K = 6 (6.5) potom y P = K = 6 = 5, 7693 (6.6) 1, 04 C) Celé řešení y(t) = e 0,2 t (C 1 sin(t) + C 2 cos(t)) + 5, 7693 (6.7) D) Počáteční podmínky 5 = e 0,2 0 (C 1 sin(0) + C 2 cos(0)) + 5, 7693 0 = e 0,2 0 [( 0, 2C 1 C 2 ) sin(0) + ( 0, 2C 2 + C 1 ) cos(0)] (6.8) řešení je C 1 = 10, 7692 a C 2 = 2, 1539 5 = C 2 + 5, 7693 0 = 0, 2 C 1 + C 2 (6.9) Výsledné řešení y(t) = e 0,2 t ( 10, 7692 sin(t) 2, 1539 cos(t)) + 5, 7693 (6.10) 14

6 UKÁZKA ŘEŠENÍ Č. 4 Zadání ve wolframalpha.com y + 0.4 y + 1.04 y = 6, y(0)=-5, y (0)=0 V časech t 0; 30 převládá vliv samotného systému, který je dán homogenním řešením: y(t) = e 0,2 t (C 1 sin(t) + C 2 cos(t)). Vstupní signál v těchto časech výsledek samozřejmě ovlivňuje, ale ne tolik. Od času t > 30 již převládá odezva na vstupní signál. 15

7 UKÁZKA ŘEŠENÍ Č. 5 7 Ukázka řešení č. 5 y + 0, 4y + 1, 04y = 6 sin(4 t), y(0) = 5, y (0) = 0 (7.1) Stejná rovnice, stejná odezva na minulé vstupy (počáteční podmínku), jiná odezva na vstup. Postup řešení je stejný jako předtím, jen delší. Systém bude kmitavý a stabilní. Výsledné řešení y(t) = e 0,2 t (0, 5946 sin(t) 4, 9576 cos(t)) 0, 3965 sin 2 (t) sin(4t) 0, 0424 cos(4t) 0.3965 sin(4t) cos 2 (t) (7.2) Zadání ve wolframalpha.com y + 0.4 y + 1.04 y = 6 sin(4 x), y(0)=-5, y (0)=0 V časech t 0; 30 převládá vliv samotného systému, který je dán homogenním řešením: y(t) = e 0,2 t (C 1 sin(t) + C 2 cos(t)). Vstupní signál v těchto časech výsledek samozřejmě ovlivňuje, ale ne tolik. Od času t > 30 již převládá odezva na vstupní signál. 16

8 UKÁZKA ŘEŠENÍ Č. 6 8 Ukázka řešení č. 6 y + 0, 4y + 1, 04y = 0, y(0) = 5, y (0) = 0 (8.1) A) Odezva na minulé vstupy λ 2 + 0, 4λ + 1, 04 = 0 (8.2) Kořeny této rovnice jsou: λ 1 = 0, 2 + i a λ 2 = 0, 2 i. Systém bude kmitavý a stabilní. y H (t) = e 0,2 t (C 1 sin(t) + C 2 cos(t)) (8.3) B) Odezva vstup Nulová pravá strana proto není odezva na vstup, tj. není partikulární řešení. C) Celé řešení y(t) = e 0,2 t (C 1 sin(t) + C 2 cos(t)) (8.4) D) Počáteční podmínky 5 = e 0,2 0 (C 1 sin(0) + C 2 cos(0)) 0 = e 0,2 0 [( 0, 2C 1 C 2 ) sin(0) + ( 0, 2C 2 + C 1 ) cos(0)] (8.5) řešení je C 1 = 1 a C 2 = 5 5 = C 2 0 = 0, 2 C 1 + C 2 (8.6) Výsledné řešení y(t) = e 0,2 t ( sin(t) 5 cos(t)) (8.7) 17

8 UKÁZKA ŘEŠENÍ Č. 6 Zadání ve wolframalpha.com y + 0.4 y + 1.04 y = 0, y(0)=-5, y (0)=0 V tomto případě v časech t 0; 30 převládá vliv samotného systému, který je dán homogenním řešením: y(t) = e 0,2 t (C 1 sin(t) + C 2 cos(t)). Od času t > 30 již tento vliv odezněl, proto je hodnota y(t) = 0. Všimněte si podobnosti této křivky s křivkou odezvy na skok. 18

9 UKÁZKA ŘEŠENÍ Č. 7 9 Ukázka řešení č. 7 Systém bude nekmitavý a stabilní. y + 2y + y = 6, y(0) = 5, y (0) = 0 (9.1) 19

10 UKÁZKA ŘEŠENÍ Č. 8 10 Ukázka řešení č. 8 Systém bude nekmitavý a stabilní. y + 2y + y = 6 sin(4t), y(0) = 5, y (0) = 0 (10.1) 20

11 UKÁZKA ŘEŠENÍ Č. 9 11 Ukázka řešení č. 9 Systém bude nekmitavý a stabilní. y + y = 0, y(0) = 5, y (0) = 0 (11.1) 21

12 POROVNÁNÍ POJMŮ KYBERNETIKA VS. MATEMATIKA 12 Porovnání pojmů kybernetika vs. matematika kybernetika trajektorie stabilita systému nestabilita systému odezva systému na počáteční podmínky (na minulé vstupy) odezva systému vstup vnitřní (stavový) popis kořeny charakteristické rovnice / vlastní čísla matice / póly přenosu systém 2.řádu matematika řešení diferenciální rovnice (s počátečními podmínkami) konvergence řešení diferenciální rovnice divergence řešení diferenciální rovnice homogenní řešení partikulární řešení soustava diferenciálních rovnic 1.řádu kořeny charakteristické rovnice diferenciální rovnice 2. řádu (stupně) 22

13 POSTUP PŘI URČOVÁNÍ CHOVÁNÍ SYSTÉMŮ A PŘI ŘEŠENÍ DIFERENCIÁLNÍ ROVNICE 13 Postup při určování chování systémů a při řešení diferenciální rovnice Uvedený postup používáme, pokud se chceme dozvědět, jak se systém popsaný diferenciální rovnicí chová. Můžeme se pokusit najít řešení diferenciální rovnice. Budeme uvažovat systém popsaný diferenciální rovnicí (1.1) s pravou stranou: y + a y + b y = u(t) a systém popsaný diferenciální rovnicí (1.1) bez pravé strany, tj. u(t) = 0 (v tomto případě bývá zadaná počáteční podmínka y(0)). y + a y + b y = 0 1. Napíšeme charakteristický polynom z rovnice (1.5), bez ohledu na pravou stranu: a určíme kořeny tohoto polynomu. λ 2 + aλ + b = 0 2. Podle toho, zda jsou kořeny reálné nebo komplexní budeme dále postupovat (a) kořeny reálné, dif. rovnice s pravou stranou u(t) systém nekmitavý použijeme postup u ukázky řešení č. 1 (kapitola 3) (b) kořeny reálné, dif. rovnice bez pravé strany (u(t) = 0) systém nekmitavý použijeme postup u ukázky řešení č. 3 (kapitola 5) (c) kořeny komplexně sdružené, dif. rovnice s pravou stranou u(t) systém kmitavý použijeme postup u ukázky řešení č. 4 (kapitola 6) (d) kořeny komplexně sdružené, dif. rovnice bez pravé strany (u(t) = 0) systém kmitavý použijeme postup u ukázky řešení č. 6 (kapitola 8) 23