Lineární algebra : Lineární prostor

Podobné dokumenty
Lineární algebra : Lineární (ne)závislost

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

Lineární algebra : Báze a dimenze

Lineární algebra : Polynomy

1 Báze a dimenze vektorového prostoru 1

1 Lineární prostory a podprostory

Lineární algebra : Změna báze

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

Lineární algebra : Polynomy

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Metrická geometrie

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

(ne)závislost. α 1 x 1 + α 2 x α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Lineární algebra : Polynomy

Lineární algebra : Lineární zobrazení

Lineární algebra : Skalární součin a ortogonalita

Úvod do lineární algebry

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Základní pojmy teorie množin Vektorové prostory

6.1 Vektorový prostor

0.1 Úvod do lineární algebry

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

0.1 Úvod do lineární algebry

METRICKÉ A NORMOVANÉ PROSTORY

Cvičení z Lineární algebry 1

10. Vektorové podprostory

Texty k přednáškám z MMAN3: 3. Metrické prostory

Báze a dimenze vektorových prostorů

6 Lineární geometrie. 6.1 Lineární variety

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

Lineární algebra : Násobení matic a inverzní matice

Operace s maticemi. 19. února 2018

Lineární prostory. - vektorové veličiny(síla, rychlost, zrychlení,...), skládání, násobení reálným číslem

[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon).

Lineární algebra : Násobení matic a inverzní matice

[1] Definice 1: Polynom je komplexní funkce p : C C, pro kterou. pro všechna x C. Čísla a 0, a 1,..., a n nazýváme koeficienty polynomu.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

Lineární algebra : Úvod a opakování

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:

Pavel Horák, Josef Janyška LINEÁRNÍ ALGEBRA UČEBNÍ TEXT

Datum sestavení dokumentu: 9. srpna Lineární algebra 1

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.

ALGEBRA. Téma 5: Vektorové prostory

Lineární algebra : Vlastní čísla, vektory a diagonalizace

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

1 Soustavy lineárních rovnic

7. Lineární vektorové prostory

Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity)

Matematika B101MA1, B101MA2

Lineární algebra Operace s vektory a maticemi

Těleso racionálních funkcí

1 Vektorové prostory.

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

ALGEBRA A TEORETICKÁ ARITMETIKA. 1. část - Lineární algebra. doc.rndr. Jarmila Novotná, CSc. doc.rndr. Milan Trch, CSc.

Matematická analýza 1

10 Funkce více proměnných

DEFINICE Z LINEÁRNÍ ALGEBRY

Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty.

Matematika 2 pro PEF PaE

6. Vektorový počet Studijní text. 6. Vektorový počet

Lineární algebra - I. část (vektory, matice a jejich využití)

Vybrané kapitoly z matematiky

Primitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program

Základy maticového počtu Matice, determinant, definitnost

2 Vektorový prostor. 2.1 Definice vektorového prostoru

1 Linearní prostory nad komplexními čísly

Pavel Horák LINEÁRNÍ ALGEBRA A GEOMETRIE 1 UČEBNÍ TEXT

4 Lineární zobrazení. 4.1 Definice lineárního zobrazení

Báze a dimense. Odpřednesenou látku naleznete v kapitolách a 3.6 skript Abstraktní a konkrétní lineární algebra.

Vektory a matice. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy

TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA.

Afinní transformace Stručnější verze

Matematická analýza pro informatiky I.

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

Operace s maticemi

1 Řešení soustav lineárních rovnic

Josef Janyška Anna Sekaninová ANALYTICKÁ TEORIE KUŽELOSEČEK A KVADRIK

Lineární algebra Eva Ondráčková

7 Konvexní množiny. min c T x. při splnění tzv. podmínek přípustnosti, tj. x = vyhovuje podmínkám: A x = b a x i 0 pro každé i n.

Projekty - Úvod do funkcionální analýzy

Věta o dělení polynomů se zbytkem

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Matice. a m1 a m2... a mn

18. První rozklad lineární transformace

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

PŘEDNÁŠKA 2 POSLOUPNOSTI

Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném rušení ) Muhammada ibn Músá al-chvárizmího (790? - 850?, Chiva, Bagdád),

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Matematika. Kamila Hasilová. Matematika 1/34

8 Matice a determinanty

Množinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ).

Transkript:

Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1

2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární algebru vybudujeme nad obecným číselným tělesem T. Definici číselného tělesa uvedeme až později. Prvky číselného tělesa lze mezi sebou sčítat a násobit. Dále v tělese vždy existují dva význačné prvky označované obvykle symboly 0 a 1, které jsou určeny vztahy: 0 + α = α a 1α = α, α T. Nyní bude docela stačit, budete-li si pod T představovat R nebo C. Definice 1. Nechť jsou dány: číselné těleso T, neprázdná množina V a dvě zobrazení: : V V V, : T V V. Řekneme, že V je lineární prostor nad tělesem T s vektorovými operacemi a, právě když platí (axiomy lineárního prostoru): Lineární prostor axiomatická definice 1. ( a, b V )( a b = b a ), 2. ( a, b, c V )( (a b) c = a (b c) ), 3. ( α, β T )( a V )( α (β a) = (αβ) a ), 4. ( α T )( a, b V )( α (a b) = (α a) (α b) ), 5. ( α, β T )( a V )( (α + β) a = (α a) (β a) ), 6. ( a V )( 1 a = a ), 7. ( θ V )( a V )(0 a = θ). Prvky lineárního prostoru V nazýváme vektory, prvky tělesa T nazýváme skaláry a prvek θ z axiomu 7 nazýváme nulový vektor. Poznámky k definici lineárního prostoru

3 Při definici lineárního prostoru musíme tedy uvést všechno: množinu V, těleso T, zobrazení a. Bude-li třeba, použijeme označení (V, T,, ). Všimněte si, že máme dvě operace "plus", jedna je + mezi skalaláry a druhá mezi vektory z V. Podobné je to pro operaci "krát". Zobrazení budeme dále značit jen +, stejně jako sčítání skalárů. Nebude docházet k nedorozumění, neboť z kontextu bude vždy jasné, sčítáme-li vektory, nebo skaláry. Podobně místo budeme psát nebo znak operace úplně vynecháme (jako pro násobení skalárů). Zkratka LP = lineární prostor. Jednoduché vlastnosti LP Věta 2. Buď V LP nad T. Potom platí: 1. Ve V existuje právě jeden nulový vektor. 2. ( α T )( αθ = θ ). 3. ( a V )( a + θ = a ). 4. Ke každému vektoru z V existuje právě jeden vektor opačný. Tzn., ( a V )( 1 b V )( a + b = θ ). 5. ( α T )( a V )( αa = θ = (α = 0 a = θ) ). Důkaz. Větu dokážeme přímo z axiomů lineárního prostoru, využití axiomu číslo n v rovnosti označíme (An) =. Použití výsledku z předchozího bodu n této věty označíme (n) =. 1. Nechť existují dva nulové vektory θ 1 a θ 2. Pak θ 1 (A7) = 0 a (A7) = θ 2. 2. α θ (A7) = α (0 a) (A3) = (α0) a = 0 a (A7) = θ. 3. a + θ (A6) = 1 a + θ (A7) = 1 a + 0 a (A5) = (1 + 0) a = 1 a (A6) = a.

4 4. Existence: Buď a V. Položme b := ( 1) a (vektor opačný k 1, tj. 1, v tělese vždy existuje). Potom a + b = a + ( 1) a (A6) = 1 a + ( 1) a (A5) = (1 + ( 1)) a = 0 a (A7) = θ. Jednoznačnost: Nechť b 1 a b 2 jsou dva vektory opačné k a V, tedy a + b 1 = a + b 2 = θ. Pak b 1 (3) =b 1 + θ = b 1 + (a + b 2 ) (A2) = (b 1 + a) + b 2 (A1) = (a + b 1 ) + b 2 = θ + b 2 (A1) = b 2 + θ (3) = b 2. 5. Nechť αa = θ a předpokládejme že α 0, potom a = θ, neboť a (A6) = 1 a = ( 1 α α) a (A3) = 1 α (αa) = 1 α θ (2) = θ. Poznámka 3. Opačný vektor b k vektoru a z bodu 4. značíme b = a. 3.2 Příklady lineárních prostorů Příklad: Položíme-li V = T, ověříme, že T je LP nad T. Speciálně tedy R (nad R) nebo C (nad C) jsou příklady lineárních prostorů (ověřte!). Operace + a jsou stejné jako ty tělesové (tj. např. pro T = R jde o standardní sčítání, resp. násobení reálných čísel). Z těchto prostorů lze konstruovat další lineární prostory následujícím způsobem. Cvičení: Ověřte, že množina n-tic T n, n N, s operacemi definovanými "po složkách" tvoří LP nad T. Tzn., že máme T n = {(α 1,..., α n ) α i T, i ˆn} a pro a = (α 1,..., α n ), b = (β 1,..., β n ) a γ T klademe a + b = (α 1 + β 1,..., α n + β) Lineární prostor T n

5 a γa = (γα 1,..., γα n ). Speciálně tak dostaneme LP reálných, resp. komplexních, n-tic R n, resp. C n. Prvky lineárního prostoru R 2 jsou uspořádané reálné dvojice, které sčítáme a násobíme skalárem po složkách. Geometrická interpretace vektorů z R 2 a R 3 Geometricky lze tedy o prvcích R 2 uvažovat jako o bodech roviny x = (x 1, x 2 ). Pro geometrickou ilustraci operací + a je názorné spojit bod (x 1, x 2 ) s pevně zvoleným počátkem θ a uvažovat o prvcích R 2 jako o tzv. orientovaných úsečkách: x 2 x θ x 1 Podobně si lze představit prvky R 3. Geometrická interpretace sčítání vektorů z R 2

6 x 2 + y 2 x 2 y 2 x x + y y x 1 θ y 1 x 1 + y 1 x + y = (x 1, x 2 ) + (y 1, y 2 ) = (x 1 + y 1, x 2 + y 2 ) Geometrická interpretace vynásobení vektoru z R 2 skalárem αx 2 α x x 2 x βx 1 βx 2 θ x 1 αx 1 β x α x = (αx 1, αx 2 ) (na obr. je α > 1) β x = (βx 1, βx 2 ) (na obr. je β < 0) Lineární prostor matic T m,n

7 Prvky množiny T m,n, kde m, n N, jsou následující soubory čísel z tělesa nazývané matice: α 11 α 12... α 1n α 21 α 22... α 2n A =.... α m1 α m2... α mn Čísla α ij T, kde i ˆm, j ˆn, nazýváme prvky matice. Operace + a definujeme po složkách (podobně jako pro T n ). Snadno ověříme, že (T m,n, T, +, ) je lineární prostor (ověřte axiomy!). Speciálně tak dostáváme prostor reálných matic R m,n, resp. komplexních matic C m,n. Pro nulovou matici budeme používat označení Θ. 3.3 Další příklady lineárních prostorů Množina polynomů P s operacemi definovanými bodově: Lineární prostor polynomů P ( x C)((p + q)(x) = p(x) + q(x)), ( x C)((αp)(x) = αp(x)), pro p, q P a α C, je lineární prostor nad C. Dále zavedeme symbol pro množinu polynomů stupně nejvýše n 1: P n := {p P St p < n}, n N 0. Operace na P n definujeme stejně jako pro P (viz výše). Potom (P n, C, +, ) je lineární prostor (uvědomte si zejména, že P n je uzavřená vůči operacím + a )! Lineární prostor funkcí F

8 Dalším příkladem příkladem lineárního prostoru (nad C) je množina funkcí F := {f : C C}, vybavená operacemi + a, které definujeme opět bodově: pro f, g P a α C. ( x C)((f + g)(x) = f(x) + g(x)), ( x C)((αf)(x) = αf(x)), Pro libovolné n N 0 platí inkluze P n P F. Neobvyklý lineární prostor Položme V = R + (0, ) a T = R. Definujme operace a na následovně: a b := ab, α a := a α, pro libovolné a, b R + a α R. Potom (R +, R,, ) je lineární prostor. Co není linerní prostor Množina nenulových funkcí F \ {0} není LP. R 2 s operací + definovanou křížem : (a, b) + (c, d) = (a + d, b + c), není LP. Konečný lineární prostor Lineární prostor (nad nekonečným tělesem) má buď jediný prvek, nebo jich má nekonečně mnoho (Proč?). Jednobodový LP, tzv. triviální, obsahuje pouze nulový vektor θ. Tedy neexistuje dvouprvkový LP (nad nekonečným tělesem).

9 3.4 Lineární podprostor Definice 4. Nechť V je LP nad tělesem T, P V. Říkáme, že P je podprostor prostoru V, právě když platí: Lineární podprostor 1. ( x, y P )(x + y P ). 2. ( α T )( x P )(αx P ). Značíme P V. Věta 5. Nechť V je LP nad T, P V. Potom P se zúžením operace sčítání vektorů + na P P a operace násobení vektorů skalárem na T P je LP. Důkaz. Označme zúžení operací +, na P V jako + P, P. Ověříme podmínky pro to, aby (P, T, + P, P ) byl lineárním prostorem: Uzavřenost operací + P : P P P a P : T P P plyne z definice podprostoru, jelikož axiomy LP platí pro každé α, β T a a, b, c V, platí i pro každé a, b, c P V, nulový vektor LP V leží i v P, neboť pro každé a P platí 0 a = θ a P je uzavřený na násobení prvkem z tělesa. Cvičení: Buď V LP nad T, P V. Ověřte, že platí: Jednoduché vlastnosti podprostorů 1. θ P. 2. {θ} V a V V. 3. P 1 P P 1 V. Definice 6. Podprostory {θ} a V lineárního prostoru V nazýváme triviální podprostory. Podprostor P V, P V, nazýváme vlastním podprostorem V.

10 Příklady podprostorů V R 2 je podprostor přímka procházející počátkem. Např. P = {(x, y) R 2 x + 2y = 0}. Přímka, která neprochází počátkem, nemůže být podprostor. V R 3 je podprostor přímka nebo rovina procházející počátkem. Např. P 1 = {(x, y, z) R 3 x + 2y = 0 z = 0}, P 2 = {(x, y, z) R 3 x + 2y = 0}, P 3 = {(x, y, z) R 3 2x + y z = 0}. Rovina (či přímka), která neprochází počátkem, nemůže být podprostor. Např. množina {(x, y, z) R 3 2x + y z = 3} není prodprostor R 3! Další příklady podprostorů Polynomy v lineárním prostoru funkcí: P F. Polynomy stupně nejvýše n 1 v lineárním prostoru polynomů: P n P. Pro m n platí: P m P n. K ověření toho, zda je zadaná množina podprostorem nějakého LP, se často hodí následující tvrzení. Lineární podprostor - věta Věta 7. Buď V LP nad T, = P V. Potom P V, právě tehdy když platí: ( α T )( x, y P )(αx + y P ).

11 Důkaz. Dokážeme dvě implikace, neprázdná podmnožina P V je z definice podprostorem, pokud ( x, y P, α T )(x + y P αx P ). 1. ( ) Nechť P V, α T a x, y P. Z uzavřenosti na násobení skalárem plyne αx P, z uzavřenosti na součet pak i αx + y P. 2. ( ) Nechť pro každé α T a x, y P platí αx + y P. Položíme-li α = 1, dostáváme uzavřenost P na součet. Zvolíme-li y = θ, dostáváme uzavřenost P na násobení skalárem. Průnik (lib. počtu) podprostorů je podprostor. Průnik a sjednocení podprostorů Sjednocení podprostorů nemusí být podprostor. Věta 8. Buď {P α α A} neprázdný systém (A ) podprostorů V. Potom platí: P α V. Důkaz. Označme α A P := α A Zřejmě platí P V a také P (protože θ P α pro každé α A, tedy θ P ). Ověříme, že pro každé β T a x, y P platí βx + y P : Z definice P P α pro každé α A. Tedy pro libovolné β T platí P α. (x, y P ) ( α A)(x, y P α ) Pα V = ( α A)(βx + y P α ) (βx + y P ), což znamená, že P je podprostor. Příklad: Uvažujme množiny E 1 := R {0} {(x, 0) x R}, E 2 := {0} R {(0, y) y R}. Potom E i R 2, i = 1, 2, ale E 1 E 2 není podprostor R 2. Kdy sjednocení podprostorů podprostor? je

12 Na příkladu jsme viděli, že sjednocení podprostorů nemusí být podprostor. Sjednocení podprostorů je podprostorem pouze tehdy jsou-li prostory v inkluzi. Cvičení: Buďte P, Q podprostory LP V. Potom P Q V (P Q) (Q P ). podpro- Součet storů Definice 9. Buď V LP nad T. Jsou-li A V a B V, nazýváme jejich součtem množinu A + B := {a + b a A, b B}. Narozdíl od sjednocení, je součet podprostorů vždy podprostor. Věta 10. Buď V LP nad T, P V, Q V. Potom P + Q V. Důkaz. Součet P + Q je zřejmě neprázdný neboť θ P a θ Q, tedy θ = θ + θ P + Q. Nechť α T a x, y P + Q, přičemž x = a 1 + b 1, y = a 2 + b 2, kde a i P, b i Q pro i {1, 2}. Protože αx + y = α(a 1 + b 1 ) + (a 2 + b 2 ) = (αa 1 + a 2 ) + (αb 1 + b 2 ), }{{}}{{} P Q kde jsme využili faktu, že P i Q jsou podprostory, platí αx + y P + Q, tedy P + Q V. Příklad: Na příkladu s podprostory E 1 = R {0} a E 2 = {0} R si uvědomte, jaký je rozdíl mezi množinami E 1 E 2 a E 1 + E 2.