BCH kódy. Alena Gollová, TIK BCH kódy 1/27

Podobné dokumenty
8 Kořeny cyklických kódů, BCH-kódy

Generující kořeny cyklických kódů. Generující kořeny. Alena Gollová, TIK Generující kořeny 1/30

Charakteristika tělesa

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30

Cyklické kódy. Alena Gollová, TIK Cyklické kódy 1/23

Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy

grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa

Věta o dělení polynomů se zbytkem

[1] samoopravné kódy: terminologie, princip

Hammingovy kódy. dekódování H.kódů. konstrukce. šifrování. Fanova rovina charakteristický vektor. princip generující a prověrková matice

[1] Definice 1: Polynom je komplexní funkce p : C C, pro kterou. pro všechna x C. Čísla a 0, a 1,..., a n nazýváme koeficienty polynomu.

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...

4 Počítání modulo polynom

Hammingův odhad. perfektní kódy. koule, objem koule perfektní kód. triviální, Hammingův, Golayův váhový polynom. výpočet. příklad

1 Polynomiální interpolace

Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity)

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.

[1] samoopravné kódy: terminologie, princip

Cyklické kódy. Definujeme-li na F [x] n sčítání a násobení jako. a + b = π n (a + b) a b = π n (a b)

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Samoopravné kódy, k čemu to je

1 Řešení soustav lineárních rovnic

Pomocný text. Polynomy

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi.

1 Co jsou lineární kódy

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Soustavy linea rnı ch rovnic

Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Subexponenciální algoritmus pro diskrétní logaritmus

[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon).

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)

Matematika IV 10. týden Kódování

1 Mnohočleny a algebraické rovnice

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

1 Vektorové prostory.

Kódování Obsah. Reedovy-Solomonovy kódy. Radim Farana Podklady pro výuku. Cyklické kódy.

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

0.1 Úvod do lineární algebry

Vlastní čísla a vlastní vektory

1 Linearní prostory nad komplexními čísly

EUKLIDOVSKÉ PROSTORY

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s

Lineární algebra : Metrická geometrie

vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).

Kapitola 11: Lineární diferenciální rovnice 1/15

1 Soustavy lineárních rovnic

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.

0.1 Úvod do lineární algebry

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti

1 Mnohočleny a algebraické rovnice

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?

Matematická analýza ve Vesmíru. Jiří Bouchala

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Teorie informace a kódování (KMI/TIK)

Lineární algebra : Báze a dimenze

Soustavy lineárních rovnic a determinanty

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

Těleso racionálních funkcí

Vlastní číslo, vektor

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

10. DETERMINANTY " # $!

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Základní pojmy teorie množin Vektorové prostory

pochopení celé kapitoly je myšlenka, že těleso S lze považovat za vektorový prostor

14. přednáška. Přímka

Polynomy. Vlasnosti reálných čísel: Polynom v matematice můžeme chápat dvojím způsobem. 5. (komutativitaoperace )provšechnačísla a, b Rplatí

Kapitola 11: Vektory a matice:

SOUČIN MATIC A m n B n p = C m p, přičemž: a i1 b 1j +a i2 b 2j + +a in b nj = c ij, i=1 m, j=1 p. Např: (-2) = -3

ALGEBRA. Téma 5: Vektorové prostory

Operace s maticemi. 19. února 2018

Lineární algebra : Polynomy

Úvod. Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali

1 Báze a dimenze vektorového prostoru 1

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

7. Lineární vektorové prostory

Lineární algebra : Polynomy

Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty.

1 Determinanty a inverzní matice

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.

ANALYTICKÁ GEOMETRIE V ROVINĚ

Symetrické a kvadratické formy

DEFINICE Z LINEÁRNÍ ALGEBRY

ALGEBRA. 1. Pomocí Eukleidova algoritmu najděte největší společný dělitel čísel a a b. a) a = 204, b = 54, b) a = , b =

(Cramerovo pravidlo, determinanty, inverzní matice)

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR

19. Druhý rozklad lineární transformace


Transkript:

7. přednáška z algebraického kódování Alena Gollová, TIK 1/27

Obsah 1 Binární Alena Gollová, TIK 2/27

Binární jsou cyklické kódy zadané svými generujícími kořeny. Díky šikovné volbě kořenů opravuje kód předem daný počet chyb. Následující konstrukci vymysleli Bose a Ray-Chaudhuri (1960) a nezávisle na nich Hocquenghem (1959). Jedná se tedy o Bose-Chaudhuri-Hocquenghemovy kódy, odtud zkratka. Alena Gollová, TIK 3/27

Binární Definice BCH kód délky n nad Zp (kde p n) s plánovanou vzdáleností d (d n) je cyklický kód s generujícími kořeny β b, β b+1, β b+2,..., β b+d 2, kde β je prvek řádu n v nějakém tělese GF (p k ), b 1. Poznámky Kořeny tvoří d 1 po sobě jdoucích mocnin prvku řádu n. Pokud b = 1, mluvíme o BCH kódu délky n nad Zp v užším smyslu. Jeho generující kořeny jsou β, β 2, β 3,..., β d 1, kde β je prvek řádu n v nějakém tělese GF (p k ). Alena Gollová, TIK 4/27

Binární Poznámky - pokračování Protože p n, těleso GF (p k ) s prvkem β řádu n existuje. Příklad Volba k = ϕ(n) zafunguje nad každým Zp. Nejmenší volba pro dané p je k = r(p) v grupě Z n. Cyklický Hammingův (7, 4)-kód má v tělese GF (8), T = Z2[x]/(x 3 +x +1) = {aα 2 +bα+c, a, b, c Z2, α 3 = α+1}, generující kořeny α, α 2 a α 4 = α 2 + α, přitom r(α) = 7. Jedná se o BCH kód s plánovanou vzdáleností d = 3. Alena Gollová, TIK 5/27

Binární Minimální vzdálenost BCH kódu Věta BCH kód K délky n nad Zp s plánovanou vzdáleností d má minimální Hammingovu vzdálenost kódu d H (K) d. Aneb: BCH kód s plánovanou vzdáleností d (tj. s d 1 kořeny) objevuje d 1 chyb a opravuje [ d 1 2 ] chyb. Důkaz Kontrolní matice H nad GF (p k ) má d 1 řádků. Lze dokázat, že libovolných d 1 sloupců v H je lineárně nezávislých. Determinant každé čtvercové podmatice řádu d 1 v matici H lze totiž převést na Vandermondův determinant pro mocniny prvku β. Jelikož β i β j pro 0 i j n 1 (neboť r(β) = n), je Vandermondův determinant nenulový. Alena Gollová, TIK 6/27

Minimální vzdálenost BCH kódu Binární Lemma Pro prvky a 1,..., a n v tělese T platí: 1 1... 1 a 1 a 2... a n det a1 2 a2 2... an 2 = (a i a j ).. i>j a1 n 1 a2 n 1... an n 1 Determinant se nazývá Vandermondův determinant řádu n pro prvky a 1,..., a n a je nenulový právě, když jsou tyto prvky různé. Alena Gollová, TIK 7/27

Binární Minimální vzdálenost BCH kódu Příklad Použijeme naše GF (8) = Z2[x]/(x 3 + x + 1) k vytvoření binárního BCH kódu K délky 7 opravujícího dvě chyby, tedy BCH kódu s plánovanou vzdáleností d = 5. Kód K má generující kořeny α, α 2, α 3 = α + 1, α 4 = α 2 + α. Kódové polynomy jsou polynomy nad Z2, stačí tedy požadovat kořeny α, α + 1. Generující polynom kódu bude: g(z) = m α (z)m α+1 (z) = (z 3 + z + 1)(z 3 + z 2 + 1) = z 6 + z 5 + z 4 + z 3 + z 2 + z + 1 Jedná se o opakovaní kód délky 7 a skutečná d H (K) = 7. Kód opravuje dokonce tři chyby. Alena Gollová, TIK 8/27

Binární Otevřené problémy BCH kód s plánovanou vzdáleností d může mít minimální vzdálenost d H (K) > d. Je otevřeným problémem, jak určit skutečnou minimální vzdálenost BCH kódu. Neví se ani, jak poznat, pro které dvojice n a d (nad Zp) nastane rovnost d H (K) = d. Další otevřený problém je určení počtu informačních a kontrolních znaků pro. Tento problém je částečně vyřešen pro kódy délek n = p k 1. Alena Gollová, TIK 9/27

Binární Dimenze BCH kódu Situace Máme BCH kód K délky n nad Zp (v užším smyslu) s plánovanou vzdáleností d s generujícími kořeny β, β 2, β 3,..., β d 1, kde β je prvek řádu n v nějakém tělese T charakteristiky p. Chceme zjistit, kolik informačních a kolik kontrolních znaků má BCH kód K. Počet informačních znaků (aneb dimenze kódu K) se značí k, počet kontrolních znaků se značí m. V této části budeme značit těleso T jako GF (p s ). T = Zp[x]/q(x), kde q(x) je ireducibilní nad Zp stupně s, T = {a(α) Zp[x], st(a(α)) s 1, q(α) = 0}. Alena Gollová, TIK 10/27

Binární Dimenze BCH kódu Situace - pokračování Známe-li generující kořeny cyklického kódu, umíme z nich najít generující polynom g(z) a kontrolní matici H. K výpočtu dimenze kódu využijeme dvou známých vztahů: st(g(z)) = n k = m H nad Zp má n k = m (lineárně nezávislých) řádků Kontrolní matice H nad T má d 1 řádků obsahujících mocniny kořenů. Každý prvek z T (polynom stupně s 1) nahradíme sloupcem jeho koeficientů, vyškrtáme řádky, které jsou lineární kombinací ostatních, a získáme H nad Zp. Odtud počet kontrolních znaků m s(d 1), kde s je dáno volbou tělesa GF (p s ). Alena Gollová, TIK 11/27

Dimenze BCH kódu Binární Tvrzení Nechť K je BCH kód délky n nad Zp s plánovanou vzdáleností d, pak pro počet informačních znaků k = dim K platí odhad: k n s(d 1), kde s = r(p) v grupě Z n Poznámka Tento odhad může být poměrně hrubý. Kódové polynomy jsou celočíselné nad Zp, mají tudíž s kořenem c T také kořeny c p, c (p2), atd. Tudíž se může stát, že v BCH kódu nemusíme některé z kořenů β, β 2, β 3,..., β d 1 požadovat (budou tam automaticky). Kontrolní matice H nad T pak bude mít méně než d 1 řádků. Alena Gollová, TIK 12/27

Binární Binární Tvrzení Binární cyklický kód délky n, kde 2 n, s generujícími kořeny β, β 3, β 5,..., β 2t 1, kde β je prvek řádu n v nějakém GF (2 s ), je binární BCH kód s plánovanou vzdáleností d = 2t + 1. Každé sudé číslo je tvaru 2 j i, kde i je liché. Charakteristika tělesa je 2, tudíž stačí požadovat liché mocniny prvku β. Tvrzení Binární BCH kód s t kořeny (= t po sobě jdoucími lichými mocninami prvku β) opravuje aspoň t chyb. Alena Gollová, TIK 13/27

Binární Binární Tvrzení Binární BCH kód délky n s plánovanou vzdáleností d = 2t + 1 má odhad pro počet informačních znaků: k n s d 1 2 = n st, kde s = r(2) v grupě Z n To už je poměrně dobrý odhad počtu informačních znaků, někdy dokonce naprosto přesný (viz níže). Tvrzení Binární BCH kód délky n = 2 s 1 s plánovanou vzdáleností d = 2t + 1, kde d < 2 s 2 + 2 ( x značí horní celou část z x), má právě k = n s d 1 2 = n st informačních znaků. Alena Gollová, TIK 14/27

Binární Binární Poznámka k důkazu Nechť β je primitivní prvek tělesa GF (2 s ). Lze dokázat, že minimální polynomy prvků β, β 3, β 5,..., β 2t 1 jsou navzájem různé a že mají stupeň s, pokud ovšem 2t 1 = d 2 < 2 s 2. Tudíž g(z) = t i=1 m β2i 1(z) má stupeň m = s t. Příklad Popište parametry binárních BCH kódů délky 31 = 2 5 1. Pro d < 2 5 2 + 2 = 10, aneb pro kódy opravující až čtyři chyby, bude cena za opravování každé chyby s = 5 kontrolních znaků. Např. kód opravující dvě chyby má informační poměr k : n = 21 : 31. Alena Gollová, TIK 15/27

Binární Primitivní Definice nad Zp délky n = p s 1 se nazývají primitivní BCH kódy. Za jejich kořeny totiž můžeme volit mocniny primitivního prvku v tělese GF (p s ). Poznámka Vždy lze zvolit ireducibilní polynom q(x) nad Zp stupně s tak, aby jeho kořen α byl primitivním prvkem tělesa T = Zp[x]/q(x) (jehož prvky zapisujeme jako polynomy stupně nejvýše s 1 v proměnné α). Provedeme-li tuto konstrukci tělesa GF (p s ), pak generující kořeny budou mocninami prvku α. Alena Gollová, TIK 16/27

Binární Primitivní Pokračování Primitivní s jediným generujícím kořenem α v tělese T : Generující polynom g(z) = m α (z) = q(z) Kontrolní matice H = ( α n 1 α n 2... α 1 ) nad T obsahuje všechny nenulové prvky tělesa T. Tudíž kontrolní matice H nad Zp má ve sloupcích všechny nenulové s-tice nad Zp. Poznámka Každé dva sloupce matice H nad Zp jsou lineárně nezávislé právě, když pracujeme nad Z2. Alena Gollová, TIK 17/27

Binární Primitivní binární Tvrzení Binární BCH kód délky n = 2 s 1 s jedním kořenem je cyklický Hammnigův kód o s kontrolních znacích (tedy perfektní kód pro jednonásobné opravy). Binární délky n = 2 s 1 zobecňují Hammingovy kódy. Mají-li t generujících kořenů (= t po sobě jdoucích lichých mocnin primitivního prvku), pak: opravují t chyb mají velmi dobrý informační poměr (malou redundanci) mají vypracované dekódovací metody, jak opravovat vícenásobné chyby pomocí kořenů jsou to jedny z nejlepších kódů pro délky do n. = 10 5 Alena Gollová, TIK 18/27

Binární Opravování jedné chyby nad Z2 K je binární BCH kód délky n s generujícím kořenem β v GF (2 s ). Bylo vysláno slovo v K a přijato slovo w = v + ē. Když w(β) 0, pak při přenosu došlo k chybě. Pokud došlo k jedné chybě, tak w(z) = v(z) + z i a w(β) = 0 + β i. Dosadíme tedy generující kořen: w(β) = syndromový polynom v β stupně nejvýše s 1 = s 1 Podíváme se do tabulky mocnin prvku β, pro jaké i je s 1 = β i (exponent i je určen jednoznačně, neboť r(β) = n a 0 i n 1). Tudíž chyba je v i-té mocnině, opravíme v(z) = w(z) z i. Alena Gollová, TIK 19/27

Binární Příklad Cyklický Hammingův (7, 4)-kód má generující kořen α v GF (8), T = Z2[x]/(x 3 +x +1) = {aα 2 +bα+c, a, b, c Z2, α 3 = α+1}. Opravíme přijaté slovo w = (0 1 1 0 1 1 1). w(α) = α 5 + α 4 + α 2 + α + 1 = = α 2 + α = α 4, k výpočtu potřebujeme tabulku pro mocniny α v tělese T. Poslané slovo je v = (0 1 0 0 1 1 1). Alena Gollová, TIK 20/27

Binární Opravování jedné chyby nad Zp Buď nyní p 3. K je BCH kód délky n nad Zp s generujícími kořeny β a β 2 v GF (p s ). Pokud došlo k jedné chybě, tak w(z) = v(z) + a z i pro v(z) K, a Zp. Potřebujeme zjistit a, i. Dosadíme tedy oba generující kořeny: w(β) = 1. syndromový polynom v β stupně nejvýše s 1 = s 1 w(β 2 ) = 2. syndromový polynom v β stupně nejvýše s 1 = s 2 Podíváme se do tabulek mocnin prvků β a β 2 a najdeme všechny možnosti, jak napsat syndromy ve tvaru s 1 = a 1 β i 1, s 2 = a 2 (β 2 ) i 2. Teorie zaručuje, že bude jediná možnost společná oběma kořenům. Tato možnost určuje chybový polynom e(z) = a z i, opravíme v(z) = w(z) a z i. Alena Gollová, TIK 21/27

Binární Příklad BCH kód nad Z3 délky 8 s generujícími kořeny i, i + 1 v GF (9), kde T = Z3[x]/(x 2 + 1) = {a i + b, a, b Z3, i 2 = 1}, objevuje tři chyby a jednu chybu opravuje. Jeho kořeny jsou ±i, ±i + 1, což jsou tyto mocniny primitivního prvku i + 1: (i + 1) 1 = i + 1, (i + 1) 2 = i, (i + 1) 3 = i + 1 a ještě (i + 1) 6 = i. Opravíme přijaté slovo w = (0 0 2 1 1 0 1 2). w(i + 1) = 2(i + 1) 5 + (i + 1) 4 + (i + 1) 3 + (i + 1) + 2 = = = i + 1 = 1(i + 1) 1 = 2(i + 1) 5 w(i) = 2 i 5 + i 4 + i 3 + i + 2 = = 2 i = 2 i 1 = 2 i 5 = 1 i 3 = 1 i 7 K výpočtu potřebujeme tabulky mocnin prvků i + 1 a i v tělese T. Jediná společná možnost určuje chybový polynom e(z) = 2 z 5. Poslané slovo je v = (0 0 0 1 1 0 1 2). Alena Gollová, TIK 22/27

Binární Opravování dvou chyb nad Z2 K je binární BCH kód délky n s generujícími kořeny β a β 3 v GF (2 s ), tudíž opravuje dvě chyby. Došlo-li ke dvěma chybám, tak w(z) = v(z) + z i + z j, kde i j. Dosadíme tedy oba generující kořeny a spočteme syndrom(y): w(β) = s 1 = β i + β j w(β 3 ) = s 3 = (β 3 ) i + (β 3 ) j = β 3i + β 3j Potřebujeme ze znalosti prvků s 1, s 3 T určit čísla i, j. Stačí určit β i, β j, neboť r(β) = n a 0 i, j n 1, takže čísla i, j jednoznačně dohledáme v tabulce pro mocniny prvku β. Alena Gollová, TIK 23/27

Binární Opravování dvou chyb nad Z2 - pokračování s1 3 = (β i + β j ) 3 = β 3i + β 2i β j + β i β 2j + β 3j = s 3 + β i β j s 1 β i β j = (s1 3 s 3) s1 1 Známe součet a součin obou prvků, pak tyto prvky jsou kořeny polynomu L(x) = x 2 x + = (x β i )(x β j ). Ze syndromů spočteme koeficienty: = s 1, = (s 3 1 s 3) s 1 1 Dosazováním prvků z tělesa T nalezneme kořeny L(x). (Pozn.: Vzorec na kořeny kvadrátu nad tělesem charakteristiky 2 nefunguje, protože tam (a + b) 2 = a 2 + b 2.) Polynom L(x) se nazývá lokátor chyb. Alena Gollová, TIK 24/27

Binární Opravování dvou chyb nad Z2 - pokračování V praxi nevíme dopředu, kolik je chyb v přijatém slově w. U binárního BCH kódu opravujícího dvě chyby postupujeme takto: Spočteme syndrom s T = H w T nad tělesem T dosazením kořenů: ( ) ( ) s T w(β) s1 = w(β 3 = ) Pokud s = (0 0), pak prohlásíme w za bezchybné. Pokud s = (s 1 s1 3), kde s 1 0, pak je ve w jedna chyba. Pokud s = (s 1 s 3 ), kde s 1 0 a s 3 s1 3, pak určíme lokátor L(x). Má-li L(x) dva různé kořeny, pak jsou ve w dvě chyby. Nemá-li L(x) dva kořeny, pak je ve w více chyb (v tomto případě chyby neopravíme). s 3 Alena Gollová, TIK 25/27

Binární Opravování více chyb nad Z2 K je binární BCH kód délky n s generujícími kořeny β, β 3,..., β 2t 1 v GF (2 s ), tudíž opravuje t chyb. Došlo-li k r t chybám, tak w(z) = v(z) + z i 1 + + z ir. Spočteme syndrom s T = H w T nad tělesem T dosazením kořenů: s T = w(β) w(β 3 ) : w(β 2t 1 ) = r j=1 βi j r j=1 β3i j : r j=1 β(2t 1)i j = s 1 s 3 : s 2t 1 Hledáme prvky β i j, pro 1 j r, a známe součty jejich lichých mocnin. Pomocí Newtonových vzorců lze nalézt lokátor L r (x) stupně r, jehož kořeny jsou právě hledané prvky. Alena Gollová, TIK 26/27

Binární Opravování více chyb nad Z2 - pokračování Problémem je, že nevíme dopředu, kolik je chyb ve slově w. Musíme tedy počítat lokátory L r (x) postupně pro všechna 1 r t, dokud nenajdeme takový, který má r různých kořenů. Pokud takový lokátor nenajdeme, pak je ve slově w více než t chyb a opravovat ho nebudeme. (Popsali jsme částečné dekódování.) Alena Gollová, TIK 27/27