Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky a ii které mají oba idexy stejé tvoří hlaví diagoálu matice Druhy matic čtvercová matice řádu je matice typu / obdélíková matice typu m/ je matice pro kterou platí m traspoovaá matice k matici je matice která vzike z matice záměou řádků za sloupce při zachováí jejich pořadí; začíme ji jedotková matice řádu je čtvercová matice která má a hlaví diagoále samé jedičky a všude jide samé uly; začíme ji I případě I stupňová matice je matice jejíž každý ásledující řádek má a začátku alespoň o jedu ulu více ež řádek předchozí Operace s maticemi Součtem rozdílem matic a které jsou stejého typu je matice C téhož typu pro jejíž prvky platí c a ± b PíšemeC C Součiem čísla Píšeme k k R a matice je matice téhož typu pro jejíž prvky platí b k a Součiem matice typu m/p a matice typu p/ je matice C typu m/ pro jejíž prvky platí p r c a b a b r jde o skalárí souči řádku i matice a sloupce j matice Píšeme k ik kj i j C Souči matic eí komutativí tedy obecě
Příklad Jsou dáy matice Vypočítejte matice C E I D Řešeí C D Příklad Určete matici tak aby platilo je-li Řešeí Nejprve vyjádříme matici ze zadaé rovice Dále provádíme operace s maticemi Pro ásobeí matic je možé použít ásledující pomůcku do tabulky která má pole apíšeme vpravo ahoru druhého čiitele v ašem příkladě matici vlevo dolů prvího čiitele v ašem příkladě matici Vpravo dole pak bude výsledá matice jejíž prvky získáme jako skalárí součiy řádků a sloupců a jejichž průsečících prvek výsledé matice leží
Rovici vyhovuje matice Hodost matice Řádky matice můžeme považovat za vektory zapsaé pod sebou Důležitou charakteristikou matice je číslo které vyjadřuje počet takto chápaých vektorů které jsou lieárě ezávislé Hodost matice udává maximálí počet lieárě ezávislých řádků této matice Hodost matice začíme symbolem h Dvě matice které mají stejou hodost se azývají ekvivaletí a píšeme Pozámka Vzhledem k tomu že platí h h můžeme v defiici ahradit pojem řádek pojmem sloupec Například hodost h matice je zřejmě protože a řádek jsou lieárě ezávislé a resp řádek dostaeme z řádku vyásobeím číslem - resp Většiou však eí možé hodost matice určit přímo ze zadaé matice K výpočtu hodosti pak používáme ásledující větu Věta o hodosti stupňové matice Hodost matice ve stupňovém tvaru je rova počtu eulových řádků této matice počtu řádků které eobsahují samé uly Při určováí hodosti musíme tedy matici ejprve upravit a stupňový tvar K tomu používáme tzv ekvivaletí úpravy Jsou to ásledující úpravy které eměí hodost matice traspoováí matice výměa řádků ásobeí řádku eulovým reálým číslem k přičteí k-ásobku k ěkterého řádku k jiému řádku vyecháí řádku který obsahuje samé uly vyecháí řádku který je lieárí kombiací ostatích řádků Uvedeé úpravy je možé bez změy hodosti provádět i se sloupci
Příklad Určete hodost matice Řešeí bychom určili hodost matice převedeme ji výše uvedeými úpravami a ekvivaletí stupňovou matici Postupujeme přitom ejčastěji tak že v prvím kroku vyulujeme prví sloupec pod hlaví diagoálou Je výhodé zadaou matici upravit ejprve a tvar kdy prvek a místě ± a oho dosáheme výměou řádků ebo přičteím ásobku vhodého řádku k prvímu řádku Nulové prvky pak vytváříme přičítáím ásobků prvího řádku k dalším řádkům -- b Postup dále opakujeme pro druhý sloupec s tím že prví řádek zůstává beze změy a klíčovým prvkem pomocí ěhož ulujeme ostatí je prvek a - -- edy hodost matice h Pozámka Pomocí hodosti matice je možé rozhodout o lieárí závislosti či ezávislosti vektorů Zapíšeme-li k vektorů do řádků matice pak tyto vektory jsou lieárě ezávislé právě když hodost této matice je k Pokud hodost matice je meší ež k jsou vektory lieárě závislé Iverzí matice Nechť je čtvercová matice řádu Matice pro kterou platí I se azývá iverzí matice k matici udeme ji začit Čtvercovou matici řádu azveme regulárí právě když h Z ásledující věty vyplývá že iverzí matice pokud existuje je určea jedozačě Existece a jedozačost iverzí matice Ke čtvercové matici existuje iverzí matice právě tehdy když matice je regulárí Matice je pak určea jedozačě Iverzí matici můžeme určit dvěma způsoby Prví z ich je založe a ekvivaletích úpravách matic a I
Postupujeme tak že apíšeme vedle sebe matici a jedotkovou matici I stejého řádu akto vytvořeou dvojmatici I upravujeme pomocí ekvivaletích úprav tak aby a místě matice vzikla jedotková matice Napravo od í pak automaticky vzike matice Metoda vychází z toho že po vyásobeí systému I maticí dostaeme vztah I I Stručě lze teto postup zapsat takto I I Druhý způsob určováí iverzích matic pomocí determiatů a adjugovaé matice bude popsá později Příklad Určete iverzí matici k matici Řešeí / / - Iverzí matice