Příklady k předášce 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 06 9--6
Schurův doplěk - odvozeí Automatické řízeí - Kyberetika a robotika Obecě ( + l) ( + l) ( + l) ( + m) ( + m) ( + m) I 0 I A B I ( I A) B C D l 0 m C ( I A) I I I A 0 = 0 C ( I A) B + D = takže I A B I A 0 det det C D = 0 C ( I A) B + D ( ) ( ) det ( ) = det I A C I A B + D Speciálě pro m=, l = ( ) ( ) ( ) = det I A C I A B + D Michael Šebek Pr-ARI-03-06
Nuly přeou Automatické řízeí - Kyberetika a robotika Pro přeo G ( ) = ( + ) ( + ) pólem = a ulou z = porovejme odezvy Sytém v klidu a vtupí igál ut () = () t u () = + y () = = + t + + yt () = e + () t odezva má obvyklou přirozeou a uceou ložku zt t Sytém v klidu a vtupí igál ut ( ) = e = e u ( ) = ( + ) + y () = = + + + yt () = uceá ložka chybí a tedy vtupí frekvece je blokováa Stejý vtupí igál a ještě u(0 ) = 0, y(0 ) = + + y () = u () + y(0) = = 0 + + + + + výtup je ulový při eulovém vtupu Michael Šebek Pr-ARI-03-05 3 t e
Příklad: Blokováí vtupu Automatické řízeí - Kyberetika a robotika Blokováí iuovky Nepřeé kráceí Michael Šebek Pr-ARI-03-05 4
Automatické řízeí - Kyberetika a robotika Klaické pecifikace a G () = = Čaová kotata (time cotat) = převráceá + a + hodota záporě vzatého reálého pólu 3 3 ytém e utálí e za 3-4 h ( ) = e = e = 0.950 4 4 za doáhe cca 63% h ( ) = e = e = 0.987 Vzorec Doba áběhu (rie time) = ča mezi délka přechodového jevu, ča, za který e dotae do blízkoti utáleé hodoty Vzorec: Sytém. řádu: čaová kotata a doba áběhu h ( ) = e = e= 0.63 r = a. y = 0. a y = 0.9 3 4 5 Michael Šebek Pr-ARI-03-05 5 t r t 0.9 63% 0.5 0. 0 0 r =. % = 4 0.9 = e e = 0. t = l 0..3 t = t t t 0. = e e = 0.9 t = l 0.9 0.
Sytém. řádu - doba utáleí (regulace) Automatické řízeí - Kyberetika a robotika Pro přeo a G () = = + a + a = je odezva a jedotkový kok e at Doba utáleí (regulace) : je ča, za který e odezva přiblíží utáleé a hodotě a vzdáleot p, tedy e = p 4 3 a Z toho A čitatel je e a = p a = l p = l a p >> p=0.0; k = -log(p)= 4.605 >> p=0.0; k = -log(p)= 3.90 >> p=0.03; k = -log(p)= 3.5066 >> p=0.05; k = -log(p)=.9957 4 = = a 4 Michael Šebek Pr-ARI-03-05 6
Požadavky a odezvu pomocí polohy pólu pro. řád Automatické řízeí - Kyberetika a robotika Pro ytém. řádu vyjádříme požadavky a čaovou odezvu polohou pólu: Požadovaá doba áběhu. r < r = a< Požadovaá doba utáleí r. = a< r k% < = a< k% = a< Požadovaá doba áběhu a utáleí oučaě. k% < r < r < mi, r. k % < mi, r Michael Šebek Pr-ARI-03-05 7
Příklad -. řád Automatické řízeí - Kyberetika a robotika 0 Michael Šebek Pr-ARI-03-05 8
. řád Automatické řízeí - Kyberetika a robotika Vliv tlumeí a čaový průběh ζ = 0 0. 0. 0.3 0.4 0.5 0.6 0.7 0.8 0.9.0 ζ = 0 0. 0. 0.3 0.4 0.5 0.6 0.7 0.8 0.9.0 0 Vliv tlumeí a přirozeé frekvece etlumeého ytému a polohu pólů ω [ ) =, ζ 0, ζ = 0 ζ = 0.5 ζ = 0. ζ = 0. ζ = 0 ζ = 0.8 ζ = ζ ζ ζ = ω = 0 ζ = 0 ω = 0 Michael Šebek Pr-ARI-03-05 9
. řád 0 Automatické řízeí - Kyberetika a robotika čatým požadavkem zákazíka je maximálí překmit. e i obvykle převádíme a požadovaé tlumeí a to pomocí vzorečku z obrázku ebo z grafu ζ = ζ = 0 ζ = 0. ζ = 0. ζ = 0.3 ζ = 0.4 ζ = 0.5 ζ = 0.6 ζ = 0.7 ζ = 0.8 ζ = 0.9 ζ =.0 %OS % 00 l(%os 00) π + l (%OS 00) OS = e ζπ ζ Pozor: fukce je kleající edy překmit max. x zameá >> x=0:.0: >> plot(x,00*exp(-pi.*x./qrt(-x.^))) tlumeí mi. f(x) Vzorec platí pro podtlumeý ytém. Blízko meze aperiodicity a a í přetává platit 5% 0.7 ζ Michael Šebek Pr-ARI-03-05 0
. řád Automatické řízeí - Kyberetika a robotika Podtlumeý ytém. řádu má póly = σ ± jω = ζω ± jω ζ, d ζ ( 0,) r.8 ω 0 Doba utáleí je % % = = takže tejou ζω σ dobu utáleí mají ytémy, e tejými reálými čátmi pólů k k k k = 4.6, k = 4, % % = 3.5, k = 3 3% 5% coθ = ζ Okamžik prvého maxima je p takže ho mají tejý ytémy e tejými imagiárími čátmi pólů π π = = ω ζ ωd ζ ζ p < p < Stejé tlumeí a tedy tejý překmit mají ytémy póly ležícími a přímkách θ = procházejících počátkem pod úhlem coθ arccoζ = ζ % OS < % OS ζ > ζ Michael Šebek Pr-ARI-03-05
Požadavky a odezvu pomocí polohy pólu: Řád Automatické řízeí - Kyberetika a robotika Pro ytém. řádu vyjádříme požadavky a čaovou odezvu polohou pólů: Požadovaá doba áběhu: Velmi přibližě < = ω > Požadovaá doba utáleí k% <, = σ < Okamžik prvího maxima r r,,.8 π < = ω > p p, d = σ ± jω = ζω ± jω ζ r = σ k% <, d p,,.8 = ω > π = ωd > p r Michael Šebek Pr-ARI-03-05
Automatické řízeí - Kyberetika a robotika Požadavky a odezvu pomocí polohy pólu: Řád Pro ytém. řádu vyjádříme požadavky a čaovou odezvu polohou pólů: Požadovaý maximálí překmit l ( pmax 00) % OS < pmax ζ > ζmi = π + l ( p 00) σ max = σ ± jω = ζω ± jω ζ, d θ < arccoζ, > ζmi θ < arccoζ mi, ω mi ypické jou kombiovaé požadavky, apř. Požadovaý maximálí překmit a oučaě maximálí doba utáleí ( < ) ( % OS < p ) k < max ( θ < arccoζ ) %, mi θ < arccoζ k % >, mi θ Michael Šebek Pr-ARI-03-05 3
. řád Automatické řízeí - Kyberetika a robotika rote frekvece, ale obálka zůtává tejá 5 4 3 kleá obálka, ale frekvece zůtává tejá 0 σ 3 4 5 4 3 ω d 5 rote frekvece, ale překývutí je tejé ζ = + ω σ = kot. d 4 3 Michael Šebek Pr-ARI-03-05 4
Podtlumeý ytém. řádu Automatické řízeí - Kyberetika a robotika Skoková odezva podtlumeého ytému. řádu ζ < ( ) ω k k + k3 ζ + ζω + ω + ζω + ω + ζω + ω ζ h () = = + = ( + ζω ) ζ ω ζ ( ) ( ) ( ) + ζω + ω ζ ζ + ζω + ω ( ζ ) = ( ω ζ ϕ) ζωt ht ( ) = e i t+ ζ ζ ζω t = e coω ζ t+ iω ζ t ζ ζ ζωt = e co( ω ) ζ t φ ζ ζ + ζω + ω ζ ( ) ( ) ζ ϕ = arcco ζ, φ = arctg ζ Michael Šebek Pr-ARI-03-03 5
Doba prvího maxima - odvozeí Automatické řízeí - Kyberetika a robotika Najdeme ča, kdy je poprvé derivace kokové odezvy = 0 Derivaci výhodě vypočteme v L-traformaci ω ω ζ ω ζ L { h () t } = h() = = + ζω + ω + ζω + ω ζ ( ) ( ) ζ < ht ω ζω ( ) = e t iω 0 ζ t ω ζ t= π ζ = 0 t = 0 = t = ω ζ π p = ω π ζ Michael Šebek Pr-ARI-03-05 6
Překmit - odvozeí Automatické řízeí - Kyberetika a robotika Z defiice je Přitom hmax h( ) % OS = 00 h( ) ζπ ζ h = h ( ) = ht () = e coπ + iπ = + e ζ h( ) = ζ ζ max p ζπ ζ < akže po doazeí ζπ ζ % OS = e 00 a z toho opačě ζ = ( OS ) ( OS ) l % 00 π + l % 00 Michael Šebek Pr-ARI-03-05 7
Doba utáleí pro. řád - odvozeí Automatické řízeí - Kyberetika a robotika Muíme ajít ča, kdy koková odezva doáhe pá ±% kolem utáleé hodoty a zůtae v ěm Amplituda (obálka) tlumeé iuovky doáhe 0.0, když ζ ζ e ζω t = 0.0 o je velmi kozervativí odhad, eboť předpokládá, že v čae t (okamžiku doažeí páma utáleí) bude právě t Výpočtem zjitíme, že e při změě [ 0, 0.9] l ( 0.0 ζ ) [ 3.9, 4.74] ζ Dohoděme e a odhadu ezávilém a tlumeí ( ζ ) l 0.0 = ζω ( ) co ω ζ φ = ζ < 4 = ζω Michael Šebek Pr-ARI-03-05 8
Doba áběhu pro. řád Automatické řízeí - Kyberetika a robotika Vztah mezi dobou áběhu a tlumeím elze ajít aalyticky Potupým doazováím růzých hodot do a měřeím r dotaeme graf Polyomiálí aproximací (fce polyfit v Matlabu) lze dotat třeba vztahy (Nie) r = ζ ζ + ζ + ω 3.76 0.47.039 3 ( ) ( ) ( ) ζ = 0.5 ω 0.883 ω +.504 ω.738 r r r ζ ht () = e ζω t coω ζ t+ iω ζ t ζ ζ < Někteří (Frakli) požívají velmi přibližý vzorec.8 zíkaý pro průměrou hodotu ζ = 0.5 r ω (opravedlěý je ázorem, že e t v záviloti a ζ moc eměí ) Dokoce i defiice e liší. Někdo používá dobu 0%-00% pro podtlumeé, 5%-95% pro kriticky tlumeé ad 0%-90% pro přetlumeé ytémy. řádu Michael Šebek Pr-ARI-03-05 9
Vliv dalších pólů Domiatí póly Automatické řízeí - Kyberetika a robotika bc A B + C D y () = = + + a b c + + + ( + + )( + ) a b c + A=, B=, C =, D= c ca c a ca bc b c + b ca c + b ca c + b ca lim A =, c lim B=, lim C = a, c lim D = 0 c c c y () = + + y () = c ( + + )( + c) Michael Šebek Pr-ARI-03-05 0
Příklad domiatí póly Automatické řízeí - Kyberetika a robotika Můžeme zaedbat reálý pól v těchto přeoech? = 45.4 ( + 4+ 4.54)( + 0) = 4.54 + 4+ 4.54 =4.54/(^+4*+4.54) =45.4/(+0)/(^+4*+4.54) =73.66/(+3)/(^+4*+4.54) tep=partial(/) [omega,dzeta,omegad,igma,a,b,mag,phirad,phideg]... =ecorder(tep()) tep=partial(/) [omega,dzeta,omegad,igma,a,b,mag,phirad,phideg]... =ecorder(tep(3)) tep=partial(/) [omega,dzeta,omegad,igma,a,b,mag,phirad,phideg]... =ecorder(tep(3)) t y( t) =.09e co(4.53t 3.8 ) y ( t) =.9e co(4.53t 53.34 ) 0. 9e t 0t t 3t ( ) = 0.7e co(4.53t+ 86.63 ). e y t = 73.66 ( + 4+ 4.54)( + 3) domiatí póly Michael Šebek Pr-ARI-03-05
Příklad: Vliv přidaé uly Automatické řízeí - Kyberetika a robotika ( + )( + ) Přeo je aperiodický a tedy odezva a kok emá překmit y tep () = = + + ( + )( + ) + + t t tep () = + + y t e e 3 + ( + )( + ) ( + )( + ) Přidáme-li ulu 3 + ( + )( + ) pak odezva a kok překmit má 3 + () = = + ( + )( + ) + + t t tep () = + Obecě I odezva aperiodického přeou (tj. reálými póly) může mít vlivem ul koečý počet kmitů! Nemůže ale kmitat do ekoeča, k tomu je třeba periodický přeo, tj. dvojice komplexě družeých pólů. y tep y t e e Michael Šebek Pr-ARI-03-05