1 Uzavřená Gaussova rovina a její topologie

Podobné dokumenty
5. Posloupnosti a řady

6. Posloupnosti a jejich limity, řady

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0

Spojitost a limita funkcí jedné reálné proměnné

Matematická analýza I

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

Přednáška 7, 14. listopadu 2014

Masarykova univerzita Přírodovědecká fakulta

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost

Znegujte následující výroky a rozhodněte, jestli platí výrok, nebo jeho negace:

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

P. Girg. 23. listopadu 2012

Petr Šedivý Šedivá matematika

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

3. Lineární diferenciální rovnice úvod do teorie

Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti

ŘADY Jiří Bouchala a Petr Vodstrčil

a logaritmickou funkci a goniometrické funkce. 6.1 Násobení řad. Podívejme se neprve na násobení mnohočlenů x = x x n a y = y y n.

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Komplexní čísla. Definice komplexních čísel

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a a N. n=1

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat

11. přednáška 16. prosince Úvod do komplexní analýzy.

Cvičení 1.1. Dokažte Bernoulliovu nerovnost (1 + x) n 1 + nx, n N, x 2. Platí tato nerovnost obecně pro všechna x R a n N?

ZS 2018/19 Po 10:40 T5

Kapitola 5 - Matice (nad tělesem)

Zimní semestr akademického roku 2015/ listopadu 2015

8.2.1 Aritmetická posloupnost

Posloupnosti a číselné řady. n + 1. n n n n. n n n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b b n) = 1 b

I. TAYLORŮV POLYNOM ( 1

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

Mocninné řady - sbírka příkladů

1 Základní pojmy a vlastnosti

8.2.1 Aritmetická posloupnost I

Definice obecné mocniny

1 Nekonečné řady s nezápornými členy

I. TAYLORŮV POLYNOM. Taylorovy řady některých funkcí: Pro x R platí: sin(x) =

1 Základy Z-transformace. pro aplikace v oblasti

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 17. ledna 2019

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL

Kapitola 4 Euklidovské prostory

NMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) =

Matematika I, část II

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V

Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

8.1.3 Rekurentní zadání posloupnosti I

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

Číselné řady. 1 m 1. 1 n a. m=2. n=1

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel

NMAF061, ZS Zápočtová písemná práce skupina A 16. listopad dx

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ

1 Trochu o kritériích dělitelnosti

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 25. ledna x 1 n

Užitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové:

z možností, jak tuto veličinu charakterizovat, je určit součet

1.3. POLYNOMY. V této kapitole se dozvíte:

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika

Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení

(3n + 1) 3n Příklady pro samostatnou práci

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg České Budějovice

O Jensenově nerovnosti

12. N á h o d n ý v ý b ě r

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

Vlastnosti posloupností

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a }

3. cvičení - LS 2017

3. cvičení - LS 2017

I. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem. z k k!. ( ) e z = k=0

( + ) ( ) ( ) ( ) ( ) Derivace elementárních funkcí II. Předpoklady: Př. 1: Urči derivaci funkce y = x ; n N.

3. ELEMENTÁRNÍ FUNKCE A POSLOUPNOSTI. 3.1 Základní elementární funkce. Nejprve uvedeme základní elementární funkce: KONSTANTNÍ FUNKCE

1 Základní matematické pojmy Logika Množiny a jejich zobrazení... 7

U. Jestliže lineární zobrazení Df x n n

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti

= + nazýváme tečnou ke grafu funkce f

Derivace součinu a podílu

Kombinatorika- 3. Základy diskrétní matematiky, BI-ZDM

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu):

Iterační výpočty projekt č. 2

Užití binomické věty

MATICOVÉ HRY MATICOVÝCH HER

Přednáška 7: Soustavy lineárních rovnic

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

MASARYKOVA UNIVERZITA ÚSTAV MATEMATIKY A STATISTIKY. Bakalářská práce BRNO 2012 PAVLA STARÁ

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )

5. Lineární diferenciální rovnice n-tého řádu

n-rozměrné normální rozdělení pravděpodobnosti

M - Posloupnosti VARIACE

Zkoušková písemná práce č. 1 z předmětu 01MAB3

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

jsou reálná a m, n jsou čísla přirozená.

Transkript:

1 Uzavřeá Gaussova rovia a její topologie Podobě jako reálá čísla rozšiřujeme o dva body a, rozšiřujeme také možiu komplexích čísel. Nepřidáváme však dva body ýbrž je jede. Te budeme začit a budeme ho azývat bodem v ekoeču. Možiu C { } ozačíme symbolem C a azveme ji uzavřeou Gaussovou roviou. Pro bod ekoečo defiujeme ásledující operace: 1. pro všecha komplexí čísla z defiujeme z <, 2. =, 3. z + = + z = pro všecha z C, 4. z = z = pro všecha z C \ {0}, 5. z/ = 0 pro všecha z C, 6. z/0 = pro všecha z C \ {0}, 7. /z = pro všecha z C, 8. 0 0 = 1, 0 = 1. Abychom mohli vyjádřit blízkost ějakého komplexího čísla z komplexímu číslu z 0, defiujeme ε-okolí bodu z 0 : U(z 0, ε) = {z C z z 0 < ε}. Geometricky vyjádřeo představuje možia U(z 0, ε) vitřek kruhu se středem v bodě z 0 a poloměrem ε. Jak se později ukáže je také účelé zavést tzv. prstecové ε-okolí bodu z 0 : P (z 0, ε) = U(z 0, ε) \ {z 0 }. Prstecové ε-okolí je tedy ε-okolí s vyjmutým středem. Nakoec dodefiujeme ještě ε-okolí bodu v ekoeču, abychom mohli popsat, že se blížíme k : U(, ε) = {z C z > 1 ε }. Geometricky vyjádřeo představuje možia U(, ε) vějšek kruhu se středem v počátku o poloměru ε. Je zřejmé, že pokud budeme ε zmešovat k 0, poroste poloměr tohoto kruhy ade všechy meze. 2 Poslouposti komplexích čísel V této části zavedeme pojem poslouposti komplexích čísel a pojem ity poslouposti komplexích čísel. Posloupost komplexích čísel je ějaká fukce f : N C, která přiřazuje každému přirozeému číslu ějaké komplexí číslo: f(1), f(2), f(3),..., f(),... 1

Protože defiičí obor každé takové fukce je stejý, zjedodušujeme zápis pomocí idexů: z 1, z 2, z 3,..., z,..., ebo také zkráceě píšeme {z } =1. Geometricky je možé si posloupost {z } =1 představit jako možiu bodů z v roviě, které jsou očíslováy přirozeými čísly. Defiice 2.1 Řekeme, že posloupost {z } =1 má itu z C (ebo koverguje k bodu z C ), jestliže pro každé ε > 0 existuje 0 N tak, že pro všecha přirozeá čísla > 0 platí z U(z, ε). Jsou-li tyto podmíky splěy, píšeme: z = z. Ujasěme si, co tato defiice vyjadřuje. Pokud posloupost má itu z, zameá to, že pro kruh s libovolým kladým poloměrem ε se středem v bodě z, jsme schopi alézt takový idex 0, že všechy body s idexem vyšším ež 0 už musí ležet uvitř tohoto kruhu. Jiými slovy to zameá, že jsme schopi dostat se body této poslouposti libovolě blízko bodu z. Ještě jiak ekvivaletě řečeo: pro každý kruh s kladým poloměrem ε se středem v bodě z platí, že mimo teto kruh se může alézat pouze koečě moho bodů poslouposti (a tudíž uvitř ekoečě moho). Věta 2.2 Každá posloupost má ejvýše jedu itu. Důkaz: Promysleme si, že důkaz plye okamžitě z defiice ity. Předpokládejme, že pro ějakou posloupost existuje více ež jeda ita (tedy alespoň dvě růzé). Vezměme tedy dvě růzé ity a ozačme je z a w. Vezmeme-li dostatečě malé poloměry (apř. z w /2) můžeme alézt dva kruhy K z a K w se středy v z a w tak, že emají žádý společý vitří bod. Jak jsme pozameali výše, z defiice ity plye, že uvitř kruhu K z se musí vyskytovat ekoečě moho bodů poslouposti a vě je koečě moho, ale stejé tvrzeí platí podle předpokladu i pro K w, což je spor, protože vitřky kruhů K z a K w emají žádý společý bod (akreslete si obrázek!). Všiměme si jedé užitečé vlastosti it. Pojem ity je atolik silý, že pokud má posloupost {z } =1 itu, z = z, bude již každá její podposloupost kovergovat ke stejému z. Podposloupost poslouposti {z } =1 je pro ás taková posloupost, která vzike odebráím koečě ebo ekoečě moha prvků poslouposti {z } =1 tak, že zbude stále ještě ekoečě moho čleů. Typicky koečým odebráím může být vypuštěí počátečího segmetu, t.j. uvažujeme je prvky s idexem vyšším ež ějaké přirozeé číslo. Odebráí ekoečě moha prvků můžeme ukázat apř. a podposlouposti vziklé odebráím všech prvků s lichým idexem, dostaeme tedy z 2, z 4, z 6,..., z 2,... Napišme ještě defiici podposlouposti formálě. 2

Defiice 2.3 Nechť {z } =1 je posloupost komplexích čísel. Potom podposloupostí poslouposti {z } =1 máme a mysli ásledující posloupost: {z g(k) } k=1, kde g : N N je ějaká rostoucí fukce. Fukce g vybírá prvky této podposlouposti, t.j. každému k N přiřadí idex prvku poslouposti {z } =1, který echceme odebrat. Věta 2.4 Je-li z = z, pak pro každou podposloupost {z g(k) } k=1 platí: z g(k) = z. k Důkaz: Musíme ukázat, že uvitř každého kruhu s kladým poloměrem ε se středem v bodě z leží ekoečě moho prvků podposlouposti {z g(k) } k=1. Protože z = z, víme, že uvitř každého takového kruhu leží ekoečě moho prvků poslouposti {z } =1 a vě je koečě moho popř. žádý. Odebereme-li ějaké prvky poslouposti {z } =1, je zřejmé, že mezi koečě moha body vě kruhu může zůstat maximálě koečě moho bodů podposlouposti {z g(k) } k=1. Protože ale podposloupost {z g(k)} k=1 má ekoečě moho bodů, musí jich uvitř kruhu ležet ekoečě moho. Což zameá, že {z } =1 a {z g(k) } k=1 mají stejou itu. Pozor ale! Pokud víme, že ějaká podposloupost {z g(k) } k=1 koverguje k bodu z, emůžeme o kovergeci poslouposti {z } =1 ic říct. Např. podposloupost lichých čleů poslouposti {( 1) } =1 má itu 1, kdežto posloupost {( 1) } =1 itu emá. Nicméě platí ásledující věta. Věta 2.5 Vzike-li podposloupost {z g(k) } k=1 z poslouposti {z } =1 odebráím je koečě moha čleů a k z g(k) = z, pak z = z. Důkaz: Protože {z g(k) } k=1 vzikla odebráím koečě moha čleů, můžeme alézt posledí odebraý čle z m (t.j. pro všechy odebraé čley z máme m). Sestavme yí ovou podposloupost {z h(k) } k=1 tak, že h(k) = m + k. Podposloupost {z h(k) } k=1 obsahuje tedy čley z m+1, z m+2, z m+3,... Potom je zřejmé, že {z h(k) } k=1 je podposloupost eje {z } =1 ale i {z g(k) } k=1. Jelikož k z g(k) = z, dostaeme z Věty 2.4, že také k z h(k) = z. Tedy pro každé ε > 0 existuje idex k 0 takový, že pro všecha k > k 0 platí z h(k) U(z, ε). Abychom dokázali, že z = z musíme alézt takový idex 0, aby pro všecha > 0 platilo z U(z, ε). Vezměme 0 = k 0 +m, potom pro každé > 0 máme m > k 0 a tedy z h( m) U(z, ε). Protože ale z = z h( m) je rověž i z U(z, ε) a důkaz je dokoče. Další užitečou vlastostí pro vyšetřováí it posloupostí komplexích čísel je vztah mezi posloupostmi {z } =1 a { z } =1. Uvědomme si, že { z } =1 je posloupost reálých čísel, jak jí záte z prvího kurzu reálé aalýzy. 3

Věta 2.6 Je-li z = z, pak z = z. Je-li z rova 0 respektive, pak je také z rova 0 respektive. Důkaz: Pro prví část věty musíme ukázat, že pro všecha ε > 0 ajdeme takový idex 0, že pro všecha > 0 platí z z < ε. Protože z = z, máme pro všecha ε > 0 takový idex 0, že pro všecha > 0 platí z U(z, ε), což z defiice okolí zameá z z < ε. Využijme vztahu z z z z (viz zápis z cvičeí 1). Dostáváme tedy z z z z < ε, což jsme měli ukázat. (Promyslete si důkaz druhé části věty!) Pokud je ita poslouposti koečá, můžeme převést podle ásledující věty problém hledáí ity poslouposti komplexích čísel a hledáí dvou it posloupostí reálých čísel. Věta 2.7 K tomu, aby existovala koečá z = z, je uté a postačující, aby existovaly koečé Re z = a, Je-li podmíka splěa je z = a + jb. Im z = b. Důkaz: Protože věta vyjadřuje ekvivaleci mezi existecí koečých it, má důkaz dvě části. (1) Z předpokladu existece koečé z = z musíme ukázat, že Re z = a a Im z = b existují a jsou koečé a avíc platí z = a + jb. (2) Naopak z předpokladu existece koečých it Re z = a a Im z = b dokázat, že z = z = a + jb. (Důkaz si promyslete a akreslete si obrázek!). Podobě jako pro poslouposti reálých čísel máme i pro poslouposti komplexích čísel ásledující tvrzeí: Tvrzeí 2.8 Nechť existují z = z, w = w. Pak pokud výrazy a pravých straách mají smysl, platí ásledující: 1. (z + w ) = z + w, 2. (z w ) = zw, 3. (z /w ) = z/w. Příklad 2.9 Vypočtěte Protože platí ( + j si 1 ). =, si 1 = 0, 4

dostaeme podle Tvrzeí 2.8 ( + j si 1 ) = + j si 1 = + j0 =. Příklad 2.10 Vypočtěte [2 + j( 1) ]. Protože ( 1) eexistuje, emůžeme použít Tvrzeí 2.8 jako v předchozím příkladě. Je jasé, že body poslouposti se s rostoucím idexem budou vzdalovat od bodu 0 (akreslete si obrázek!). Pokud tedy ukážeme, že moduly prvků poslouposti rostou ade všechy meze, dostaeme podle Věty 2.6, že [ 2 + j( 1) ] =. Pro moduly ovšem platí ásledující erovosti: 2 + j( 1) Re( 2 + j( 1) ) = 2. A poěvadž 2 =, dostáváme, že 2 + j( 1) =. Příklad 2.11 Vypočtěte pro z C pevé číslo z, kde ( z = 1 + ) z. Je zřejmé, že kdybychom se sažili rozložit prvky poslouposti a reálou a imagiárí část, museli bychom se potýkat s biomickým rozvojem závorky (1 + z ). Jak jsme ukázali a koci textu k předchozímu cvičeí, daleko saději můžeme mocěí provádět v expoeciálím tvaru komplexího čísla. Převedeme tedy každý čle poslouposti z do expoeciálího tvaru a budeme hledat itu modulů z a argumetů arg z. Musíme ale být opatrí. Komplexí číslo z můžeme jedozačě vyjádřit v expoeciálím tvaru je pokud z 0 (pro z = 0 emůžeme jedozačě vyjádřit argumet). Nicméě ěkteré čley z mohou v pricipu být ulové. Podívejme se tedy za jakých podmíek bude platit z = 0. Dostáváme tedy (1 + z ) = 0, ale to je možé je pokud 1 + z = 0 eboli = z. To zameá, že pokud je z záporé celé číslo, bude pro = z platit z = 0. Tedy jede čle poslouposti bude ulový. Pokud z eí záporé celé číslo, ebude žádý čle z ulový. Z uvedeého vyplývá, že maximálě jede čle poslouposti {z } =1 může být ulový. Podle Vět 2.4, 2.5 můžeme takový čle odebrat aiž bychom změili výsledou itu. Vyjádřeme ejprve moduly z. Ozačme z = x + jy, pak ( z = 1 + z ) 1 z = + = 1 + x + j y. Protože 1 + x + j y = (1 + x )2 + ( y )2, dostaeme z = [ ( 1 + ) x 2 ( y ) ] 2 2 +. 5

Dále vyjádřeme argumety arg z = arg(1+ z ). Ozačme w = 1+ x +j y. Protože w = 1, víme, že od určitého 0 budou všechy w ležet uvitř kruhu o poloměru 1 se středem v bodě 1, což zameá, že arg w ( π/2, π/2) (poloměr 1 zde představuje ε a volili jsme ho tak abychom splili výše uvedeou podmíku a argumety akreslete si obrázek!). Proto zahodíme-li prvích 0 čleů poslouposti, můžeme psát arg w = arcta y 1 + x, protože pro argumety z itervalu ( π/2, π/2) určuje fukce arcta argumety již jedozačě. Dostáváme tedy arg z = arg(w ) = arcta y 1 + x. Teď již je zbývá určit z a arg z. [ ( z = 1 + x 2 ( y ) ] [ 2 2 + = ) e 2 l (1+ x ) 2 +( ) y 2]. Dále [ ( 2 l 1 + ) x 2 ( y ) ] 2 + = [1 2 l + 2 x + x2 + y 2 ] 2. Zaveďme ovou proměou h = 1, potom předchozí itu můžeme vyjádřit jako h 0 1 2h l [ 1 + 2xh + (x 2 + y 2 )h 2] = h 0 2x + 2(x 2 + y 2 )h 2[1 + 2xh + (x 2 + y 2 )h 2 ] = x, kde a výpočet předposledí rovosti jsme použili L Hospitalovo pravidlo. Máme tedy z = e x. Pro arg z dostáváme y arg z = arcta 1 + x Pomocí L Hospitalova pravidla máme 1 h 0 h arcta yh 1 + xh = h 0 Nakoec tedy 1 + 1 ( yh 1+xh 1 = h 0 h arcta yh 1 + xh. ) 2 y(1 + xh) yhx (1 + xh) 2 = y. z = z j arg z e = z ej arg z = e x e jy. 6

3 Limita fukce komplexí proměé Jedozačou komplexí fukcí komplexí proměé pro ás bude zobrazeí f : D C, kde D C. Často budeme pro zápis hodoty v bodě f(z) používat rozklad a reálou a imagiárí část, t.j. f(z) = u(x, y) + jv(x, y), kde z = x + jy, u(x, y) = Re f(z) a v(x, y) = Im f(z). Defiice 3.1 Nechť M je podmožia C. Bod a C azveme hromadým bodem možiy M právě tehdy, když libovolé prstecové okolí P (a, ε), ε > 0, obsahuje alespoň jede bod možiy M. Z defiice plye, že v každém P (a, ε) leží ekoečě moho bodů M. Vezmeme-li totiž P (a, 1 ), dostaeme, že pro všecha taková, že 1 < ε platí P (a, 1 ) M. Defiice 3.2 Řekeme, že fukce f : D C má v bodě z 0 C itu L C vzhledem k možiě M D právě tehdy, jestliže platí: 1. bod z 0 je hromadým bodem možiy M, 2. pro všecha ε > 0 existuje δ > 0 tak, že pro všecha z P (z 0, δ) M platí f(z) U(L, ε). Pak píšeme z z 0 f(z) = L. Pokud M = D pak popis vzhledem k možiě D vyecháváme a píšeme je f(z) = L. z z 0 Věta 3.3 1. Každá fukce f : D C má v bodě z 0 aejvýš jedu itu. Navíc pokud z z0 f(z) = L, pak pro všechy M D platí z z 0 f(z) = L. 2. Nechť z 0 = x 0 + jy 0. Pak existuje koečá z z 0 f(z) = a + jb právě když existují koečé (x, y) (x 0, y 0 ) (x, y) M u(x, y) = a, (x, y) (x 0, y 0 ) (x, y) M v(x, y) = b. 7

Podobě jako pro ity posloupostí platí ásledující tvrzeí: Tvrzeí 3.4 Nechť existují f(z) = L, z z 0 g(z) = K. z z 0 Pak pokud výrazy a pravých straách mají smysl, platí ásledující: 1. z z0 (f(z) + g(z)) = L + K, 2. z z0 (f(z)g(z)) = LK, 3. z z0 (f(z)/g(z)) = L/K. Příklad 3.5 Vypočtěte z j (z 4 + 1). Podle Tvrzeí 3.4 můžeme psát: z j (z4 + 1) = j 4 + 1 = 1 + 1 = 2. z Příklad 3.6 Vypočtěte 1 z 1 z 1. Tady emůžeme postupovat stejě jako v předchozím příkladě, protože bychom dostali 0 0. Nicméě platí z 1 z 1 = (z 1)(z 1 + z 2 + + z + 1) = z 1 + z 2 + + z + 1. z 1 Takže z 1 z 1 z 1 = z 1 (z 1 + z 2 + + z + 1) =. Příklad 3.7 Ukažte, že ásledující ita eexistuje z 0 2xy x 2 + y 2 + j x2 y + 1. Pokud by ita v bodě 0 existovala, musela by podle Věty 3.3 existovat i vzhledem všem podmožiám M D. Zvolme ejprve M = {(x, y) D y = 0}, tz. prvky D ležící a reálé ose. Potom z 0 2xy x 2 + y 2 + j x2 y + 1 = z 0 0 x 2 + jx2 = 0 + j0 = 0. Nyí zvolme M = {(x, y) D x = y}, 8

tz. prvky D ležící ose prvího kvadratu. Potom z 0 2xy x 2 + y 2 + j x2 y + 1 = z 0 2x 2 2x 2 + j x2 x + 1 = 1 + j0 = 1. Vzhledem k tomu, že jsme v jedotlivých případech volby M dospěli k růzým výsledkům, plye z Věty 3.3 eexistece zadaé ity. Příklad 3.8 Vypočtěte x 2 z 0 z. Protože x = Re z, máme x z. Můžeme tedy modul f(z) omezit ásledově: f(z) = x 2 z = x 2 z x 2 x = x z. Je zřejmé, že když z 0, tak i z 0. Protože ale f(z) z, dostáváme, že f(z) 0. A z toho plye, že 4 Spojitost a derivace x 2 z 0 z = 0. Spojitost komplexí fukce defiujeme podobě jako v pro fukce reálé proměé. Defiice 4.1 Řekeme, že komplexí fukce f : D C, D C, je spojitá v bodě z 0 D právě tehdy, když z z0 f(z) = f(z 0 ). Pokud je f spojitá v každém bodě D, říkáme, že f je spojitá. Uvědomme si tedy, že pro spojitost fukce f v bodě z 0 musí být splěy ásledující tři předpoklady: 1. f(z 0 ) je defiováa, 2. z z0 f(z) existuje, 3. z z0 f(z) = f(z 0 ). Rověž derivaci komplexí fukce je možé zavést obdobě jako v reálé aalýze. Defiice 4.2 Nechť fukce f je defiováa v ějakém okolí U(z 0, ε), ε > 0, bodu z 0 C. Říkáme, že f má derivaci v bodě z 0 pokud existuje koečá f(z) f(z 0 ) f(z 0 + h) f(z 0 ) = = f (z 0 ). z z 0 z z 0 h 0 h 9

Věta o derivaci součtu, součiu, podílu a složeé fukce je zcela stejá jako záte z reálé aalýzy. Věta 4.3 Nechť existují f (z 0 ) a g (z 0 ) potom 1. (f + g) (z 0 ) = f (z 0 ) + g (z 0 ), 2. (f g) (z 0 ) = f (z 0 ) g (z 0 ), 3. (fg) (z 0 ) = f (z 0 )g(z 0 ) + f(z 0 )g (z 0 ), 4. ( f g ) (z 0 ) = f (z 0)g(z 0) f(z 0)g (z 0) g 2 (z 0), 5. pokud avíc existuje f (g(z 0 )) pak [f(g(z 0 ))] = f (g(z 0 ))g (z 0 ). Následující věta má zásadí výzam eje pro výpočet derivace, ale i pro určováí bodů, ve kterých má fukce derivaci. Věta 4.4 Fukce f(z) = u(x, y) + jv(x, y) má v bodě z 0 = x 0 + jy 0 derivaci právě tehdy, když 1. fukce u a v mají v bodě (x 0, y 0 ) totálí difereciál, 2. jsou splěy Cauchyovy-Riemaovy podmíky (C-R podmíky) v bodě (x 0, y 0 ): u x = v y, v x = u y. Pokud f (z 0 ) existuje, platí f (z 0 ) = u x (x 0, y 0 ) + j v x (x 0, y 0 ) = v y (x 0, y 0 ) j u y (x 0, y 0 ). Připomíám, že k tomu aby byla splěa 1.podmíka, stačí aby byly parciálí derivace u a v spojité v bodě (x 0, y 0 ) (viz kurz o fukcích více proměých). Příklad 4.5 Ukažte, že platí (z 2 ) = 2z. Rozložme fukci z 2 a reálou a imagiárí část. z 2 = (x + jy) 2 = x 2 y 2 + j2xy. Máme tedy u(x, y) = x 2 y 2 a v(x, y) = 2xy. Spočtěme jedotlivé parciálí derivace. u x = 2x u y = 2y v x = 2y v y = 2x Je zřejmé, že všechy parciálí derivace jsou spojité fukce, což zameá, že 1.podmíka Věty 4.4 je splěa v každém bodě (x, y). Navíc C-R podmíky 10

jsou splěy v každém bodě (x, y). To zameá, že derivace (z 2 ) existuje v každém bodě z = x + jy a platí (z 2 ) = u x + j v = 2x + j2y = 2(x + jy) = 2z. x Příklad 4.6 Určete, kde existuje (z 2 ). Rozložme fukci z 2 a reálou a imagiárí část. z 2 = (x jy) 2 = x 2 y 2 j2xy. Máme tedy u(x, y) = x 2 y 2 a v(x, y) = 2xy. Spočtěme jedotlivé parciálí derivace. u x = 2x u y = 2y v x = 2y v y = 2x Je zřejmé, že všechy parciálí derivace jsou spojité fukce, což zameá, že 1.podmíka Věty 4.4 je splěa v každém bodě (x, y). Ovšem z C-R podmíek plye, že 2x = 2x a 2y = 2y. Tyto rovice jsou splěy je v bodě (0, 0). To zameá, že derivace (z 2 ) existuje je v bodě z = 0 a platí (z 2 ) = u v (0, 0) + j (0, 0) = 0 + j0 = 0. x x 11