M - Příprava na pololetku č. 2-2SAB

Podobné dokumenty
Slovní úlohy řešené rovnicí pro učební obory

M - Slovní úlohy řešené rovnicí - pro učební obory

M - Příprava na pololetní písemku č. 1

M - Příprava na 1. zápočtový test - třída 3SA

Soustavy rovnic pro učební obory

M - Kvadratická funkce

Funkce pro studijní obory

Funkce a lineární funkce pro studijní obory

M - Kvadratické rovnice a kvadratické nerovnice

M - Kvadratické rovnice

Soustavy rovnic pro učební obor Kadeřník

Variace. Kvadratická funkce

Funkce pro učební obory

Funkce - pro třídu 1EB

M - Příprava na 2. čtvrtletku - třídy 1P, 1VK

M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK

Lineární rovnice pro učební obory

Variace. Lineární rovnice

M - Příprava na pololetku č. 2-1KŘA, 1KŘB

Nerovnice a nerovnice v součinovém nebo v podílovém tvaru

Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic

M - Příprava na 3. čtvrtletní písemnou práci

Úvod do řešení lineárních rovnic a jejich soustav

M - Příprava na pololetní písemku č. 2

M - Příprava na 1. čtvrtletku pro třídy 2P a 2VK

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23

M - Příprava na 1. čtvrtletku - třídy 1P, 1VK

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou

M - Příprava na pololetní písemku č. 1

Lineární rovnice. Rovnice o jedné neznámé. Rovnice o jedné neznámé x je zápis ve tvaru L(x) = P(x), kde obě strany tvoří výrazy s jednou neznámou x.

VZOROVÝ TEST PRO 1. ROČNÍK (1. A, 3. C)

CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar

M - Slovní úlohy pro učební obory

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická

Řešení slovních úloh pomocí lineárních rovnic

Algebraické výrazy - řešené úlohy

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

4 Rovnice a nerovnice

ROVNICE, NEROVNICE A JEJICH SOUSTAVY

KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

Lineární funkce, rovnice a nerovnice 4 lineární nerovnice

Kvadratickou funkcí se nazývá každá funkce, která je daná rovnicí. Definičním oborem kvadratické funkce je množina reálných čísel.

Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: = = + c) = f) +6 +8=4 g) h)

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 12. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21

Variace. Číselné výrazy

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

MO-ME-N-T MOderní MEtody s Novými Technologiemi

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

KFC/SEM, KFC/SEMA Elementární funkce

M - Příprava na 1. čtvrtletku pro třídu 4ODK

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Lineární rovnice

M - Příprava na 1. čtvrtletku - třída 3ODK

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

Parametrická rovnice přímky v rovině

37. PARABOLA V ANALYTICKÉ GEOMETRII

MO-ME-N-T MOderní MEtody s Novými Technologiemi

PŘÍKLAD 6: Řešení: Příprava k přijímacím zkouškám na střední školy matematika 29. Určete, pro které x je hodnota výrazu 8x 6 rovna: a) 6 b) 0 c) 34

KFC/SEM, KFC/SEMA Rovnice, nerovnice

CVIČNÝ TEST 19. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

M - Algebraické výrazy

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

16. Goniometrické rovnice

3. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE

0.1 Úvod do lineární algebry

M - Pythagorova věta, Eukleidovy věty

Nejprve si uděláme malé opakování z kurzu Množiny obecně.

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

5.2. Funkce, definiční obor funkce a množina hodnot funkce

Goniometrické rovnice

15. KubickÈ rovnice a rovnice vyööìho stupnï

CVIČNÝ TEST 14. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21

14. přednáška. Přímka

Soustavy lineárních a kvadratických rovnic o dvou neznámých

CVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII

M - Příprava na 12. zápočtový test

Lineární funkce, rovnice a nerovnice

CVIČNÝ TEST 27. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

Soustavy rovnic diskuse řešitelnosti

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

FUNKCE POJEM, VLASTNOSTI, GRAF

M - Příprava na 2. čtvrtletku pro třídu 1MO

Logaritmy a věty o logaritmech

ANALYTICKÁ GEOMETRIE V ROVINĚ

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

CVIČNÝ TEST 25. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

Analytická geometrie kvadratických útvarů v rovině

(Cramerovo pravidlo, determinanty, inverzní matice)

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Transkript:

M - Příprava na pololetku č. 2-2SAB Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete na www.dosli.cz.

± Funkce Funkce je přiřazení, které každému prvku nějaké zadané množiny M přiřazuje právě jedno reálné číslo. Množinu M nazýváme definiční obor - značíme D, případně D(f) Reálná čísla, která jsou takto přiřazena, nám tvoří další množinu, kterou nazýváme obor hodnot funkce - značíme H, případně H(f). Funkce může být zadána různými způsoby: tabulkou x 1 2 3 4 5 6 7 8 y 8 12 14 16 20 4 8 24 spojnicovým diagramem rovnicí y = 2x + 5 grafem 1 z 47

± Funkce - procvičovací příklady 1. Určete, zda jde o tabulku představující funkci: x * o # $ y 1 3 3 2 1294 Ano 2. Určete, zda jde o tabulku představující funkci: x 2 6 7 8 y 1 3 4 2 1296 Ano 3. Určete, zda jde o tabulku představující funkci: x 5 4 6 8 y * o # $ 1298 Ne 4. Určete, zda jde o graf funkce: 1303 Ne 5. Určete, zda jde o zápis funkce: y = 2x 2 + 6 Ano 1299 6. Určete, zda jde o tabulku představující funkci: x * o # o y 1 3 3 2 1297 Ne 2 z 47

7. Určete, zda jde o tabulku představující funkci: x 2 6 2 8 y 1 3 4 2 1295 Ne 8. Určete, zda jde o graf funkce: 1300 Ano 9. Určete, zda jde o graf funkce: 1302 Ne 3 z 47

10. Určete, zda jde o graf funkce: 1301 Ne ± Lineární funkce Lineární funkce je funkce, která je dána rovnicí y = ax + b, kde a, b jsou reálná čísla. Grafem lineární funkce je přímka (nebo její část). Definičním oborem každé lineární funkce jsou všechna reálná čísla (pokud není definiční obor omezen intervalem). Oborem hodnot každé lineární funkce (pokud se nejedná o funkci konstantní nebo funkci, kde definiční obor je omezen intervalem) jsou všechna reálná čísla. Průsečíky grafu lineární funkce s osami: 1. s osou x: - v tomto případě je druhá souřadnice bodů rovna nule, proto do rovnice funkce dosadíme za y = 0 a vypočteme první souřadnici průsečíku s osou x. Příklad: Určete průsečík funkce y = 2x - 1 s osou x. 4 z 47

Řešení: Hledaný bod X[x; y] Dosadíme za y = 0, proto 0 = 2x - 1 Vyřešíme vzniklou rovnici a dostáváme x = 0,5 Závěr: Hledaný průsečík je X[0.5; 0]. 2. s osou y: - v tomto případě je první souřadnice bodů rovna nule, proto do rovnice funkce dosadíme za x = 0 a vypočteme druhou souřadnici průsečíků s osou y. Příklad: Určete průsečík funkce y = 2x - 1 s osou y. Řešení: Hledaný bod Y[x;y] Dosadíme za x = 0, proto y = 2.0-1 Vyřešíme vzniklou rovnici a dostáváme y = -1 Závěr: Hledaný průsečík je Y[0; -1]. Zvláštní případy lineární funkce: 1. Je-li v rovnici lineární funkce číslo a = 0, pak y = 0. x + b, neboli y = b - jedná se o tzv. konstantní funkci - grafem je přímka, která je rovnoběžná s osou x 2. Je-li v rovnici lineární funkce číslo b = 0, pak y = ax + 0, neboli y = ax - jedná se o přímou úměrnost - grafem je přímka (nebo její část), která vždy prochází počátkem souřadného systému Vlastnosti lineární funkce: 5 z 47

1. Lineární funkce je rostoucí, je-li a > 0. 2. Lineární funkce je klesající, je-li a < 0. Číslo a se také někdy nazývá směrnice přímky. Pozn.: Je-li a = 0, je funkce konstantní, tedy nerostoucí i neklesající. Určení rovnice lineární funkce ze zadaných bodů Vzhledem k tomu, že víme, že grafem lineární funkce je přímka, a přímka je vždy jednoznačně určena dvěma body, stačí nám pro zadání lineární funkce její dva body. Jedním z těchto bodů, případně i oběma body, může být klidně některý z průsečíků s osami, případně i počátek souřadného systému. Příklad: Určete rovnici lineární funkce, jejíž graf prochází body A[2; 3], B[-1; 2] Řešení: Obecná rovnice je y = ax + b. Dosadíme do ní postupně souřadnice obou bodů: 3 = 2a + b 2 = -a + b ------------------ Dostali jsme soustavu rovnic, kterou vyřešíme sčítací nebo dosazovací metodou. Já použiji např. sčítací: První rovnici opíšu, druhou vynásobím dvěma: 3 = 2a + b 4 = -2a + 2b ------------------ Obě rovnice sečtu: 7 = 3b b = 7/3 Vrátím se k původním rovnicím a tentokráte opět první rovnici opíšu a druhou vynásobím (-1): 3 = 2a + b -2 = a - b ------------------ Opět obě rovnice sečtu: 1 = 3a a = 1/3 Dosadíme zpět do původní obecné rovnice lineární funkce a dostaneme: 1 7 y = x + 3 3 Tím jsme stanovili rovnici lineární funkce, která oběma body prochází. Grafické řešení soustavy lineárních rovnic Obě rovnice převedeme do tvaru y = ax + b a sestrojíme grafy obou nově vzniklých funkcí. Souřadnice průsečíku těchto funkcí představují řešení původní soustavy lineárních rovnic. ± Lineární funkce - procvičovací příklady 1. 1344 6 z 47

2. 1335 3. 1330 4. 1340 5. 1339 7 z 47

6. 1332 7. 1343 8. 1338 9. 1331 8 z 47

10. 1341 11. 1329 12. 1336 9 z 47

13. 1333 14. 1342 15. 1337 16. 1334 10 z 47

± Vyjádření neznámé ze vzorce Vyjádření neznámé ze vzorce Při vyjadřování neznámé ze vzorce postupujeme obdobně, jako kdybychom řešili rovnici, s tím, že za neznámou považujeme veličinu, kterou potřebujeme vyjádřit. Základní pravidla: 1. Pokud některý člen převádíme z jedné strany "rovnice" na druhou, měníme u tohoto členu znaménko Příklad: Vyjadřujeme veličinu a ze zápisu 2a + 3b = 4mn, dostáváme 2a = 4mn - 3b 2. Pokud osamostatňujeme proměnnou, která je vázána v součinu, dělíme celou "rovnici" všemi činiteli, které se kromě osamostatňované proměnné v součinu vyskytují Příklad: Vyjadřujeme veličinu a ze zápisu 4abc 2 = 4mn, dostáváme a = (4mn) : (4bc 2 ) 3. Je-li proměnná, kterou chceme osamostatnit, zapsána ve druhé (resp. ve třetí) mocnině, provedeme odmocnění (resp. třetí odmocnění) celé "rovnice". Příklad: Vyjadřujeme veličinu a ze zápisu a 2 = 4mn, dostáváme a = Ö(4mn) = 2Ö(mn) ± Vyjádření neznámé ze vzorce - procvičovací příklady 1. Ze vzorce pro výpočet povrchu rotačního kužele S = p. r. (r + s) vyjádřete stranu kužele s: S s = - r p. r 571 2. 561 z = 2S v 3. Pro efektivní proud platí vzorec I = I m. 2/2. Vyjádřete z něj amplitudu I m: I m = I 2 570 4. Ze vzorce S = 2. p. r. (r + v) pro výpočet povrchu rotačního válce vyjádřete veličinu v: v = S - 2. p. r 2. p. r 2 573 11 z 47

5. 564 6. Elektrická práce se vypočítá podle vzorce W = R. I 2. t. Vyjádřete veličinu I: I = W Rt 568 7. Pro výpočet tepla platí vzorec Q = m. c. (t 2 - t 1). Vyjádřete teplotu t 2: t 2 = Q/(c. m) + t 1 566 8. 562 S - cv a = 2 v 9. Pro výpočet transformátoru platí vzorec N 2/N 1 = U 2/U 1. Vyjádřete sekundární napětí U 2: U 2 = (N 2. U 1)/N 1 567 10. Pro výsledný odpor paralelně zapojených rezistorů platí vzorec: 1/R = 1/R 1 + 1/R 2. Vyjádřete veličinu R: R = R1. R2 R + R 1 2 569 11. 565 12 z 47

12. 563 m = F. r k 2 13. Ze vzorce pro výpočet objemu pravidelného čtyřbokého jehlanu V = (1/3). a 2. v vyjádřete velikost a: a = 3V v 572 ± Lineární rovnice Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: 2x + 5 = 7x - 3 Písmeno zapsané v rovnici nazýváme neznámá. Pokud určíme hodnotu neznámé, získáváme tzv. řešení rovnice nebo též kořen rovnice. Rovnice můžeme mít s jednou neznámou, se dvěma neznámými, s parametrem, s absolutní hodnotou; rovnice mohou být lineární, kvadratické, kubické, exponenciální, logaritmické, apod. Zabývat se budeme i řešením soustav rovnic, což je zápis dvou nebo více rovnic, zpravidla o dvou nebo více neznámých, přičemž všechny rovnice platí současně. Ekvivalentní úpravy rovnic 1. ekvivalentní úprava K oběma stranám rovnice můžeme přičíst (resp. odečíst) stejné číslo (stejný výraz). př.: 2x + 3 = 7-3x /+3x 5x + 3 = 7 Pozn.: V praxi se nejedná o nic jiného než o poznatek, který nám říká, že při převodu členu obsaženého v součtu nebo v rozdílu z jedné strany rovnice na druhou měníme u tohoto členu znaménko. 2. ekvivalentní úprava Obě strany rovnice můžeme vynásobit, případně vydělit stejným číslem (stejným výrazem) různým od nuly. př.: 8x = 24 /:8 x = 3 Pozn.: Pokud se u rovnic vyskytuje neznámá ve jmenovateli, musíme před zahájením řešení stanovit podmínky řešitelnosti. Pozn.: Zatím se budeme zabývat tzv. lineárními rovnicemi, což jsou takové rovnice, u nichž se neznámá vyskytuje pouze v první mocnině. 13 z 47

Pozn.: Pokud při řešení rovnice vyjde závěr, kterým je nepravdivá rovnost (nerovnost), pak daná rovnice nemá řešení. Pokud při řešení rovnice vyjde závěr, kterým je pravdivá rovnost, pak daná rovnice má nekonečně mnoho řešení; řešením jsou pak všechna reálná čísla, jedná-li se o rovnici bez neznámé ve jmenovateli anebo všechna reálná čísla s výjimkou těch, která odporují podmínce řešitelnosti, jedná-li se o rovnici s neznámou ve jmenovateli. ---------------------------------------------------------------------------------------------------------------- Řešení jednoduchých rovnic - ukázkové příklady Příklad 1: Řešení: Příklad 2: Řešení: Příklad 3: Řešení: 14 z 47

Příklad 4: Řešení: Příklad 5: x = 9/7 Řešení: ± Lineární rovnice - procvičovací příklady 1. 1476-0,5 15 z 47

2. 1498-0,5 3. 1493 4 3 4. 1483 6 5. 1491 5 6. 1506 0,5 7. 1494 13 8. 1472 1-6 16 z 47

9. 1514 Všechna reálná čísla 10. 1501 11 11. 1487 10 12. 1513 0,1 13. 1503 87 14. 1475 5 15. 1488-1,2 16. 1504-1 17 z 47

17. 1496-4 18. 1480 0,5 19. 1508 0 20. 1507 0,5 21. 1485 3 22. 1497-5 23. 1499-2,5 18 z 47

24. 1477-10 25. 1474 0,5 26. 1505 1-3 27. 1479 2 28. 1478-1 29. 1471-1 19 z 47

30. 1495 13 31. 1492-0,5 32. 1489 2 33. 1511-5 34. 1502 12 35. 1484-2 36. 1486 3 20 z 47

37. 1510 1-3 38. 1482 10 39. 1490 1 3 40. 1500 4 41. 1473 5 42. 1512-9 43. 1470 2 3 21 z 47

44. 1515 0 45. 1481 1 46. 1509-1 ± Soustavy rovnic Soustavy rovnic Soustava rovnic je zápis dvou nebo více rovnic, které musí platit současně. V soustavě rovnic se může vyskytovat různý počet neznámých. My se zaměříme na takové soustavy rovnic, kde počet neznámých odpovídá počtu rovnic v soustavě (tedy budeme řešit např. soustavu dvou rovnic o dvou neznámých nebo soustavu třech rovnic o třech neznámých, apod.) Soustavy rovnic můžeme řešit různými metodami - např.: metodou dosazovací metodou sčítací metodou, která kombinuje metodu sčítací a dosazovací metodou grafickou pomocí matic, resp. determinantů Zatím se omezíme na první dvě z uvedených metod. Řešení soustav rovnic metodou dosazovací Tento způsob řešení je založen na postupu, kdy z jedné rovnice vyjádříme jednu neznámou a tu pak dosadíme do zbývajících rovnic soustavy. Pokud byla zadána soustava dvou rovnic, pak už nyní řešíme jednu rovnici o jedné neznámé. Pokud původní soustava obsahovala tři nebo více rovnic, postup vyjádření neznámé opakujeme. Metoda dosazovací je vhodná tehdy, pokud u rovnic v základním tvaru (tj. u rovnic, které dostaneme po odstranění závorek a zlomků a následném sloučení členů) je alespoň u jedné neznámé v některé z rovnic koeficient 1 nebo (-1). Lze ji ale použít i jindy. Metota dosazovací se dále používá tehdy, je-li zadána soustava jedné lineární a jedné kvadratické rovnice. Takovými se ale budeme zabývat později. Metoda dosazovací se s úspěchem dá použít i při řešení soustav třech nebo více rovnic. 22 z 47

Ukázkové příklady: Příklad 1: Řešte soustavu rovnic: x + y = 3 x - y = -1 x = 3 - y (3 - y) - y = -1 3 - y - y = -1-2y = -4 y = 2 x = 3-2 x = 1 Výsledek zapíšeme: [x; y] = [1; 2] Zkouška: L 1 = 1 + 2 = 3 P 1 = 3 L 2 = 1-2 = -1 P 2 = -1 L 1 = P 1 L 2 = P 2 Příklad 2: Řešte soustavu rovnic: 2. (x + y) - 5. (y - x) = 17 3. (x + 2y) + 7. (3x + 5y) = 7 Řešení: 2. (x + y) - 5. (y - x) = 17 3. (x + 2y) + 7. (3x + 5y) = 7 2x + 2y - 5y + 5x = 17 3x + 6y + 21x + 35y = 7 7x - 3y = 17 24x + 41y = 7 17 + 3y x = 7 17 + 3y 24. + 41y = 7 7 408 + 72y + 41y = 7 7 408 + 72y + 287y = 49 359y = -359 y = -1 x = 2 Výsledek zapíšeme [x; y] = [2; -1] Zkouška: 23 z 47

L 1 = 2. [2 + (-1)] - 5. (-1-2) = 2-5. (-3) = 17 P 1 = 17 L 2 = 3. [2 + 2.(-1)] + 7. [3. 2 + 5. (-1)] = 3. 0 + 7. 1 = 7 P 2 = 7 L 1 = P 1 L 2 = P 2 Příklad 3: Řešte soustavu rovnic x - y = 1 3x - 3y = 3 x = 1 + y 3. (1 + y) - 3y = 3 3 + 3y - 3y = 3 0 = 0 Soustava má nekonečně mnoho řešení. Výsledek zapíšeme: [x; y] = [x; x - 1] (v tomto obecném zápisu výsledku první neznámou volíme libovolně a druhou neznámou vyjádříme ze kterékoliv zadané rovnice) Ověření správnosti řešení: Pro x = 1 dostáváme [1; 0] L 1 = 1-0 = 1 P 1 = 1 L 2 = 3. 1-3. 0 = 3 P 2 = 3 L 1 = P 1 L 2 = P 2 Příklad 4: Řešte soustavu rovnic: 3x + y = 2 z + 1 3y + z = 2 x + 1 3x + z = 2 y + 1 -------------------- Stanovíme podmínky řešitelnosti: z ¹ -1; x ¹ -1; y ¹ -1 3x + y = 2. (z + 1) 3y + z = 2. (x + 1) 3x + z = 2. (y + 1) 3x + y = 2z + 2 3y + z = 2x + 2 3x + z = 2y + 2 3x + y - 2z = 2-2x + 3y + z = 2 3x - 2y + z = 2 Z první rovnice vyjádříme neznámou y: y = -3x + 2z + 2 (1) Dosadíme do zbývajících dvou rovnic: 3. (-3x + 2z + 2) + z = 2. (x + 1) 24 z 47

3x + z = 2. (-3x + 2z + 2 + 1) -9x + 6z + 6 + z = 2x + 2 3x + z = -6x + 4z + 4 + 2-11x + 7z = -4 9x - 3z = 6 Druhou rovnici vykrátíme třemi, poté z ní vyjádříme neznámou z: z = 3x - 2 (2) Dosadíme do první rovnice: -11x + 7. (3x - 2) = -4-11x + 21x - 14 = -4 10x = 10 x = 1 Dosadíme do rovnice (2): z = 3. 1-2 = 1 Dosadíme do rovnice (1): y = -3. 1 + 2. 1 + 2 = 1 Výsledky neodporují podmínkám řešitelnosti. Zapíšeme výsledek: [x; y; z] = [1; 1; 1] Zkouška: 3.1+ 1 4 L = = 1+ 1 2 1 = 2 P 1 = 2 L 1 = P 1 3.1+ 1 4 L = = 2 2 = 1+ 1 2 P 2 = 2 L 2 = P 2 3.1+ 1 4 L = = 2 3 = P 3 = 2 L 3 = P 3 1+ 1 2 Shrnutí postupu řešení soustavy rovnic dosazovací metodou: 1. Jsou-li ve jmenovateli neznámé, stanovíme podmínky řešitelnosti 2. Rovnice upravíme do "základního" tvaru, tj. do tvaru, kdy na levé straně rovnice máme sloučené neznámé (v pořadí podle abecedy) a na pravé straně máme číslo; používáme přitom běžného postupu řešení samostatných rovnic - tedy nejprve odstraňujeme závorky, pak zlomky, atd. 3. Z libovolné rovnice vyjádříme libovolnou neznámou (výhodné je volit tu, kde je koeficient 1). 4. Tuto vyjádřenou neznámou dosadíme do zbývající rovnice (příp. do zbývajících rovnic, je-li jich více). 5. Vyřešíme vzniklou rovnici o jedné neznámé běžným způsobem (platí tehdy, pokud byla zadána soustava dvou rovnic o dvou neznámých; pokud rovnic bylo více, vznikla nám nyní soustava více rovnic a musíme dále opakovat kroky 2) - 4) ). 6. Vypočtenou neznámou dosadíme do rovnice, kde jsme vyjádřili první neznámou (krok 3) ) a vyřešíme druhou neznámou. 7. Provedeme zkoušku, a to tak, že dosazujeme do každé strany každé rovnice. 8. Zapíšeme výsledek uspořádanou dvojicí. Řešení soustav rovnic metodou sčítací Sčítací metodu je výhodné použít tehdy, pokud je u všech neznámých v rovnicích upravených do "základního" tvaru koeficient jiný než číslo 1 nebo (-1). Lze ji s výhodou ale samozřejmě použít i v případě, že tam jednička je. Sčítací metodu používáme zpravidla u soustavy dvou rovnic o dvou neznámých. Je ji ale možno použít i pro více rovnic. 25 z 47

Ukázkové příklady: Příklad 5: Řešte soustavu rovnic: 2. (x - 3y) = 15 4x - y = -3 2x - 6y = 15 (1) 4x - y = -3 Rovnice upravíme tak, aby po jejich sečtení vypadla neznámá x. Znamená to, že první rovnici vynásobíme číslem (-2) a druhou necháme beze změn. Pozn.: Sečíst rovnice znamená sečíst jejich levé strany a jejich pravé strany. -4x + 12y = -30 4x - y = -3 Rovnice sečteme -4x + 4x + 12y - y = -30-3 11y = -33 y = -3 Vrátíme se k rovnicím v zápisu (1), tj. k rovnicím upraveným do "základního" tvaru. Nyní je upravíme tak, aby po jejich sečtení vypadla neznámá y. Stačí tedy první rovnici ponechat a druhou vynásobit číslem (-6): 2x - 6y = 15-24x + 6y = 18 Obě rovnice opět sečteme: 2x - 24x - 6y + 6y = 15 + 18-22 x = 33 x = -1,5 Zapíšeme výsledek: [x; y] = [-1,5; -3] Zkouška se provádí stejným způsobem jako u dosazovací metody. Pozn.: Někdy se soustava rovnic také řeší tak, že jednu neznámou vyřešíme sčítací metodou a vzniklý kořen pak dosadíme do některé ze zadaných rovnic. Vyřešením rovnice o jedné neznámé pak získáme kořen druhý. V tomto případě ale už nelze hovořit o sčítací metodě. Pozn.: Pokud chceme řešit sčítací metodou soustavu více než dvou rovnic, pak postupujeme tak, že např. v soustavě třech rovnic, která je v "základním" tvaru, upravíme rovnice tak, aby po sečtení libovolných dvou rovnic vypadla jedna neznámá a při sečtení jiné libovolné dvojice vypadla tatáž neznámá. Tím získáme soustavu dvou rovnic o dvou neznámých, kterou pak řešíme podle postupu v příkladu 5. ± Soustavy rovnic - procvičovací příklady 1. 1703 Nekonečně mnoho řešení 26 z 47

2. 1706 Řešením je uspořádaná dvojice [8; 3] 3. 1694 Řešením je uspořádaná dvojice [1; -1] 4. 1700 Řešení je uspořádaná dvojice [1; 3] 5. 1705 Řešením je uspořádaná dvojice [7; 5] 6. 1707 Nemá řešení 7. 1699 Řešením je uspořádaná dvojice [4; 2] 27 z 47

8. 1697 Řešením je uspořádaná dvojice [1; -1]. 9. 1698 Řešením je uspořádaná dvojice [4; -3] 10. 1708 Řešením je uspořádaná dvojice [3; 2] 11. 1695 Soustava nemá řešení. 12. 1691 Nekonečně mnoho řešení 13. 1702 Nemá řešení. 28 z 47

14. 1693 Řešením je uspořádaná dvojice [1; -1] 15. 1692 16. 1704 Řešením je uspořádaná dvojice [11; 6] 17. 1696 Řešením je uspořádaná dvojice [1; 2] ± Slovní úlohy řešené rovnicí nebo soustavou rovnic Slovní úlohy řešené rovnicí Do této skupisy slovních úloh patří jednak klasické slovní úlohy (např. typu "Ve skladu je ve třech policích... výrobků, v první polici jich je o 10 více než ve druhé a ve třetí o pět méně než v druhé. Kolik výrobků je v každé polici?"). Patří sem ale i slovní úlohy o pohybu ("Z místa A vyjelo auto rychlostí..., z místa B vyjelo auto v opačném směru rychlostí... atd.) nebo úlohy o společné práci ("První zedník by sám postavil zeď za 12 hodin, druhý zedník by ji sám postavil za 8 hodin. Jak dlouho budou stavět zeď oba současně?), ale i úlohy o směsích ("Kolika procentní vznikne roztok, smícháme-li 1 litr 8%-ního octa s 0,5 litrem vody?") Většinu úloh je vhodné řešit pomocí tabulky. Obecný postup řešení (platí pro většínu slovních úloh řešených rovnicí): 29 z 47

1. Do tabulky provedeme zápis. 2. Sestavíme rovnici. 3. Vyřešíme rovnici a provedeme zkoušku (můžeme též provést zkoušku příkladu). 4. Zapíšemé závěr - odpověď. ± Slovní úlohy - procvičovací příklady 1. Žáci 8. ročníku byli na třídenním výletu a ušli celkem 42 km. První den ušli dvakrát více než třetí den a druhý den o 4 km více než třetí den. Kolik kilometrů ušli každý den? První den 19 km, druhý den 13,5 km, třetí den 9,5 km. 1999 2. Zahradník koupil 80 květináčů za 2 832 Kč. Menší byly po 32 Kč, větší po 40 Kč. Kolik bylo kterých? 46 květináčů po 32 Kč, 34 květináčů po 40 Kč. 1996 3. Podnikatel měl dodat v lednu a v únoru stejné množství výrobků, v březnu pak dvojnásobné množství než v lednu. Kvůli provozním potížím však dodal v lednu o třetinu méně než měl, v únoru ještě o 60 kusů méně než v lednu a teprve v březnu dodal o 280 kusů víc než původně měl dodat za březen. Přesto chybělo ještě 12 kusů ke splnění celé dodávky. Jaké množství měl dodávat v jednotlivých měsících? Leden a únor po 360 kusech, březen 720 kusů. 2012 4. Orba skončí v plánovaném termínu, jestliže traktoristé zorají denně 150 ha pole. Díky dobré péči mechaniků pracovaly traktory bez poruchy a traktoristé zorali denně 200 hektarů pole a skončily orbu o dva dny dříve, než se plánovalo. Kolik hektarů pole zorali a za kolik dní? Za 6 dní 1 200 ha pole. 2001 5. Do třídy chodí 27 žáků. V určitý den chybělo 6 chlapců a 1 dívka a počet chlapců a dívek byl v tento den stejný. Kolik chlapců a kolik dívek má třída celkem, jsou-li všichni žáci přítomni? 11 dívek, 16 chlapců 1997 6. Denní produkce mléka 630 litrů byla slita do 22 konví, z nichž některé byly po 25 litrech a jiné po 35 litrech. Všechny konve byly plné. Kolik bylo jednotlivých konví? 14 konví po 25 litrech, 8 konví po 35 litrech 2007 7. V teplárně spotřebovali první den pětinu zásoby uhlí, druhý den spotřebovali třetinu zbytku. Třetí a čtvrtý den spotřebovali zbývajících 6 400 tun uhlí. Jakou zásobu uhlí měla teplárna původně? 12 000 tun 2006 8. Žák má ve stavebnici 15 volantů a 53 koleček. Ze všech volantů a koleček sestavuje tříkolky (1 volant a tři kolečka) a autíčka (1 volant a 4 kolečka). Kolik sestavil tříkolek a kolik autíček? 8 autíček, 7 tříkolek. 2003 30 z 47

9. Ivana si hrála s dvoumiskovými rovnoramennými vahami. Když položila na levou misku autíčko a na pravou míč a dvě kostky, nastala rovnováha. Další rovnováhu docílila, když na levou misku položila autíčko a jednu kostku a na pravou dva míče. Kolik kostek má právě takovou hmotnost jako autíčko? 5 1995 10. Ve městě jsou dvě školy, ve kterých je celkem 1 157 žáků. V první škole je o 9 dívek více než chlapců, ve druhé škole je o 2 chlapce více než dívek. Kolik je v obou školách dohromady chlapců a kolik dívek? 575 chlapců, 582 dívek 2008 11. Dvěma sourozencům je dohromady šest let. Jeden je o pět roků mladší než druhý. Určete věk obou sourozenců. Staršímu je 5,5 roku, mladšímu je 0,5 roku. 1982 12. Dvě dílny jednoho závodu vyrobí denně 26 součástek. Aby společně vyrobily 350 součástek, pracovala první dílna 14 dní a druhá o den méně. Kolik součástek vyrobí každá dílna denně? První dílna 12 součástek, druhá dílna 14 součástek. 1993 13. Slavného řeckého matematika Pythagora se ptali, kolik žáků navštěvuje jeho školu. Odpověděl: "Polovina žáků studuje matematiku, čtvrtina hudbu, semina mlčí a kromě toho jsou tam ještě tři ženy." Kolik žáků navštěvuje jeho školu? 28 1985 14. Na rekreační zájezd jelo 35 účastníků. Bylo zaplaceno celkem 8 530 Kč. Zaměstnanci platili 165 Kč, rodinní příslušníci 310 Kč. Vypočítejte, kolik bylo zaměstnanců a kolik bylo rodinných příslušníků. 16 zaměstnanců, 19 rodinných příslušníků. 1994 15. Limonáda s kelímkem stála 5,80 Kč. Limonáda byla o 5 Kč dražší než kelímek. Kolik stál kelímek? 40 haléřů 1986 16. Z kovové tyče byly zhotoveny tři součástky. Na první byla spotřebována polovina tyče, na druhou dvě třetiny zbytku a třetí měla hmotnost 3 kg. Jakou hmotnost měla celá tyč? 18 kg 2000 17. Písemná práce z matematiky dopadla takto: Polovina žáků vyřešila jen část úloh, všechny úlohy vyřešilo 8 žáků, čtvrtina žáků nevyřešila nic. Kolik žáků psalo písemnou práci? 32 žáků 1991 18. Číslo 138 napište jako součet čtyř po sobě jdoucích celých čísel. 33, 34, 35, 36 1989 31 z 47

19. Během dne navštívilo výstavu 130 návštěvníků, kteří zaplatili vstupné v celkové částce 630 Kč. Kolik z nich bylo dospělých a kolik bylo dětí, jestliže vstupné pro dospělé bylo 6 Kč a vstupné pro děti bylo 3 Kč. Dospělých 80, dětí 50 2002 20. Turista utratil každý den polovinu částky, kterou vlastní, a ještě 10 Kč. Za tři dny utratil všechny své peníze. Kolik peněz měl turista původně? 140 Kč 2011 21. Viktor ušetřil dvakrát víc korun než Hanka, Tomáš o sedm korun méně než Viktor, Dáša o 13 Kč více než Tomáš. Dohromady ušetřili 293 Kč. Kolik ušetřil každý? Hanka 42 Kč, Tomáš 77 Kč, Viktor 84 Kč, Dáša 90 Kč. 1984 22. Přátelé jeli na výlet. Nejprve 15 % celkové trasy jeli vlakem, pak jednu dvacetinu cesty šli pěšky, dalších 6 km jeli lanovkou, poté dvě pětiny cesty urazili pěšky a nakonec 14 km jeli vlakem. Kolik kilometrů ujeli vlakem a kolik kilometrů ušli pěšky? Vlakem 21,5 km, pěšky 22,5 km 1998 23. Dvě stě krabic pracích prášků bylo v obchodě narovnáno ve třech policích. V první bylo o 13 krabic více než ve druhé, ve druhé o jednu pětinu více než ve třetí polici. Kolik krabic bylo ve které polici? První police 79 krabic, druhá police 66 krabic, třetí police 55 krabic. 2004 24. Denní produkce mléka 620 litrů byla slita do 22 konví, z nichž některé byly po 25 litrech a jiné po 35 litrech. Všechny konve byly plné. Kolik bylo jednotlivých konví? 15 konví po 25 litrech, 7 konví po 35 litrech 2005 25. Otec chtěl původně rozdělit majetek svým dvěma synům v poměru 7:6. Pak ho však rozdělil v poměru 6:5 (ve stejném pořadí). Jeden ze dvou synů se rozzlobil, že měl původně dostat o 120 Kč víc. Kolik korun dostal každý syn? První syn dostal 9 360 Kč, druhý syn dostal 7 800 Kč. 2009 26. Anička jela na jarní prázdniny k babičce. Za cestu zaplatila 38 Kč, což byly dvě třetiny jejích úspor. Babičce koupila dárek za 35,50 Kč a sestřence koupila knížku za 16,70 Kč. Kolik Kč jí zbylo na útratu, jestliže si ještě odložila peníze na zpáteční cestu? 42,80 Kč 1987 27. Petr šel se svou sestrou Ivou na houby. Petr našel o 23 hub více než Iva. Cestou z lesa Iva poprosila Petra: "Dej mi tolik hub, abych jich měla alespoň o 5 více než ty." Petr jí vyhověl. Kolik hub jí nejméně musel dát? 14 hub 2010 28. Když byl cestující ve vlaku v polovině cesty, usnul. Po probuzení zjistil, že má jet ještě pětinu té cesty, kterou projel ve spánku. Jakou část cesty zaspal? Pět dvanáctin celé cesty 2013 32 z 47

29. Prodavač prodal za tři dny celkem 1 280 stíracích losů. Druhý den prodal o 90 losů méně než první den, třetí den prodal 1,5krát více losů než druhý den. Kolik losů prodal první den? 430 losů 1983 30. Jana a Eva četly stejnou knihu. Jana přečetla denně 14 stránek a dočetla knihu o den dříve než Eva, která přečetla denně 12 stránek. Kolik stran měla kniha? 84 1988 31. Jedna čtvrtina délky pilíře je zaražena v zemi, dvě třetiny jeho délky jsou ve vodě a nad hladinu vyčnívá část dlouhá 1,20 m. Jak dlouhý je pilíř? 14,4 m 1992 32. Mezi tři soutěžící děti byly rozděleny body tak, že poslední získalo jednu šestinu všech bodů, předposlední získalo jednu třetinu všech bodů a první získalo 60 bodů. Kolik bodů se celkem rozdělilo a kolik dostalo druhé dítě? Celkem 120 bodů, druhé dítě 40 bodů. 1990 ± Kvadratická funkce Kvadratická funkce je funkce, která je dána rovnicí y = ax 2 + bx + c, kde a, b, c jsou reálná čísla a číslo a ¹ 0. Grafem kvadratické funkce je parabola (nebo její část). Graf kvadratické funkce y -1,5-1 -0,5 0 0,5 1 1,5 x Definičním oborem kvadratické funkce jsou všechna reálná čísla. Je-li číslo a > 0, pak má funkce minimum (viz horní obrázek), je-li a < 0, pak má funkce maximum. 33 z 47

Graf kvadratické funkce -1,5-1 -0,5 0 0,5 1 1,5 y x Názvy členů funkce: ax 2... kvadratický člen bx... lineární člen c... absolutní člen I. Kvadratická funkce bez lineárního a bez absolutního členu - jedná se o funkci, která je dána rovnicí y = ax 2 - definičním oborem jsou všechna reálná čísla - oborem hodnot je interval <0; + ), je-li a > 0 a interval (- ; 0> je-li a < 0 - souřadnice maxima (resp. minima): M[0; 0] - graf tedy protíná obě osy v počátku souřadného systému - čím je absolutní hodnota čísla a větší, tím je graf užší, sevřenější. II. Kvadratická funkce bez lineárního členu - jedná se o funkci, která je dána rovnicí y = ax 2 + c - definičním oborem jsou opět všechna reálná čísla - oborem hodnot je interval: pro a > 0... <c; + ) pro a < 0... (- ; c> - souřadnice maxima (resp. minima): M[0; c] - graf tedy protíná osu y v bodě, který nazýváme maximum (resp. minimum) - je-li c > 0 a zároveň a < 0 nebo c < 0 a zároveň a > 0, pak graf protíná i osu x, a to ve dvou bodech, které jsou osově souměrné podle osy y. Souřadnice průsečíků s osou x mají v tomto případě souřadnice: é - c ù X1ê ; 0 ú ë a û é - c ù X 2 ê- ; 0ú ë a û III. Kvadratická funkce se všemi členy - jedná se o funkci, která je dána rovnicí y = ax 2 + bx + c - definičním oborem jsou opět všechna reálná čísla Příklad.: Je dána funkce y = 2x 2 + 3x + 4. Určete, zda má funkce maximum nebo minimum, zjistěte jeho souřadnice a určete souřadnice průsečíků s oběma osami. Řešení: Zda má funkce maximum nebo minimum, to rozhodneme podle čísla a. Vzhledem k tomu, že a = 2, což je větší než nula, má funkce minimum. Jeho souřadnice určíme tzv. doplněním na čtverec. Postup: 1. Vytkneme číslo a... y = 2.(x 2 + 1,5x + 2) 2. Podíváme se, jaké znaménko je u lineárního členu a podle toho rozhodneme, zda použijeme vzorec (A+B) 2 nebo (A-B) 2. V tomto případě použijeme ten první. 3. Z kvadratického členu u trojčlenu v závorce určíme číslo A. V tomto případě je tedy x. 34 z 47

4. Z lineárního členu u trojčlenu v závorce určíme číslo B. V tomto případě je tedy 0,75 5. Použijeme vzorec a dostaneme y = 2.[(x + 0,75) 2-0,75 2 + 2] Pozn. 0,75 2 odečítáme proto, aby nebyla porušena rovnost, protože jsme to zahrnuli do závorky 6. Odstraníme hranatou závorku roznásobením číslem a: y = 2.(x + 0,75) 2 + 2,875 7. Určíme souřadnice hledaného minima: M[-0,75; 2,875] Všimněme si, že první souřadnici určujeme vždy s opačným znaménkem než má člen v závorce a naopak u druhé souřadnice zůstává znaménko zachováno. Určení průsečíků s osami: a) s osou x V tomto případě y = 0, dosadíme do rovnice funkce a vypočteme x 2x 2 + 3x + 4 = 0 Diskriminant D = 3 2-4.2.4 = 9-32 = -23 Vzhledem k tomu, že diskriminant vyšel záporný, nemá kvadratická rovnice řešení a neexistují tedy průsečíky s osou x. b) s osou y V tomto případě x = 0, dosadíme do rovnice funkce a vypočteme y y = 2.0 2 + 3.0 + 4 = 4 Hledané souřadnice tedy jsou Y[0; 4] Pokud máme souřadnice průsečíků a souřadnice extrému (tj. minima nebo maxima), pak můžeme snadno určit průběh grafu a graf tedy načrtnout. Číslo 2 před závorkou nám ještě říká, že graf bude trochu užší. Ačkoliv to nebylo úkolem, můžeme nyní i určit obor hodnot funkce zadané v předcházejícím příkladu. Je to jednoduché. Funkce má minimum, tedy hodnoty se nedostanou pod druhou souřadnici tohoto bodu. Oborem hodnot je tedy interval <2,875; + ) ± Kvadratická funkce - procvičovací příklady 1. 1362 2. 1350 35 z 47

3. 1346 4. 1355 5. 1353 Existuje - viz graf 6. 1348 36 z 47

7. 1358 8. 1363 9. 1360 37 z 47

10. 1354 Platí - viz graf 11. 1359 12. 1356 13. 1351 38 z 47

14. 1347 15. 1357 16. 1361 39 z 47

17. 1345 18. 1352 Neexistuje - viz graf 19. 1349 ± Kvadratické rovnice Kvadratické rovnice Kvadratická rovnice je rovnice, která ve svém zápisu obsahuje neznámou ve druhé mocnině a zároveň neobsahuje neznámou v mocnině vyšší než druhé. 40 z 47

Obecně lze kvadratickou rovnici zapsat: ax 2 + bx + c = 0, kde a ¹ 0 Podobně jako u kvadratické funkce, můžeme jednotlivé členy nazvat: ax 2... kvadratický člen bx... lineární člen c... absolutní člen Kvadratická rovnice má zpravidla dva kořeny x 1, x 2, může jich mít ale i méně. Zkoušku provádíme pro každý kořen zvlášť. Jakoukoliv kvadratickou rovnici můžeme řešit pomocí vzorce, v němž se vyskytuje tzv. diskriminant kvadratické rovnice. Tento postup si ukážeme později. Pokud totiž kvadratická rovnice neobsahuje všechny členy, můžeme většinou použít i postupy jednodušší. Každou kvadratickou rovnici, která obsahuje závorky, či zlomky, nejprve převedeme do tvaru ax 2 + bx + c = 0 Při řešení samozřejmě nezapomínáme na podmínky řešitelnosti, pro které platí stejná pravidla jako při řešení rovnic lineárních. 1. Kvadratická rovnice bez lineárního a bez absolutního členu Jedná se o rovnici zapsanou obecně: ax 2 = 0 Takovouto rovnici řešíme snadno tak, že v prvním kroku celou rovnici vydělíme koeficientem a. Můžeme to provést, protože z definice víme, že koeficient a je nenulový. Dostaneme tak: x 2 = 0 A odtud tedy: x 1,2= Ö0 x 1,2= 0 Protože vyšly oba kořeny shodné, hovoříme o tzv. dvojnásobném kořenu. Příklad 1: Řešte kvadratickou rovnici 3x 2 = 0 Řešení: 3x 2 = 0 :3 x 2 = 0 x 1,2= 0 Můžeme tedy vyslovit jednoduchý závěr: Každá kvadratická rovnice bez lineárního a bez absolutního členu má jeden dvojnásobný kořen, a tím je 0. 2. Kvadratická rovnice bez lineárního členu Jedná se o rovnici zapsanou obecně: ax 2 + c = 0 Rovnici řešíme tak, že v prvním kroku převedeme číslo c na pravou stranu: Dostaneme: ax 2 = - c Dále rovnici vydělíme koeficientem a: Dostaneme: x 2 = -c/a Nyní rovnici odmocníme. Pokud ale řešíme v oboru reálných čísel, můžeme tento krok provést pouze tehdy, že v případě, že je číslo a kladné, musí být číslo c záporné (a tedy -c kladné). Druhou odmocninu totiž můžeme v oboru reálných čísel provádět pouze z nezáporných čísel (číslo 0 už jsme ale rozebrali v předcházejícím odstavci) Dostaneme: x 1,2= ±Ö(-c/a) Znamená to tedy, že x 1 = +Ö(-c/a) x 2 = -Ö(-c/a) Příklad 2: 41 z 47

Řešte kvadratickou rovnici -3x 2 + 27 = 0 v oboru reálných čísel. Řešení: -3x 2 + 27 = 0 :(-1) 3x 2-27 = 0 3x 2 = 27 :3 x 2 = 9 x 1,2= ±Ö9 x 1 = 3 x 2 = -3 Příklad 3: V oboru reálných čísel řešte kvadratickou rovnici 3x 2 + 6 = 0 Řešení: 3x 2 = -6 x 2 = -2 V tomto případě nemá rovnice v oboru reálných čísel řešení. Příklad 4: V oboru reálných čísel řešte kvadratickou rovnici 3x 2-6 = 0 Řešení: 3x 2 = 6 x 2 = 2 x 1,2= ±Ö2 x 1 = +Ö2 x 2 = -Ö2 3. Kvadratická rovnice bez absolutního členu Jedná se o rovnici, kterou můžeme zapsat obecně rovnicí ax 2 + bx = 0 Při řešení v prvním kroku na levé straně rozložíme na součin vytknutím x: Dostaneme: x.(ax + b) = 0 Nyní využijeme vlastnosti, že součin je roven nule tehdy, když alespoň jeden z činitelů je roven nule. Může tedy nastat, že x 1 = 0 nebo (ax + b) = 0 a odtud: x 2 = -b/a Příklad 5: V oboru reálných čísel řešte kvadratickou rovnici 2x 2 + 6x = 0 Řešení: x 2 + 3x = 0 x.(x + 3) = 0 x 1 = 0 x 2 = -3 Můžeme vyslovit jednoduchý závěr, že kvadratická rovnice bez absolutního členu má jeden kořen vždy roven nule. 4. Obecná kvadratická rovnice 42 z 47

Jedná se o rovnici obecně zapsanou ax 2 + bx + c = 0 Samozřejmě předpokládáme, že už jsme zadanou rovnici převedli do výše uvedeného základního tvaru, tzn. odstranili jsme běžným způsobem závorky a zlomky. Tento typ rovnice řešíme podle vzorce: x 1,2 - b ± = 2 b - 4ac 2a Pokud je číslo b sudé, můžeme výhodně použít i vzorec pro poloviční hodnoty: x 1,2 b - ± 2 = Příklad 6: æ b ö ç è 2 ø a 2 - ac V oboru reálných čísel řešte kvadratickou rovnici x 2 + 4x - 60 = 0 Řešení: a = 1 b = 4 c = -60 Vzhledem k tomu, že b je sudé, použijeme vzorec pro poloviční hodnoty: x 1,2 b - ± 2 = æ b ö ç è 2 ø a 2 2 - ac 4 æ 4 ö - ± ç -1.(- 60) 2 è 2 ø - 2 ± 4 + 60 x1,2 = = = -2 ± 1 1 x 1,2= -2 ± 8 x 1 = 6 x 2 = -10 Příklad 7: V oboru reálných čísel řešte kvadratickou rovnici 3x 2-5x + 8 = 0 Řešení: a = 3 b = -5 c = 8 64 x x 1,2 1,2 - b ± = - = 2 b - 4ac 2a (- 5) ± (- 5) 2.3 2-4.3.8 5 ± = 25-96 6 5 ± = - 71 6 V tomto případě nemá kvadratická rovnice v oboru reálných čísel řešení, protože v oboru reálných čísel nemůžeme vypočítat druhou odmocninu ze záporného čísla. 43 z 47

Pozn.: Výraz b 2-4ac, který se vyskytuje ve vzorci pro výpočet kvadratické rovnice pod odmocninou, nazýváme diskriminant kvadratické rovnice. Pro tento diskriminant, označovaný také D, platí: Je-li D > 0... kvadratická rovnice má dva reálné různé kořeny Je-li D = 0... kvadratická rovnice má jeden (dvojnásobný) kořen Je-li D < 0... kvadratická rovnice nemá v oboru reálných čísel žádné řešení Příklad 8: V oboru reálných čísel řešte kvadratickou rovnici 3x 2-5x - 8 = 0 Řešení: a = 3 b = -5 c = -8 x x x 1,2 1,2 1,2 - b ± = - = 2 b - 4ac 2a (- 5) ± (- 5) 5 ± 11 = 6 x 1 = 8/3 x 2 = -1 2.3 2-4.3.( -8) 5 ± = 25 + 96 6 5 ± = 121 6 ± Kvadratické rovnice - procvičovací příklady 1. 1575 2. 1553 3. 1582 4. 1583 44 z 47

5. 1568 6. 1563 7. 1573 8. 1566 9. 1554 10. 1577 11. 1574 12. 1570 13. 1562 45 z 47

14. 1555 15. 1552 16. 1572 17. 1571 18. 1579 19. 1559 20. 1569 21. 1556 22. 1557 23. 1567 46 z 47

24. 1576 25. 1580 26. 1558 27. 1561 28. 1564 29. 1560 30. 1581 31. 1565 32. 1578 47 z 47

Obsah Funkce 1 Funkce - procvičovací příklady 2 Lineární funkce 4 Lineární funkce - procvičovací příklady 6 Vyjádření neznámé ze vzorce 11 Vyjádření neznámé ze vzorce - procvičovací příklady 11 Lineární rovnice 13 Lineární rovnice - procvičovací příklady 15 Soustavy rovnic 22 Soustavy rovnic - procvičovací příklady 26 Slovní úlohy řešené rovnicí nebo soustavou rovnic 29 Slovní úlohy - procvičovací příklady 30 Kvadratická funkce 33 Kvadratická funkce - procvičovací příklady 35 Kvadratické rovnice 40 Kvadratické rovnice - procvičovací příklady 44 10.6.2009 11:41:16 Vytištěno v programu dosystem - EduBase (www.dosli.cz)