STATISTIKA PRO EKONOMY

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "STATISTIKA PRO EKONOMY"

Transkript

1 EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U

2 Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU Praha 006

3 Úvod Úvod Úvod Cílem této učebí pomůcky je podat výklad základích statistických metod, s kterými ekoom přichází v praxi do styku a které acházejí široké uplatěí při zpracováí, prezetaci a aalýze hospodářských a sociálích jevů. Výběr metod a způsob jejich objasěí je podříze zájmu a zdůrazěí postupů a aplikací, které jsou typické pro aalytickou a rozhodovací čiost ekoomů a maažerů. Obecě platí, že ideové zvládutí statistického přístupu k hodoceí čísel zobrazujících reálý svět má dvojí výzam. V prvé řadě je předpokladem pro kvalifikovaé využíváí číselých iformací, s kterými se v ekoomickém prostředí deě setkáváme. V druhé řadě je to ezbytý prví krok pro racioálí uplatěí výpočetí techiky v práci se statistickými daty. I v oblasti aplikace statistických metod existuje bohatá abídka specializovaého statistického softwaru, jehož účelé využíváí však vyžaduje dobrou zalost statistických procedur a zejméa jejich cílů a podmíek jejich použití. Skriptum je kocipováo tak, aby obsáhlo všecha základí témata stadardího kurzu statistiky. Výklad jedotlivých partií eí příliš zatíže popisem teorie a důkazy a akcetuje objasňováí praktické stráky statistických metod, jejich použitelosti při řešeí typických statistických úloh a také při řešeí problémů spojeých s iterpretací a hodoceím výsledků. Doc. Ig. Eduard Souček, CSc. Vysoká škola ekoomie a maagemetu 5

4 kapitola 1 Popisá statistika

5 Popisá statistika Kapitola 1 1. kapitola Popisá statistika Úvod Statistický přístup ke zkoumáí sociálě-ekoomické reality vychází z potřeby získáí základích číselých popisých charakteristik statistického souboru, a základě kterých by bylo možo v přehledé podobě jedozačě specifikovat vlastosti hodoceého souboru. K tomuto účelu slouží především dvě základí kategorie popisých měr: míry úrově a míry variability hodot. Zalost těchto měr je eje výchozím bodem každé věcé aalýzy, ale i podmíkou pro případé komparace více statistických souborů. Studium této kapitoly objasí Cíle popisu statistického souboru popisými charakteristikami. Způsoby prezetace dat v tabulkových a grafických formách. Výpočet a použití charakteristik úrově. Výpočet a použití charakteristik variability. Výpočet a použití charakteristik symetrie rozděleí. Vzik statistiky Termí statistika je odvoze od latiského status, což v latiě zameá stav a ve slovím spojeí status rei republicae je to stav věci veřejé eboli stát. Od tohoto výzamu vzikla v 16. a 17. století italská slova statistica pro ozačeí souhru zalostí o státích záležitostech. Teto termí se pak rozšířil v podobém výzamu i meziárodě. Čiosti blízké statistice však mají daleko starší historii. Zámá jsou sčítáí lidí před ěkolika tisíciletími v Egyptě a v Číě. Běžá byla zjišťováí pro účely vojeské a daňové ve starém Římě. S prvími badatelskými aplikacemi statistiky se setkáváme v Aglii (Joh Graut, , a William Petty, ), kdy byla shromažďováa data pro zkoumáí pravidelostí v úmrtosti a porodosti obyvatelstva. Graut a Petty již usilovali o zobecěí výzamu jedotlivých případů tím, že zkoumali skutečosti, které mají povahu hromadého jevu. Svůj postup zkoumáí ozačil Petty jako politickou aritmetiku, aby tak vyjádřil fakt, že zkoumá skutečosti důležité pro stát a současě, že jde o číselé charakterizováí hodoceých jevů. Výzamým vkladem pro teoretické zázemí statistických metod byl rozvoj počtu pravděpodobosti. Prví kroky počtu pravděpodobosti jsou spojey s matematickými výpočty u hazardích her. Další vývoj teorie pravděpodobosti je spoje se jméy slavých matematiků (B. Pascal, J. Beroulli, T. Bayes, P. S. Laplace, K. F. Gauss, P. L. Čebyšev, A. A. Markov a další). 9

6 Kapitola 1 Edice učebích textů Statistika pro ekoomy Pojetí statistiky Pojem statistika se v současosti používá ve třech výzamech: a) pro vyjádřeí souhru dat o hromadých jevech, b) pro čiost směřující k získáváí statistických dat, jejich uspořádáí a zpracováí a ásledou prezetaci, c) pro metodologickou vědu, jejímž cílem je zkoumáí zákoitostí hromadých jevů a kterou tvoří metodologie zjišťováí, zpracováí a aalýzy dat. Chápeme-li statistiku v uvedeém třetím výzamu, tedy jako metodologickou vědu, zjistíme, že jsou pro i přízačé dvě skutečosti: 1. Jejím předmětem jsou hromadé jevy, e jevy jediečé a eopakovatelé. Zameá to, že statistiku ezajímá kokrétí jediec (předmět, objekt, událost) sám o sobě, ale je jako součást souboru jediců. Cílem statistiky je geeralizace založeá a zkoumáí souborů případů.. Zkoumaé pozatky o hromadých jevech vyjadřuje statistickými daty. V tomto pojetí, jež chápe statistiku jako metodologickou disciplíu, která zkoumá svými specifickými metodami hromadé jevy, se bude statistikou zabývat teto učebí text. 10

7 Popisá statistika Kapitola Základí statistické pojmy Statistický soubor a statistická jedotka Zkoumáí hromadých jevů předpokládá defiováí z hlediska účelu zkoumáí vymezeé možiy objektů, prvků zkoumáí eboli statistického souboru (soubor podiků, soubor obyvatelstva, soubor událostí apod.). Jedotlivé objekty, prvky statistického souboru, ozačujeme jako statistické jedotky. Jsou ositeli vlastostí daého souboru. Počet jedotek statistického souboru se azývá rozsah souboru. Soubory, které jsou předmětem zkoumáí, ozačujeme jako základí soubor (ěkdy se základí soubor ozačuje jako populace). V praxi často z růzých důvodů epracujeme s celým rozsahem statistického souboru, ale je se vzorkem statistických jedotek eboli s výběrovým souborem. K tomu dochází buď proto, že zkoumáí celého statistického souboru by bylo ákladé, časově zdlouhavé ebo z jiých praktických ohledů euskutečitelé, a dále proto, že zobecěí provedeé z dat výběrového souboru považujeme pro daý účel zkoumáí za dostatečě přesé a z hlediska pozáí za reprezetativí Statistický zak Zkoumaé vlastosti statistického souboru sleduje statistika prostředictvím měřitelých vlastostí statistických jedotek, které vyjadřuje tzv. statistickými zaky. Statistický zak abývá slovích ebo číselých hodot a je zjišťová u každé statistické jedotky statistického souboru. Jestliže ve statistickém souboru pracujeme je s jedím zakem (s jedou proměou), říkáme, že se jedá o jedorozměrý soubor, máme-li současě více zaků, jde o dvou-, tří-, resp. obecě vícerozměrý soubor. Základím tříděím statistických zaků je rozlišováí zaků číselých (kvatitativích, umerických) a zaků slovích (kvalitativích, alfabetických, kategoriálích). Číselé statistické zaky bezprostředě vyjadřují sledovaé vlastosti čísly (apř. při zkoumáí souboru pracovíků podiku jsou to zaky jako mzda, věk, doba praxe). Rozlišujeme zaky spojité (kotiuálí), které mohou teoreticky abývat libovolých reálých číselých hodot v určitém itervalu (průtok vody, hmotost výrobku, výška, peěží obrat apod.) a zaky espojité (diskrétí), které mohou abývat pouze určitých číselých hodot v oboru reálých čísel (počet pracovíků, počet prodaých výrobků, počet čleů domácosti apod.). Jsou-li hodoty statistického zaku vyjádřey slově, azývá se takový zak sloví (apř. u osob je to vzděláí, odvětví čiosti, árodost, pohlaví). Zvláští skupiou slovích statistických zaků jsou ordiálí (pořadové) zaky. Ty jsou takové, že jejich obměy lze podle ějakého objektivího kritéria seřadit od ejmeší obměy do ejvětší, apř. a základě ějakého expertího ohodoceí. Taková situace vziká kupř. při posuzováí kvality výrobku, kdy výrobky jsou a základě hodoceí expertů seřazey od ejlepšího k ejhoršímu. Namísto slovího popisu obmě pak u ordiálích zaků můžeme pracovat s pořadovými čísly jako s určitou formou kvatifikace těchto obmě. 11

8 Kapitola 1 Edice učebích textů Statistika pro ekoomy 1. Zjišťováí a prezetace statistických dat Statistické zkoumáí prochází postupě ěkolika pracovími etapami. Výchozí etapou je statistické zjišťováí (statistické šetřeí). Cílem je získáváí ezámých statistických dat o hodotách statistických zaků u jedotlivých statistických jedotek, které tvoří statistický soubor. Každé statistické zjišťováí má určitý kokrétí účel, z kterého vyplývá, jaké proměé statistické zaky budeme zjišťovat, co zvolíme za statistickou jedotku a jak vymezíme statistický soubor. Orgaizace statistického zjišťováí musí obsahovat prostorové, věcé a časové vymezeí statistického souboru a statistických zaků. Např. při zjišťováí ekoomických výsledků průmyslových podiků musí orgaizátor šetřeí staovit, zda bude prostorově vymeze okruh průmyslových podiků územím České republiky ebo ějakým jiým regioem a zda o zařazeí podiku do kokrétího území bude rozhodovat umístěí sídla podiku ebo ějaké jié hledisko. Věcé vymezeí musí defiovat, co považujeme za průmyslový podik a jakými ukazateli budeme charakterizovat ekoomické výsledky každého podiku (objem produkce, retabilita, produktivita práce, zisk apod.). Při časovém vymezeí půjde o staoveí kokrétího časového itervalu ebo rozhodého časového okamžiku, ke kterému se budou jedotlivé zjišťovaé údaje vztahovat. Elemetárí zpracováí výsledků statistického zjišťováí Výsledky statistického zjišťováí mají obvykle povahu velkého a epřehledého možství číselých údajů, které je třeba pro aalýzu vhodě uspořádat a utřídit. Tříděím rozumíme rozděleí jedotek souboru do skupi tak, aby vyikly charakteristické vlastosti zkoumaých jevů. Provádíme-li tříděí podle obmě jedoho statistického zaku, mluvíme o tříděí jedostupňovém. Tříděí podle více statistických zaků ajedou ozačujeme jako tříděí vícestupňové. Je-li třídicím zakem číselý (kvatitativí) zak s malým počtem obmě, pak vhodým uspořádáím statistických dat je tabulka rozděleí četostí, kdy apozorovaé hodoty ejprve uspořádáme podle velikosti a ke každé variatě přiřadíme počty statistických jedotek, které udávají, s jakou četostí se jedotlivé variaty hodot vyskytují. Ozačíme-li obměy číselého statistického zaku a četosti i a předpokládáme-li, že tříděím vziklo k obmě, pak tabulku rozděleí četostí lze formálě vyjádřit takto: TABULKA 1.1 Rozděleí četostí Obměa hodoty zaku Četost i x 1 1 x M M x k Celkem k k Souhr četostí za k řádků k je rove rozsahu souboru : i =. Tímto způsobem lze především vyjadřovat rozděleí četostí espojitého statistického zaku. Např. při prezetaci velikostí struktury souboru domácostí budou obměami hodot zaku jedotlivé vyskytující se variaty počtu čleů domácostí a četostmi jsou údaje o počtu domácostí u jedotlivých obmě. i 1 1

9 Popisá statistika Kapitola 1 Sledujeme-li espojitý statistický zak s velkým počtem obmě ebo pracujeme-li se spojitým statistickým zakem, pak uvedeý způsob prezetace výsledků statistického šetřeí by epřiesl žádoucí zpřehleděí statistických dat. V takových případech amísto obmě jedotlivých číselých hodot přecházíme a itervaly hodot a přehledost výsledků regulujeme počtem a šířkou zvoleých itervalů. Výsledá tabulka je ozačováa jako itervalové rozděleí četostí. Při sestavováí itervalového rozděleí četostí je třeba především vyřešit problém staoveí počtu a tím velikosti itervalů. Obvykle volíme řešeí, které eohrožuje příliš iformačí hodotu výsledků. Příliš široké itervaly sižují kvalitu prezetace, příliš úzké aopak zhoršují přehledost a zvyšují rozsah tabulky. Dalším problémem itervalového rozděleí četostí je volba hraic itervalů, aby edocházelo k ejasostem, do kterého itervalu se mají jedotlivé jedotky zařadit. Nejčastěji se hraice itervalů volí tak, aby se itervaly epřekrývaly. Např. při charakterizováí věkové struktury obyvatelstva pětiletými věkovými skupiami se používají itervaly 0 4, 5 9, 10 14, atd. V praxi se často eobejdeme bez tzv. otevřeých itervalů, při jejich použití bychom však měli být opatrí a používat je je pro itervaly s malou četostí, kde ehrozí ebezpečí příliš velké iformačí ztráty. Např. u již zmíěé věkové struktury obyvatelstva to může být otevřeý iterval: 85 a více let. Při výpočtech statistických charakteristik vziká problém, jaká hodota by ve výpočtu měla zastoupit (reprezetovat) jedotlivé itervaly. Za tuto zastupitelou hodotu se zpravidla volí střed itervalu. Grafy rozděleí četostí Nejzámějším grafem rozděleí četostí je tzv. polygo (řecky mohoúhelík), který v pravoúhlém souřadicovém systému používá osu x pro obměy zaku x a osu y pro četosti 1. Pro grafické vyjádřeí itervalového rozděleí četostí se používá histogram. Velikost četostí je vyjádřea sloupci, jejichž základa je rova šířce itervalu. A. Polygo četostí Příklad: rozděleí četostí počtu žáků podle zámky z matematiky OBRÁZEK 1.1 Polygo četosti Zámka Počet žáků Celkem 50 Počet žáků Zámka 13

10 Kapitola 1 Edice učebích textů Statistika pro ekoomy B. Histogram četostí Příklad: itervalového rozděleí četostí počtu škol podle průměrého počtu žáků a 1 třídu OBRÁZEK 1. Histogram četosti Průměrý počet žáků a třídu Počet škol Střed itervalu 16 17, , ,99 1 3, , , ,99 9 Celkem 70 X V případě, že jedotlivé itervaly zastoupíme středy itervalů, můžeme itervalové rozděleí četostí graficky vyjádřit i polygoem. Relativí a kumulativí četosti Abychom mohli vzájemě porovávat růzá rozděleí četostí a jejich struktury v růzě velkých statistických souborech, používáme amísto absolutích četostí relativí četosti p i, které získáme jako poměr dílčích četostí a rozsahu souboru: i p i =. (1.1) U souboru většího rozsahu se relativí četosti zpravidla vyjadřují v procetech. Pro aalýzy struktury souboru z hlediska určité vlastosti může být také užitečé zjistit, jaký podíl jedotek má hodotu meší ebo rovou příslušé variatě. K tomu používáme tzv. kumulativí četosti (absolutí ebo relativí). Získáme je postupým ačítáím četostí po sobě ásledujících tříd. 14

11 Popisá statistika Kapitola 1 PŘÍKLAD 1.1 Za podik máme k dispozici itervalové rozdìleí èetostí hodiových mezd v èleìí a muže a žey. Iterval hodiových Počet pracovíků Relativí četosti v % Kumulativí relativí četosti v % mezd v Kč Muži Žey Muži Žey Muži Žey 0 9, , , , , , a více Celkem X X Pøíklad ilustruje, jak je možo øešit problém epøekrýváí itervalù. Iterval v posledím øádku ozaèujeme jako otevøeý iterval. 1.3 Kvatily Kvatil je hodota proměé určeá tak, že odděluje určitý podíl jedotek, které jsou meší ež tato hodota. Např. dvacetipětiprocetí kvatil ~ x 5 odděluje 5 % malých hodot a současě 75 % velkých hodot. Tímto způsobem můžeme pak, kupř. při hodoceí úrově mezd pracovíků v árodím hospodářství, charakterizovat, jaká mzdová hraice odděluje 5 % pracovíků s ejižšími mzdami. V praxi se používají zejméa tyto skupiy kvatilů: Kvartily (x ~ ~ ~ 5, x 50, x 75 ) patří mezi kvatily, které rozdělují uspořádaou řadu hodot a 4 stejé části: prví (dolí) kvartil x ~ 5, který odděluje 5 % jedotek s ejižšími hodotami, druhý (prostředí) kvartil ~ x 50, který odděluje 50 % jedotek s ízkými hodotami a 50 % hodot s vysokými hodotami. Teto padesátiprocetí kvatil se také ozačuje jako mediá (od latiského medius prostředí). Třetí kvartil (horí) ~ x 75 odděluje 75 % jedotek s ízkými hodotami od 5 % jedotek s vyššími hodotami. Decily (x ~ ~ ~ 10, x 0,..., x 90 ) rozdělují uspořádaou řadu a 10 stejých částí. Cetily, resp. percetily ( ~ x ~ ~ 1, x,..., x 99 ) rozdělují uspořádaou řadu hodot a 100 stejě početých částí. Nejužívaějším kvatilem je mediá, který představuje prostředí hodotu uspořádaého souboru, a je tedy svou vypovídací hodotou blízký aritmetickému průměru. Je-li rozsah souboru udá sudým číslem, obsahuje soubor dvě prostředí hodoty. V tomto případě bývá zvykem volit za mediá průměr z těchto dvou prostředích hodot a mediá pak eí kokrétí hodotou původího souboru. Mediáu dáváme předost před aritmetickým průměrem v těch situacích, kdy aritmetický průměr je výrazě ovlivě existecí extrémích hodot v souboru a poskytuje zkresleý obraz o úrovi hodot, zatímco hodota, která v daém souboru je co do velikosti prostředí, je vůči extrémům imuí. 15

12 Kapitola 1 Edice učebích textů Statistika pro ekoomy Z povahy kvatilů je zřejmé, že prvím krokem při jejich výpočtu je uspořádáí všech hodot sledovaého zaku podle velikosti. Pak staovíme pořadové číslo statistické jedotky, jejíž hodota je hledaým kvatilem. Ozačíme-li toto pořadové číslo z p, pak platí: z p = p + 0,5, (1.) kde je rozsah souboru a p je relativí četost ejižších hodot. Např. pořadové číslo z p pro 1. kvartil ( ~ x 5 ) v souboru = 80 zjistíme takto: z 5 = 80. 0,5 + 0,5 = 0,5. Při odvozováí pořadového čísla z p z četostí vyjádřeých v procetech se hodota 0,5 ve vzorci obvykle zaedbává. Poěkud složitější je výpočet kvatilů z itervalového rozděleí četostí. Pokud se spokojíme pouze s určeím itervalu, v ěmž hledaý kvatil leží, je postup stejý jako v předchozím případě. Chceme-li kvatil odhadout jedím kokrétím číslem, je třeba použít při výpočtu lieárí iterpolaci založeou a předpokladu, že ve stejých proporcích, v jakých rozděluje pořadové číslo hledaého kvatilu iterval četostí, rozděluje kvatil iterval hodot. Teto postup hypoteticky předpokládá, že v itervalu, kde leží hledaý kvatil, jsou hodoty rozděley rovoměrě. PŘÍKLAD 1. Hledáme hodotu všech tøí kvartilù (~x 5, ~x 50, ~x 75 ) v rozdìleí èetostí hodiových mezd v ávazosti a údaje z pøíkladu 1.1. Výpoèet provedeme zvlášś za muže a žey. Využijeme k tomu posledí dva sloupce obsahující v procetech vyjádøeé kumulativí èetosti: Iterval hodiových mezd v Kč Relativí četosti v % Kumulativí relativí četosti v % Muži Žey Muži Žey 0 9, , , , , , a více Celkem X X Pro staoveí jedotlivých kvartilù potøebujeme zjistit k poøadovým èíslùm z 5, z 50 a z 75 odpovídající hodoty mezd: Hodiové mzdy mužù Ze sloupce kumulativích èetostí zjistíme, že poøadové èíslo 5 patøí do tøetího itervalu s hodotami 40 až 49,9 Kè, chápaé vždy zaokrouhleì jako 50 Kè. Z tìchto podkladù mùžeme pro pøibližý výpoèet prvího kvartilu použít lieárí iterpolaci, pøi které bude jeho hodota rozdìlovat teto iterval ve stejém pomìru, jako poøadové èíslo 5 rozdìluje odpovídající iterval èetostí: ~ x = Z toho pak sado odvodíme, že: 1 ~ x5 = = 40, Podobì zjistíme, že: ~ x 50 = 50 + a ~ x 75 = = 60,

13 Popisá statistika Kapitola 1 Hodiové mzdy že ~x 5 = 37, ~x 50 = 46,7 ~x 75 = 56,. 1.4 Statistické charakteristiky Charakteristiky úrově Úroveň jevů vyjadřovaých kvatitativími zaky vyjadřují středí hodoty. Ty v kocetrovaé podobě shrují iformaci obsažeou v údajích o statistickém zaku. Hlaví skupiu středích hodot tvoří průměry (aritmetický průměr, geometrický průměr, harmoický průměr), jejichž společou vlastostí je, že jsou určováy ze všech aměřeých hodot zaku. Druhou skupiu středích hodot tvoří tzv. pozičí středí hodoty (mediá a modus), které jsou určey pozicí ěkterých jedotek souboru. Mediá ~ x je urče hodotou zaku, kterou má jedotka statistického souboru s hodotou co do velikosti prostředí. Modus ^x je urče hodotou zaku u jedotek, které jsou v souboru ejčastěji zastoupey, jiak řečeo, tou hodotou souboru, která má ejvětší četost. A. Průměry Aritmetický průměr x Je ejzámějším a ejužívaějším typem průměru. Ze zjištěých hodot x 1, x,... x za -čleý statistický soubor jej lze vypočítat takto: _ 1 x = x. (1.3) i i =1 Tuto formu aritmetického průměru azýváme prostý aritmetický průměr. Výpočet epředpokládá žádé předběžé uspořádáí hodot. Aritmetický průměr je použitelý všude tam, kde má ějaký iformačí smysl součet hodot. Pokud jsou hodoty statistického souboru uspořádáy do rozděleí četostí, což je zejméa případ velkých souborů a souborů, kde stejé obměy hodot statistického zaku má vždy více statistických jedotek, předchozí vzorec upravujeme do tvaru, který se ozačuje jako vážeý aritmetický průměr. Při jeho použití využíváme skutečost, že k úhru všech hodot můžeme dospět přes staoveí pomocých součiů i pro k obmě zaku. Vzorec vážeého aritmetického průměru pak zapisujeme takto: _ i =1 1 x =, resp. jako x _ = x. (1.4) k i i i =1 i =1 i k 17

14 Kapitola 1 Edice učebích textů Statistika pro ekoomy Četosti 1,,..., k zde vystupují jako váhy k jedotlivým obměám hodot. Máme-li k dispozici itervalové rozděleí četostí, bereme při výpočtu aritmetického průměru za hodoty zaku středy odpovídajících itervalů. Chceme porovat aritmetický průměr hodiových mezd mužů a že v ávazosti a údaje z příkladu 1.: PŘÍKLAD 1.3 Iterval hodiových mezd v Kč Relativí četosti v % i Středy itervalů i xi Muži Žey Muži Žey 0 9, , , , a více 3 _ _ Celkem X Pro výpoèet aritmetického prùmìru z itervalového rozdìleí èetostí použijeme vážeý aritmetický prùmìr, v kterém jsou hodoty zaku zastoupey støedy itervalù: k _ i =1 i x = muži = = 51,10 žey = k = 46, i =1 i Použití vážeého aritmetického průměru přichází v úvahu i tam, kde váhy ejsou odvozey z četostí, ale z relativího výzamu (důležitosti) jedotlivých hodot. Např. při hodoceí likvidity podiku musíme počítat s tím, že jedotlivá aktiva podiku mají růzou schopost využití pro spláceí krátkodobých závazků. Proto se v této oblasti setkáváme s tím, že k jedotlivým aktivům jsou a základě expertího oceěí přiřazováy váhy, určující důležitost daé skupiy aktiv z hlediska likvidity podiku. Celkový (průměrý) ukazatel likvidity je pak vážeým aritmetickým průměrem z objemů peěžích prostředků, vázaých v jedotlivých skupiách aktiv, kdy jako váhy vystupují ějaké koeficiety kvality aktiv z hlediska stupě likvidity. PŘÍKLAD 1.4 Pøi souhrém hodoceí studijích výsledkù z urèitého pøedmìtu chceme použít bodových výsledkù ze tøí testù, dvou prùbìžých a jedoho závìreèého. Bodùm z prùbìžých testù dáváme stejou 5% váhu a závìreèému testu 50% váhu. Pøedpokládejme, že studet získal v prùbìžých testech 60 a 80 bodù a v závìreèém 5 bodù. Celkový prùmìr _ x = 1/100 ( ) = 61 bodù. 18

15 Popisá statistika Kapitola 1 K důležitým vlastostem aritmetického průměru patří: 1. Součet odchylek jedotlivých hodot od jejich aritmetického průměru je ulový.. Součet čtverců odchylek jedotlivých hodot od průměru je miimálí. 3. Trasformace jedotlivých hodot přičteím (ebo odečteím) kostaty zvýší (ebo síží) aritmetický průměr o tuto kostatu. 4. Při trasformaci jedotlivých hodot ásobeím (ebo děleím) eulovou kostatou je i aritmetický průměr zásobe (ebo vyděle) touto kostatou. Geometrický průměr Je defiová pro kladé hodoty x jako -tá odmocia ze součiu těchto hodot: x G = x, x,... x. (1.5) 1 Má uplatěí tam, kde má iformačí smysl souči hodot. K použití geometrického průměru při výpočtu průměrého koeficietu růstu se vrátíme v kapitole věovaé časovým řadám. Harmoický průměr Je defiová jako poměr mezi rozsahem souboru a součtem převratých hodot: x H =. 1 (1.6) i =1 Má uplatěí tam, kde má iformačí smysl součet převratých hodot. B. Ostatí středí hodoty Do této skupiy řadíme mediá a modus jako tzv. pozičí středí hodoty. Mediá ~ x Je padesátiprocetím kvatilem, který charakterizuje hodotu souboru co do velikosti prostředí. Odděluje poloviu hodot meších od poloviy hodot větších. Mediá je a rozdíl od aritmetického průměru ecitlivý k extrémím hodotám, protože závisí pouze a jedé, ejvýše dvou prostředích hodotách souboru. Nemůže být tedy zkresle ai přítomostí ějaké chybé extrémí hodoty. Výhodou mediáu je i to, že jej můžeme staovit i u itervalových rozděleí četostí s otevřeými itervaly u miimálích a maximálích hodot. Modus ^x Představuje hodotu, která je v rámci šetřeého souboru ejtypičtější. Jiak řečeo, jde o ejčetější hodotu zaku. Také modus eí ovlivě extrémími hodotami. V případě itervalového rozděleí četostí se při staoveí modu spokojujeme buď s určeím modálího (ejčetějšího) itervalu, ebo v rámci tohoto itervalu modus odhadujeme, apř. středem itervalu. Existují však i přesější postupy, které vycházejí z rekostrukce vrcholu souboru podle rozděleí četostí v okolí modálího itervalu. Pokud se spokojíme je s určeím modálího itervalu, pak je třeba si uvědomit, že má smysl jej určovat pouze tehdy, jsou-li všechy itervaly stejě velké. Modus považujeme za důležitou doplňkovou charakteristiku k aritmetickému průměru. Pokud se obě míry úrově výzaměji liší, pak to zameá, že aritmetický průměr evyjadřuje dobře typickou úroveň hodot souboru, apř. pro existeci extrémích hodot ebo pro asymetrické rozložeí četostí. 19

16 Kapitola 1 Edice učebích textů Statistika pro ekoomy 1.4. Charakteristiky variability Variabilitou (mělivostí) kvatitativího statistického zaku rozumíme kolísáí hodot této veličiy. Pokud soubor obsahuje všechy hodoty stejé ( = kostata), mluvíme o ulové variabilitě. Kolísáí hodot v souboru můžeme posuzovat buď jako vzájemou rozdílost jedotlivých hodot sledovaé veličiy, ebo jako rozdílost jedotlivých hodot od aritmetického průměru. Teto druhý pricip měřeí variability převažuje. Měřeí variability lze využít k hodoceí stejorodosti (homogeity) souboru a také k posuzováí kvality iformace, kterou o úrovi hodot v souboru poskytla ěkterá ze středích hodot.vycházíme přitom z úvahy, že čím je soubor stejorodější, s meší variabilitou, tím je apř. aritmetický průměr výstižější z hlediska hodoceí úrově hodot souboru. V ekoomické praxi mají míry variability uplatěí apř. při hodoceí rovoměrosti dodávek, prodeje ebo výroby, při hodoceí stability ukazatele v časové řadě. Hlavě však se s mírami variability setkáme při zkoumáí závislosti mezi jevy. K základím charakteristikám variability patří variačí rozpětí, rozptyl (a jeho odmocia směrodatá odchylka) a variačí koeficiet. Variačí rozpětí R Variačí rozpětí je rychlou, jedoduchou, ale je orietačí charakteristikou variability založeou a iformaci o maximálí a miimálí hodotě v souboru: R = x max x mi. (1.7) Při použití variačího rozpětí si musíme vždy být vědomi toho, že hodoty miima a maxima v souboru mohou mít charakter ahodilých extrémů a tím epřiměřeě zvětší aši představu o míře variability ve zkoumaém souboru. Rozptyl a směrodatá odchylka Rozptyl je ejzámější a ejužívaější mírou variability. Je defiová jako aritmetický průměr ze čtverců odchylek jedotlivých hodot od průměru: ( _ x ) i = 1 s x =. (1.8) Teto vzorec používáme při počítáí rozptylu z euspořádaého souboru všech hodot souboru, kdy u každé jedotlivé hodoty souboru zjišťujeme její odchylku od průměru a čtverec této odchylky. Mluvíme pak o výpočtu tzv. prostého rozptylu. Při výpočtu z rozděleí četostí, kdy přihlížíme k četostem jedotlivých obmě, používáme vážeý rozptyl: k ( x i x _ ) i i =1 1 k _ s x =, resp. s x = ( x ) i. k i =1 i i =1 (1.9) 0

17 Popisá statistika Kapitola 1 Pro praktické výpočty se ěkdy oba vzorce rozptylu upravují do formy tzv. výpočtových tvarů. Způsob této úpravy si ukážeme a vzorci prostého rozptylu. 1 _ 1 1 _ 1 _ 1 _ 1 i =1 i =1 i =1 i =1 ( x ) = ( x + _ x ) = x + x = x. i =1 i =1 _ (1.10) Podobou úpravou je možo odvodit růzé podoby výpočtových tvarů i pro vážeý rozptyl, ejpoužívaější je tato úprava: 1 k k 1 s x = x i i x i i. i =1 i =1 (1.11) Rozptyl sám o sobě eí iterpretovatelou veličiou, protože výsledek je dá ve čtvercích měrých jedotek. Proto se při hodoceí variability dává předost druhé odmociě rozptylu, tzv. směrodaté odchylce s x (braé s kladým zamékem). PŘÍKLAD 1.5 Z výsledkù pøijímacích zkoušek jsme u 1 studetù z urèitého gymázia zjišśovali dosažeé bodové výsledky z testu z matematiky (zak x) a agliètiy (zak y). Chceme porovat úroveò a variabilitu bodových výsledkù u obou pøedmìtù: Studet y i ( x _ ) ( y i y _ ) Celkem _ _ 660 x = = = 50, y = = 55, i =1 1 1 ( x _ i x ) i = s x = = = 654, sy = = 116,

18 Kapitola 1 Edice učebích textů Statistika pro ekoomy Z výsledkù jedozaèì vyplývá, že matematika vykazuje podstatì vyšší míru estejorodosti bodových výsledkù ež agliètia. Variačí koeficiet Při srováváí variability více souborů arážíme a problém rozdílých měrých jedotek a rozdílé úrově hodot v souborech. V takových případech je pro potřeby srováí ejvhodější charakteristikou variability variačí koeficiet V x : s x V x =. (1.1) x Patří mezi relativí míry variability, protože evyjadřuje variabilitu v původích měrých jedotkách, ale jako poměr směrodaté odchylky a průměru. Obvykle teto poměr prezetujeme v procetech. Pak udává, z kolika procet se v průměru odchylují jedotlivé hodoty od aritmetického průměru. Sadá iterpretace hodot variačího koeficietu jej řadí mezi ejpoužívaější charakteristiky variability. PŘÍKLAD 1.6 Z ásledujících dat za odvìtví chceme porovat variabilitu hodiových mezd mužù a že pomocí variaèího koeficietu. Vzhledem k tomu, že výchozí data jsou k dispozici ve formì itervalového rozdìleí èetostí, bude tøeba pro výpoèet prùmìru a rozptylu pracovat se støedy itervalù: Iterval hodiových mezd v Kč Relativí četosti v % muži žey 1 Středy itervalů x 1 muži žey muži žey x 1 1 x , , , , , , a více Celkem x k _ i =1 i aritmetický prùmìr x = muži = = 51,1, žey = k = 46, i =1 i 1 k 1 k Pro výpoèet použijeme vzorec vážeého rozptylu: s x = xi i x, i i i =1 i =1

19 Popisá statistika Kapitola s x muži = 51,10 = 05,8 05,8 V x = = 0,81, , ,44 s x žey = 46,6 = 177,44 V x = = 0, ,6 I když z èíselých hodot variaèích koeficietù vyplývá, že vìtší stejorodost hodiových mezd (vìtší kocetraci kolem prùmìru) mají muži, elze považovat zjištìý malý rozdíl v difereciaci mezd za pøíliš výzamý. K důležitým vlastostem rozptylu patří: 1. Rozptyl lze vyjádřit jako průměr čtverců hodot zmešeý o čtverec průměru ( s x = x x ).. Přičte-li se ke všem hodotám kostata a, pak se rozptyl ezměí ( s x+a = s x). 3. Násobí-li se všechy hodoty souboru kostatou k, pak rozptyl je zásobe čtvercem této kostaty ( s k = k s x) Charakteristiky tvaru rozděleí Zázoríme-li jedorozměrá rozděleí četostí pomocí polygou, získáme možost posoudit tvar rozděleí, apř. polohu vrcholu, symetrii rozděleí, míru kocetrace hodot v určité části variačího rozpětí apod. Z těchto aspektů má ejvětší praktický výzam zjištěí míry symetrie (souměrosti) rozděleí četostí, protože tím lze výzamě obohatit hodoceí vypovídací cey všech popisých charakteristik souboru. Souměrá symetrická rozděleí jsou v ekoomické praxi spíše vzácostí. Zřetelým projevem asymetrie rozděleí je především odlišost hodot aritmetického průměru od mediáu a modu. Pro zcela symetrické rozděleí je aopak charakteristické, že všechy hlaví charakteristiky úrově jsou totožé: _ x = ~ x = ^x. U esymetrických rozděleí tato idetita eplatí. Graf A charakterizuje kladě zešikmeé rozděleí, pro které je obvyklé, že aritmetický průměr je meší ež mediá a modus: _ x > ~ x > ^x. Je to rozděleí s velkým akupeím hodot meších ež průměr. Teto typ rozděleí je v praxi typický apř. pro rozděleí mezd. GRAF A Rozděleí s kladou šikmostí 5 0 mediá 15 průměr

20 Kapitola 1 Edice učebích textů Statistika pro ekoomy GRAF B Záporě zešikmeé rozděleí, kde platí x > ~ x > ^x Jedoduchou charakteristikou šikmosti je Pearsoův koeficiet α, který využívá k hodoceí stupě šikmosti vztah mezi velikostí aritmetického průměru a mediáu: 3 ( x _ ~ x ) α =. (1.13) s x Pro symetrická rozděleí má ulovou hodotu. Velikost koeficietu a jeho zaméko pak ukazuje stupeň a charakter zešikmeí. Jiý přístup k měřeí šikmosti je založe a aplikaci tzv. mometových charakteristik. Při práci s daty uspořádaými do rozděleí četostí je vhodá tzv. mometová míra šikmosti (ozačovaá také jako třetí momet směrodaté proměé) se vzorcem: 3 1 k _ xi x i. (1.14) s i =1 x Opět platí, že ulová hodota charakterizuje symetrická rozděleí a kladé a záporé hodoty vyjadřují růzý stupeň tzv. kladé a záporé šikmosti. 4

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie Veteriárí a farmaceutická uiverzita Bro Základy statistiky pro studující veteriárí medicíy a farmacie Doc. RNDr. Iveta Bedáňová, Ph.D. Prof. MVDr. Vladimír Večerek, CSc. Bro, 007 Obsah Úvod.... 5 1 Základí

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

8 Průzkumová analýza dat

8 Průzkumová analýza dat 8 Průzkumová aalýza dat Cílem průzkumové aalýzy dat (také zámé pod zkratkou EDA - z aglického ázvu exploratory data aalysis) je alezeí zvláštostí statistického chováí dat a ověřeí jejich předpokladů pro

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

AMC/IEM J - HMOTNOST A VYVÁŽENÍ

AMC/IEM J - HMOTNOST A VYVÁŽENÍ ČÁST JAR-OPS 3 AMC/IEM J - HMOTNOST A VYVÁŽENÍ ACJ OPS 3.605 Hodoty hmotostí Viz JAR-OPS 3.605 V souladu s ICAO Ae 5 a s meziárodí soustavou jedotek SI, skutečé a omezující hmotosti vrtulíků, užitečé zatížeí

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Prof. Ig. Albert Bradáč, DrSc. STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Příspěvek vazuje publikovaý

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK)

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK) Systém itralaboratorí kotroly kvality v kliické laboratoři (SIKK) Doporučeí výboru České společosti kliické biochemie ČLS JEP Obsah: 1. Volba systému... 2 2. Prováděí kotroly... 3 3. Dokumetace výsledků

Více

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná Výročí zpráva fodů společosti Pioeer ivestičí společost, a.s. - eauditovaá Obsah 1. Účetí závěrka: Pioeer Sporokoto, Pioeer obligačí fod, Pioeer růstový fod, Pioeer dyamický fod, Pioeer akciový fod, BALANCOVANÝ

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO Statstka I dstačí studjí opora Mla Křápek Soukromá vysoká škola ekoomcká Zojmo Dube 3 Statstka I Vydala Soukromá vysoká škola ekoomcká Zojmo. vydáí Zojmo, 3 ISBN

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

ZÁKLADNÍ ICHTYOLOGICKÉ METODY

ZÁKLADNÍ ICHTYOLOGICKÉ METODY ZÁKLADNÍ ICHTYOLOGICKÉ METODY Určováí věku a staoveí růstu ryb Ryby jsou poikilotermí obratlovci, u ichž jsou všechy biologické fukce zásadím způsobem ovlivňováy teplotou vody. To platí v plém rozsahu

Více

ZÁKLADY DISKRÉTNÍ MATEMATIKY

ZÁKLADY DISKRÉTNÍ MATEMATIKY ZÁKLADY DISKRÉTNÍ MATEMATIKY Michael Kubesa Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská

Více

BIVŠ. Pravděpodobnost a statistika

BIVŠ. Pravděpodobnost a statistika BIVŠ Pravděpodobost a statstka Úvod Skrpta Pravděpodobost a statstka jsou učebím tetem pro stejojmeý kurz magsterského studa Bakovího sttutu vysoké školy Kurzy Pravděpodobost a statstka a avazující kurz

Více

dálniced3 a rychlostní silnice Praha x Tábor x České Budějovice x Rakousko

dálniced3 a rychlostní silnice Praha x Tábor x České Budějovice x Rakousko dáliced3 a rychlostí silice R3 Praha Tábor České Budějovice Rakousko w w obsah základí iformace 3 dálice D3 a rychlostí silice R3 PrahaTáborČeské BudějoviceRakousko 3 > základí iformace 4 > čleěí dálice

Více

Makroekonomie cvičení 1

Makroekonomie cvičení 1 Makroekoomie cvičeí 1 D = poptávka. S = Nabídka. Q = Možství. P = Cea. Q* = Rovovážé možství (Q E ). P* = Rovovážá caa (P E ). L = Práce. K = Kapitál. C = Spotřeba domácosti. LR = Dlouhé období. SR = Krátké

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

Máme dotazníky. A co dál? Martina Litschmannová

Máme dotazníky. A co dál? Martina Litschmannová Máme dotazíy. A co dál? Martia Litschmaová. Úvod S dotazíy se setáváme běžě. Vídáme je v oviách, v časopisech, jsou součásti evaluačích zpráv (sebehodoceí šol, ), výzumých zpráv, Využívají se v sociologii,

Více

APLIKOVANÁ STATISTIKA

APLIKOVANÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4

Více

Expertní Systémy. Tvorba aplikace

Expertní Systémy. Tvorba aplikace Tvorba aplikace Typ systému malý velký velmi velký Počet pravidel 50-350 500-3000 10000 Počet člověkoroků 0.3-0.5 1-2 3-5 Cea projektu (v tis.$) 40-60 500-1000 2000-5000 Harmo, Kig (1985) Vytvořeí expertího

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu . ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se

Více

Vlastní hodnocení školy

Vlastní hodnocení školy Vlastí hodoceí školy dle vyhlášky 15/2005 Sb., v platém zěí, kterou se staoví áležitosti dlouhodobých záměrů, výročích zpráv a vlastí hodoceí školy. Škola: Základí umělecká škola Plzeň, Sokolovská 30,

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich.

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich. Fukce. Základí pojmy V kpt.. jsme mluvili o zobrazeí mezi možiami AB., Připomeňme, že se jedá o libovolý předpis, který každému prvku a A přiřadí ejvýše jede prvek b B. Jsou-li A, B číselé možiy, azýváme

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA RVDĚODONOST STTISTIK Gymázium Jiřího Wolkera v rostějově Výukové materiály z matematiky pro vyšší gymázia utoři projektu Studet a prahu. století - využití ICT ve vyučováí matematiky a gymáziu Teto projekt

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

Využití Markovových řetězců pro predikování pohybu cen akcií

Využití Markovových řetězců pro predikování pohybu cen akcií Využití Markovových řetězců pro predikováí pohybu ce akcií Mila Svoboda Tredy v podikáí, 4(2) 63-70 The Author(s) 2014 ISSN 1805-0603 Publisher: UWB i Pilse http://www.fek.zcu.cz/tvp/ Úvod K vybudováí

Více

Petr Otipka Vladislav Šmajstrla

Petr Otipka Vladislav Šmajstrla VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA PRAVDĚPODOBNOST A STATISTIKA Petr Otipka Vladislav Šmajstrla Vytv ořeo v rámci projektu Operačího programu Rozv oje lidských zdrojů CZ.04..03/3..5./006

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

Klonování, embryonální kmenové buňky, aj. proč ano a proč ne

Klonování, embryonální kmenové buňky, aj. proč ano a proč ne Kloováí, embryoálí kmeové buňky, aj. proč ao a proč e Doc. MUDr. Petr Hach, Csc., Em. předosta ústavu pro histologii a embryologii 1. lékařské fakulty Uiversity Karlovy v Praze Neí určeo k dalšímu šířeí

Více

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006

Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006 8 ELEKTRCKÉ STROJE TOČVÉ říklad 8 Základí veličiy Určeo pro poluchače akalářkých tudijích programů FS Aychroí motory g Vítězlav Stýkala, hd, úor 006 Řešeé příklady 3 fázový aychroí motor kotvou akrátko

Více

ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY

ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ZÁKLADY PRAVDĚPODOBNOSTI A STATISTIKY Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 OBSAH: ÚVOD... 4. CO JE STATISTIKA?... 4. STATISTICKÁ DATA... 5.3 MĚŘENÍ

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

Základní pojmy kombinatoriky

Základní pojmy kombinatoriky Základí pojy kobiatoriky Začee příklade Příklad Máe rozesadit lidí kole kulatého stolu tak, aby dva z ich, osoby A a B, eseděly vedle sebe Kolika způsoby to lze učiit? Pro získáí odpovědi budee potřebovat

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1 Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

ÚVOD DO PRAKTICKÉ FYZIKY I

ÚVOD DO PRAKTICKÉ FYZIKY I JIŘÍ ENGLICH ÚVOD DO PRAKTICKÉ FYZIKY I ZPRACOVÁNÍ VÝSLEDKŮ MĚŘENÍ Jede z epermetů, které změly vývoj fyzky v mulém století. V roce 9 prof. H. Kamerlgh Oes ve své laboratoř v Leydeu měřl teplotí závslost

Více

Patří slovo BUSINESS do zdravotnictví?. 23. 6. 2005

Patří slovo BUSINESS do zdravotnictví?. 23. 6. 2005 Patří slovo BUSINESS do zdravotictví?. 23. 6. 2005 Společost Deloitte Společost Deloitte v České republice má více ež 550 zaměstaců a kaceláře v Praze a Olomouci. Naše česká pobočka je součástí aší regioálí

Více

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě Rekostrukce vodovodích řadů ve vztahu ke spolehlvost vodovodí sítě Ig. Jaa Šekapoulová Vodáreská akcová společost, a.s. Bro. ÚVOD V oha lokaltách České republky je v současost aktuálí problée zastaralá

Více

Atomová hmotnostní jednotka, relativní atomové a molekulové hmotnosti Atomová hmotnostní jednotka u se používá k relativnímu porovnání hmotností

Atomová hmotnostní jednotka, relativní atomové a molekulové hmotnosti Atomová hmotnostní jednotka u se používá k relativnímu porovnání hmotností . Základí cheické výpočty toová hotostí jedotka, relativí atoové a olekulové hotosti toová hotostí jedotka u se používá k relativíu porováí hotostí ikročástic, atoů a olekul a je defiováa jako hotosti

Více

SH = BH*( 1 + i) n nebo

SH = BH*( 1 + i) n nebo PEKS 2 Literatura Syek PEK 4. vydáí Faktor času v peěžím vyjádřeí Peěží jedotka Kč přijata ebo vyplacea v růzých časových okamžicích má rozdílou hodotu. Deší korua je ceější, ež korua získaá později apř.

Více

STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK

STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH BOHUMIL MINAŘÍK 04 prof. Ig. Bohuml Mařík, CSc. STATISTICKÉ MINIMUM PRO STUDENTY BAKALÁŘSKÉHO STUDIA NA TECHNICKÝCH OBORECH.

Více

ANALÝZA PROVOZU MĚSTSKÝCH AUTOBUSŮ

ANALÝZA PROVOZU MĚSTSKÝCH AUTOBUSŮ ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročík LVII 28 Číslo 5, 2009 ANALÝZA PROVOZU MĚSTSKÝCH AUTOBUSŮ L. Papírík

Více

Základní údaje. Ing. Zdeněk Jindrák JUDr. Dana Musalová. n Vznik společnosti 29.9.1997. n Obchodní název HYDRA a.s.

Základní údaje. Ing. Zdeněk Jindrák JUDr. Dana Musalová. n Vznik společnosti 29.9.1997. n Obchodní název HYDRA a.s. Základí údaje Vzik společosti 29.9.1997 Obchodí ázev HYDRA a.s. Sídlo: Na Zámecké 1518, 140 00 Praha 4 IČO/DIČ 25610562 / CZ25610562 Předmět podikáí Výroba kodezátorů Provozovy: Průmyslová 1110, Jičí Hradecká

Více

PříkladykecvičenízMMA ZS2013/14

PříkladykecvičenízMMA ZS2013/14 PříkladykecvičeízMMA ZS203/4 (středa, M3, 9:50 :20) Pozámka( ):Pokudebudeuvedeojiakbudemevždypracovatsprostoryadtělesem T= R.Ve všech ostatích případech(tj. při T = C), bude těleso explicitě specifikováo.

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

P(n) = n * (n - 1) * (n - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál:

P(n) = n * (n - 1) * (n - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál: PERMUTACE a VARIACE 2.1 Permutace P() = * ( - 1) * ( - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál: ( )! P = Jedá se o vzorec pro počet permutací z prvků bez opakováí. 2.2 Variace bez

Více

DLUHOPISY. Třídění z hlediska doby splatnosti

DLUHOPISY. Třídění z hlediska doby splatnosti DLUHOISY - dlouhodobý obchodovatelý ceý papír - má staoveou dobu splatost - vyadřue závaze emteta oblgace (dlužía) vůč matel oblgace (věřtel) Tříděí z hledsa doby splatost - rátodobé : splatost do 1 rou

Více

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesé výchovy VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Zdeěk Havel Davd Chlář 0 VYBRANÉ NEPARAMETRICKÉ

Více

Informační systémy o platu a služebním příjmu zahrnují:

Informační systémy o platu a služebním příjmu zahrnují: Katalog datových prvků a dalších položek používaých v Iformačích systémech o platu a služebím příjmu (ISPSP) verze 2014-6 16. 4. 2014 ISPSP Iformačí systémy o platu a služebím příjmu zahrují: ISP Iformačí

Více

Mezinárodní konferen. 19. - 21. října 2011. Hotel Kurdějov Kurdějov 86 693 01 Kurdějov Česká republika www.hotelkurdejov.

Mezinárodní konferen. 19. - 21. října 2011. Hotel Kurdějov Kurdějov 86 693 01 Kurdějov Česká republika www.hotelkurdejov. ce Meziádí kofere h suvi ýc st e jů zd í vá Využí 19. - 21. říja 2011 Hotel Kurdějov Kurdějov 86 693 01 Kurdějov Česká republika www.hotelkurdejov.cz ORGANIZÁTOŘI Horí Nová Ves 108 507 81 Lázě Bělohrad

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

Model péče o duševně nemocné

Model péče o duševně nemocné Model péče o duševě emocé v regiou hlavího města Prahy Zázam jedáí závěrečé koferece projektu Vzděláváí odboríků, státí správy a samosprávy v oblasti trasformace istitucioálí péče o duševě emocé Praha,

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman ASYNCHRONNÍ STROJE Obsah. Pricip čiosti asychroího motoru. Náhradí schéma asychroího motoru. Výko a momet asychroího motoru 4. Spouštěí trojfázových asychroích motorů 5. Řízeí otáček asychroích motorů

Více

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla Disperze světla. Spektrálí barvy v = = f T v = F(f) růzé f růzá barva rychlost světla v prostředí závisí a f = disperze světla c = = F ( f ) idex lomu daého optického prostředí závisí a frekveci světla

Více