Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti"

Transkript

1 Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti

2 Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou MLE? Jak vypadají estraý a MLE odhad parametru?

3 Opakováí použití průměru a mediáu Jmeujte výhody a evýhody průměru a mediáu jako statistik pro odhad středí hodoty áhodé veličiy. Jmeujte příklad, kdy průměr je výhodější ež mediá, a příklad, kdy mediá je výhodější ež průměr.

4 . Motivace

5 Spolehlivost bodového odhadu Výběr číslo Výběr číslo Celá cílová populace 0 x R 0 x R 0 x R Pracujeme li s výběrem z cílové populace, je třeba a základě variability pozorovaých dat spočítat tzv. iterval spolehlivosti pro bodový odhad. ( ( 0 x R 0 x R Umíme li změřit celou cílovou populaci, epotřebujeme iterval spolehlivosti, protože jsme schopi odhadout sledovaý parametr přesě v praxi je tato situace ereálá. Iterval spolehlivosti a základě výběru číslo.

6 Itervalový odhad Bodový odhad je prvím krokem ve statistickém popisu dat. Co ám říká jedo číslo? Studie může publikovat číslo x, studie číslo x. Které je správější, lepší, přesější? Bodový odhad je sám o sobě edostatečý pro popis parametru rozděleí pravděpodobosti áhodé veličiy. Zajímá ás přesost (spolehlivost bodového odhadu.

7 . Variabilita pozorováí a variabilita výběrového průměru

8 Populace a áhodá veličia Cílová populace skupia subjektů, o které chceme zjistit ějakou iformaci. Realizujeme li áhodě výběr z cílové populace, dostaeme výběrovou populaci (experimetálí vzorek. Cílová populace Vzorek Zak áhodá veličia vlastost, která ás zajímá. Realizace áhodé veličiy reálé číslo, pozorovaá hodota a vybraém subjektu. Základí prostor Ω Náhodá veličia Náhodý výběr možia ezávislých áhodých veliči se stejým rozděleím:,,,. Realizace áhodého výběru reálá čísla, hodoty pozorovaé a výběrové populaci. Jev A ω 0 x R

9 Pravděpodobostí chováí áhodé veličiy F(x, f(x a p(x popisují chováí áhodé veličiy úplě, ale složitě. Dvě charakteristiky odráží vlastosti rozděleí jedím číslem: středí hodota a rozptyl. Odmocia z rozptylu je směrodatá odchylka. E(, D(, SD( Platí ásledující: Jedotlivé realizace áhodé veličiy vykazují variabilitu (dle SD(. Jakákoliv statistika (apř. průměr je jako trasformace áhodých veliči také áhodou veličiou. Má tedy i rozděleí pravděpodobosti. Jedotlivé realizace statistiky ad růzými áhodými výběry také vykazují variabilitu (opět úměrou SD(.

10 Co je zajímavé výběrový průměr Rozděleí pravděpodobosti výběrového průměru tím méě variabilí čím více pozorováí je v průměru zahruto. Rozděleí pravděpodobosti výběrového průměru se s rostoucím přestává podobat rozděleí původích dat a začíá se podobat rozděleí ormálímu. Proč?

11 Co je zajímavé výběrový průměr Rozděleí pravděpodobosti výběrového průměru tím méě variabilí čím více pozorováí je v průměru zahruto plye z vlastostí rozptylu trasformovaé áhodé veličiy. Rozděleí pravděpodobosti výběrového průměru se s rostoucím přestává podobat rozděleí původích dat a začíá se podobat rozděleí ormálímu plye z cetrálí limití věty.

12 Charakteristiky výběrového průměru Máme posloupost,, ezávislých, stejě rozděleých áhodých veliči, které mají koečou středí hodotu μ a rozptyl. i i i i i i i D SD D D E E N μ μ ( ( ( ( ( (, ( ~ Pro odhad, respektive statistiku, se tomuto výrazu říká směrodatá chyba ebo stadardí chyba ( stadard error a začí se SE.

13 Příklad výběrový průměr Základí prostor Ω Náhodá veličia Náhodý výběr,,, Výběrový průměr Jev A ω 0 x R 0 x x x 3 x 4 x 5 R 0 x R

14 Shrutí Směrodatá odchylka (SD eí směrodatá chyba popisé statistiky (SE! Směrodatá odchylka (SD je odrazem variability áhodé veličiy ve sledovaé populaci. Směrodatá chyba (SE je odrazem přesosti popisé statistiky jako odhadu středí hodoty áhodé veličiy. Pozor a rozdíl mezi SD a SE v člácích a kihách tabulkách a grafech!

15 Příklad výška člověka Náhodá veličia bude výška člověka: ~ N(75, 5, tedy uvažujme středí hodotu 75 cm a směrodatou odchylku 5 cm. Jak se chovají průměry pro áhodé výběry o velikosti 0, 00 a 000? Kód v R: x <- rep(0, 00 # vytvořím si vektor pro ukládáí průměrů for (i i :00 { pom <- rorm(0, 75, 5 x[i] <- mea(pom} # cyklus pro výpočet výběrových průměrů pro 0 hist(x, breaks0, xlimc(60,90 # vykresleí histogramu pro výběrové průměry pro 0 for (i i :00 { pom <- rorm(00, 75, 5 x[i] <- mea(pom} # cyklus pro výpočet výběrových průměrů pro 00 hist(x, breaks0, xlimc(60,90 # vykresleí histogramu pro výběrové průměry pro 00 for (i i :00 { pom <- rorm(000, 75, 5 x[i] <- mea(pom} # cyklus pro výpočet výběrových průměrů pro 000 hist(x, breaks0, xlimc(60,90 # vykresleí histogramu pro výběrové průměry pro 000

16 Příklad výška člověka Původí pozorováí mají rozsah hodot zhruba od 0 cm do 0 cm. Kde se pohybují jedotlivé průměry? Výběrové průměry ze vzorku 0 Výběrové průměry ze vzorku 00 Výběrové průměry ze vzorku 000

17 Příklad výška člověka Původí pozorováí mají rozsah hodot zhruba od 0 cm do 0 cm. Kde se pohybují jedotlivé průměry? Výběrové průměry ze vzorku 0 Výběrové průměry ze vzorku 00 Výběrové průměry ze vzorku 000 od 60 cm do 90 cm od 70 cm do 80 cm od 73 cm do 77 cm N(75, N(75, N(75, ~ 0 ~ 00 3 ~ 000

18 3. Cetrálí limití věta

19 Připomeutí: stadardizace ormálího rozděleí Stadardizace je trasformace áhodé veličiy s N(μ, a N(0,. Důvod: řada statistických metod byla odvozea pro stadardizovaé ormálí rozděleí, N(0,. Děláme to tedy opět kvůli lepší možosti hodoceí dat. Teoretická stadardizace áhodé veličiy: Praktická stadardizace aměřeých hodot: U u i x i μ x s

20 Cetrálí limití věta Klíčová věta umožňující sestrojeí itervalových odhadů. Máme posloupost,, ezávislých, stejě rozděleých áhodých veliči, které mají koečou středí hodotu μ a rozptyl. Pak platí, že pro má suma i přibližě ormálí i i rozděleí pravděpodobosti.

21 Cetrálí limití věta Máme posloupost,, ezávislých, stejě rozděleých áhodých veliči, které mají koečou středí hodotu μ a rozptyl. Pak platí, že pro má výběrový průměr přibližě ormálí rozděleí se středí hodotou μ a rozptylem /. i i Tedy ( μ /( / rozděleí pravděpodobosti: lim Ρ( / má přibližě stadardizovaé ormálí x x μ u / π e du

22 CLV zjedodušeá iterpretace Pokud je rozděleí pravděpodobosti áhodé veličiy ormálí, pak je i rozděleí průměru pozorovaých hodot ormálí (a to i pro. Pokud rozděleí pravděpodobosti áhodé veličiy eí ormálí, pak je rozděleí průměru pozorovaých hodot přibližě ormálí, když je dostatečě velké (. Dostatečě velké zameá >30 pro rozděleí podobá ormálímu a > 00 pro rozděleí epodobá ormálímu.

23 Co je super Cetrálí limití věta fuguje i když rozděleí původí áhodé veličiy eí ormálí rozděleí pravděpodobosti. A dokoce i když eí spojité!

24 Příklad biomické rozděleí Chceme sledovat s jakou přesostí lze odhadout podíl hypertoiků v dospělé populaci ČR. Předpokládejme, že skutečý podíl dospělých s hypertezí je 0,. Náhodá veličia : osoba trpí / etrpí hypertezí. Pravděpodobostí fukce (alterativí rozděleí Ao Hyperteze Ne

25 Příklad biomické rozděleí Náhodá veličia S bude součet i, i,,. Náhodá veličia Y bude defiováa jako S/. E( S p D( S p( p E( Y E( S / p D( Y D( S / ( p( p / Jak se chová Y pro áhodé výběry o velikosti 0, 00 a 000? Kód v R: s <- rbiom(000, 0, 0. # vytvořím si 000 realizací veličiy S při 0 a p0, y <- s / 0 # S trasformuji a 000 realizací veličiy Y hist(y, breaks0, xlimc(0, # vykresleí histogramu pro výběrové průměry pro 0 s <- rbiom(000, 00, 0. # vytvořím si 000 realizací veličiy S při 00 a p0, y <- s / 00 # S trasformuji a 000 realizací veličiy Y hist(y, breaks0, xlimc(0, # vykresleí histogramu pro výběrové průměry pro 0 s <- rbiom(000, 000, 0. # vytvořím si 000 realizací veličiy S při 000 a p0, y <- s / 000 # S trasformuji a 000 realizací veličiy Y hist(y, breaks0, xlimc(0, # vykresleí histogramu pro výběrové průměry pro 000

26 Příklad biomické rozděleí 000 realizací veličiy Y při realizací veličiy Y při realizací veličiy Y při 000 p 0, p 0, p 0,

27 Příklad Poissoovo rozděleí

28 Co když ale ejde do ekoeča? Neí li velikost vzorku dostatečě velká, elze rozděleí výběrových průměrů považovat za ormálí. Aproximace Studetovým t rozděleím (viz předáška o jedotlivých rozděleí pravděpodobosti: Lze ho chápat jako aproximaci ormálího rozděleí pro malé vzorky, pro velké velikosti souborů koverguje k ormálímu rozděleí.

29 4. Itervalové odhady

30 Co je super pokračováí Cetrálí limití věta mi říká, že rozděleí pravděpodobosti výběrového průměru můžu při dostatečém aproximovat ormálím rozděleím. Když provedu stadardizaci, tak dokoce stadardizovaým ormálím rozděleím. x μ / lim ( u Ρ x e du / π / μ ~ N(0,

31 Iterval spolehlivosti Pricip vytvořeí itervalového odhadu pro výběrový průměr, respektive kostrukce itervalu spolehlivosti pro výběrový průměr, je shodý s teoretickým pozadím pravidla ±3. 68,3 % všech hodot 95,6 % všech hodot 99,7 % všech hodot

32 Připomeutí kvatilová fukce Iverzí fukce k distribučí fukci, výsledkem eí pravděpodobost, ale číslo a reálé ose, které odpovídá určité pravděpodobosti. Distribučí fukce F( x P( x Kvatilová fukce x p F ( P( x F ( p P Spojitá áhodá veličia x

33 Kvatily stadardizovaého ormálí rozděleí α / α α / 90 % 95 % Pravděpodobosti 99 % z 0,005,58,58 z 0,995 z 0,05,96,96 z 0,975 z 0,050,64,64 z 0,950 Kvatily

34 Kvatily stadardizovaého ormálí rozděleí α / α α / Oblast, kde se áhodá veličia se stadardizovaým ormálím rozděleím realizuje s pravděpodobostí α lze vyjádřit pomocí ásledujícího vztahu: 90 % 95 % 99 % P α α ( zα / Z z α / FN (0, ( z α / FN (0, ( zα / α

35 00( α% iterval spolehlivosti pro μ Máme áhodý výběr,,, z ormálího rozděleí. Budeme předpokládat, že záme! Z předchozího símku víme, že platí: Když si rozepíšeme a upravíme výraz a levé straě, dostaeme: 00( α% IS pro μ má tvar: α α α α α α α ( ( ( / (0, / (0, / / z F z F z Z z P N N, ( ~ μ N i ( ( ( / / / / / / / α μ α α α α α α z z P z Z z P z Z z P ( ( / / / / α α α α μ μ + z z P z z P ; (, ( / / α α + z z H D

36 00( α% iterval spolehlivosti pro μ Co te vzorec zameá? ( D, H ( z / ; + z / α α ~ N( μ, SE( Tedy zjedodušeě: 00( α% IS ± z / SE( α

37 Iterpretace itervalu spolehlivosti Poloha ezámého parametru je μ kostatí (jsme li frekvetisti! 95% iterval spolehlivosti má ásledující iterpretaci: Pokud bychom opakovaě vybírali skupiy 0 ( d x h ( d x h ( x 3 d 3 h 3 R cca 95 % ( d x h subjektů o stejé velikosti ( a počítali výběrový průměr s 95% IS, pak 95 % těchto itervalů spolehlivosti ezámý parametr obsahuje a 5 % ho eobsahuje. Tedy 95% IS obsahuje ezámý parametr s rizikem α. ( d 99 x 99 h 99 ( d 00 x 00 h 00 cca 5 % ( d x h

38 Co když ezáme? V předchozím případě jsme předpokládali, že záme přesou hodotu rozptylu / směrodaté odchylky. To je v praxi ereálé! Musíme použít jiou testovou statistiku s jiým rozděleím pravděpodobosti. Čím bychom mohli ahradit? K čemu to povede?

39 Co když ezáme? Musíme použít jiou testovou statistiku s jiým rozděleím pravděpodobosti. Čím bychom mohli ahradit? Logické je použít výběrovou směrodatou odchylku s. Náhrada ale eí úplě jedoduchá eí to dosazeí s za. s i ( x i x K čemu to bude? Pomocí s vytvoříme statistiku s chí kvadrát rozděleím (χ tu pak použijeme pro vytvořeí statistiky se Studetovým t rozděleím (viz předáška o jedotlivých rozděleích pravděpodobosti: ~ N(0,, Q ~ χ ( k T Q / k T ~ t( k

40 Co když ezáme? Lze ukázat, že statistika K s ~ χ ( Použijeme ještě stadardizovaou ormálí veličiu Z μ ~ / N(0, A obě dohromady použijeme pro vytvořeí T statistiky: T Z ( μ / μ T ~ t( K /( ( s /( s / Z toho plye tvar 00( α% itervalu spolehlivosti pro μ v případě, že ezáme hodotu : s s ( D, H ( t / ( ; + t / ( α α

41 Příklad kostrukce itervalu spolehlivosti Chceme sestrojit 95% IS pro odhad středí hodoty systolického tlaku studetů vysokých škol. 00 3,4 mm Hg s SD 4,0 mm Hg SE 4 / 00,4 mm Hg t α / (,98 z tabulek aměřeé hodoty s s 95% IS ( D, H ( t α / ( ; + t α / ( 4,0 4,0 95% IS ( D, H (3,4 t (99;3,4 t 0,05/ ( ,05/ % IS ( D, H (0,6;6,

42 Šířka itervalu spolehlivosti Co ovlivňuje šířku itervalu spolehlivosti? s s 00( α% IS pro μ ( D, H ( t / ( ; + t / ( α α. Velikost vzorku s rostoucí velikostí vzorku je IS užší (máme více iformace a odhad je přesější, zároveň se kvatily t rozděleí blíží kvatilům stadardizovaého ormálího rozděleí.. Variabilita áhodé veličiy 3. Spolehlivost, kterou požadujeme

43 Šířka itervalu spolehlivosti Co ovlivňuje šířku itervalu spolehlivosti? s s 00( α% IS pro μ ( D, H ( t / ( ; + t / ( α α. Velikost vzorku. Variabilita áhodé veličiy čím áhodá veličia vykazuje větší variabilitu, tím je IS pro odhad středí hodoty širší, tedy odhad je méě přesý. 3. Spolehlivost, kterou požadujeme

44 Šířka itervalu spolehlivosti Co ovlivňuje šířku itervalu spolehlivosti? s s 00( α% IS pro μ ( D, H ( t / ( ; + t / ( α α. Velikost vzorku. Variabilita áhodé veličiy 3. Spolehlivost, kterou požadujeme chceme li mít větší jistotu, že áš IS pokrývá ezámou středí hodotu, IS musí být samozřejmě širší, stačí li ám meší spolehlivost, bude užší. Stadardě se používá 95% IS (ale také 90% aebo 99%

45 Pozámka Lze vytvořit i IS pro odhad parametru, který je založe a již zmíěé statistice K. K s ~ χ ( Lze vytvořit i IS pro odhad podílu dvou parametrů a (pomocí F statistiky. Te lze použít pro hodoceí homogeity rozptylů dvou výběrů, která je jedím z předpokladů v testováí hypotéz.

46 Pozámka Velmi důležitý je i IS pro odhad středí hodoty rozdílu dvou áhodých veliči. Záme li a, provedeme stadardizaci a pak odvodíme 00( α% IS: Nezáme li a, použijeme statistiky K a K, abychom se zbavili a, výsledá statistika má opět Studetovo t rozděleí., ( ~ μ N, ( ~ μ N Y, ( ~ N Y μ μ +, ( ~ N μ, ( ~ N Y μ (!! / / z Y z Y P α α μ μ α ( ( ( / / s s s s t Y t Y P α α μ μ α

47 Příklad Radiofrekvečí ablace tkáě sliivky břiší u prasat. Sledujeme vliv typu chlazeí okolích struktur (A žádé, B průplach vodou a ejvětší rozměr ekrózy. Zajímá ás rozdíl v efektu obou typů chlazeí a jeho 95% IS. A B 8 7 x x A B 5, mm,8 mm SD SD A B s s A B 0,8,4 SE SE A B 0,8/,4 / 8 0,9 mm 7 0,58 mm Dosadíme do vzorce s použitím příslušého t kvatilu: t0,975(8 + 7,03 α sa sb sa P ( x x t ( + + μ μ x x + t ( + + A B s α / A B A B A B A B α / A B A B B,4 ( 3,3 (33 3,3 (33 0,8 0,8,4 P t0,975 + μ A μb + t0, A B P(, μ μ 4,5

48 Pozámka 3 Iterval spolehlivosti počítá pouze s variabilitou daou áhodým výběrem, epočítá se zdroji systematického zkresleí. Příklady: Měřeí krevího tlaku může být systematicky zkresleo starým měřidlem ( techical bias. Měřeí krevího tlaku může být systematicky zkresleo tím, že se do studie přihlásí pouze určitá skupia osob ( selectio bias.

49 Neparametrické metody pro kostrukci IS Variabilitu výběrového průměru lze odhadout i pomocí eparametrických metod: Bootstrap je založe a pricipu opakovaého vzorkováí aměřeých dat s vraceím, kdy pro vytvořeí ového vzorku dat může být každý prvek použit více ež jedou, právě jedou aebo eí použit vůbec (ovšem se zachováím celkové velikosti souboru i velikosti jedotlivých skupi. Jackkife opakovaý výpočet sledovaé charakteristiky je provádě vždy s vyecháím právě jedoho pozorováí. Teto postup ám stejě jako v případě metody bootstrap poskytuje představu o rozsahu hodot, ve kterých se ámi sledovaá charakteristika může pohybovat, budeme li považovat aměřeá data za reprezetativí vzorek z cílové populace.

50 Příklad Máme áhodý výběr o velikosti 00 z N(0,. Vytvoříme 95% IS pro průměr pomocí směrodaté chyby a pomocí metody bootstrap (000 bootstrap vzorků. x 0,079 ( d, h ( 0,6; 0,84 ( d, h ( 0,33; 0,64

51 Poděkováí Rozvoj studijího oboru Matematická biologie PřFMU Bro je fiačě podporová prostředky projektu ESF č. CZ..07/..00/ Víceoborová iovace studia Matematické biologie a státím rozpočtem České republiky

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

b c a P(A B) = c = 4% = 0,04 d

b c a P(A B) = c = 4% = 0,04 d Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá

Více

Pravděpodobnost a statistika - absolutní minumum

Pravděpodobnost a statistika - absolutní minumum Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru

Více

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů. Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU Matematické modelováí (KMA/MM Téma: Model pohybu mraveců Zdeěk Hazal (A8N18P, zhazal@sezam.cz 8/9 Obor: FAV-AVIN-FIS 1. ÚVOD Model byl převzat z kihy Spojité modely v biologii

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu):

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu): Pricip matematické idukce PMI) se systematicky probírá v jié části středoškolské matematiky. a tomto místě je zařaze z důvodu opakováí matka moudrosti) a proto, abychom ji mohli bez uzarděí použít při

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

Geometrická optika. Zákon odrazu a lomu světla

Geometrická optika. Zákon odrazu a lomu světla Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů Číslicová filtrace Použití : Separace sigálů Restaurace sigálů Číslicové filtry Aalogové x číslicové filtry : Aalogové Číslicové: + levé + rychlé + velký dyamický rozsah (v amplitudě i frekveci) - evhodé

Více

2 EXPLORATORNÍ ANALÝZA

2 EXPLORATORNÍ ANALÝZA Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů.

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Statistika. Poznámky z přednášek

Statistika. Poznámky z přednášek Statistika Pozámky z předášek Materiál obsahuje pozámky ze předášek plus to co se musíme doučit včetě ukázkových příkladů, které se objevily a předášce, ebo z aplikace etstorage. J.T. OBSAH Úvodí stráka

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

ŘADY Jiří Bouchala a Petr Vodstrčil

ŘADY Jiří Bouchala a Petr Vodstrčil ŘADY Jiří Bouchala a Petr Vodstrčil Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 2. století (reg. č. CZ..07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská Techická

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B) Přijímací řízeí pro akademický rok 24/5 a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata B) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

Interakce světla s prostředím

Interakce světla s prostředím Iterakce světla s prostředím světlo dopadající rozptyl absorpce světlo odražeé světlo prošlé prostředím ODRAZ A LOM The Light Fatastic, kap. 2 Light rays ad Huyges pricip, str. 31 Roviá vla E = E 0 cos

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvatová a statistická fyzika (Termodyamika a statistická fyzika) Boltzmaovo - Gibbsovo rozděleí - ilustračí příklad Pro ilustraci odvozeí rozděleí eergií v kaoickém asámblu uvažujme ásledující příklad.

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

8. cvičení 4ST201-řešení

8. cvičení 4ST201-řešení cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

Test hypotézy o parametru π alternativního rozdělení příklad

Test hypotézy o parametru π alternativního rozdělení příklad Test hypotézy o parametru π alterativího rozděleí příklad Podik předpokládá, že o jeho ový výrobek bude mít zájem 7 % osloveých domácostí. Proběhl předběžý průzkum, v ěmž bylo osloveo 4 áhodě vybraých

Více

Střední průmyslová škola zeměměřická GEODETICKÉ VÝPOČTY. 2. část. Ing. Danuše Mlčková

Střední průmyslová škola zeměměřická GEODETICKÉ VÝPOČTY. 2. část. Ing. Danuše Mlčková Středí průmslová škola zeměměřická GEODETICKÉ VÝPOČTY. část Ig. Dauše Mlčková Úvod Tet avazuje a. část, je urče pro studet. až 4. ročíku středích průmslových škol se zaměřeí a geodézii. Jedá se o přepracovaou

Více

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie Veteriárí a farmaceutická uiverzita Bro Základy statistiky pro studující veteriárí medicíy a farmacie Doc. RNDr. Iveta Bedáňová, Ph.D. Prof. MVDr. Vladimír Večerek, CSc. Bro, 007 Obsah Úvod.... 5 1 Základí

Více

Obsah. Opravy pro toto vydání: opravy2.proflakace.cz

Obsah. Opravy pro toto vydání: opravy2.proflakace.cz Obsah Úvod... 5 Základí pojmy... 7. Tříděí dat... 7. Míry úrově polohy... 8.3 Míry variability... 8 Počet pravděpodobosti.... Průik a sjedoceí jevů.... Náhodá veličia... 6.3 Rozděleí áhodé veličiy... 8

Více

3.1 OBSAHY ROVINNÝCH ÚTVARŮ

3.1 OBSAHY ROVINNÝCH ÚTVARŮ 3 OBSAHY ROVINNÝCH ÚTVARŮ Představa obsahu roviého obrazce byla pro lidi důležitá od pradávých dob ať již se jedalo o velikost a přeměu polí či apříklad rozměry základů obydlí Úlohy a výpočet obsahu základích

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t. Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví

Více

Úvod do zpracování měření

Úvod do zpracování měření Laboratorí cvičeí ze Základů fyziky Fakulta techologická, UTB ve Zlíě Cvičeí č. Úvod do zpracováí měřeí Teorie chyb Opakujeme-li měřeí téže fyzikálí veličiy za stejých podmíek ěkolikrát za sebou, dostáváme

Více

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je + + + + ) + = = 0 + + Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a

Více

Diskrétní matematika

Diskrétní matematika Diskrétí matematika Biárí relace, zobrazeí, Teorie grafů, Teorie pravděpodobosti Diskrétí matematika látka z I semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia Obsah Biárí relace2

Více

8 Průzkumová analýza dat

8 Průzkumová analýza dat 8 Průzkumová aalýza dat Cílem průzkumové aalýzy dat (také zámé pod zkratkou EDA - z aglického ázvu exploratory data aalysis) je alezeí zvláštostí statistického chováí dat a ověřeí jejich předpokladů pro

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

1. Číselné obory, dělitelnost, výrazy

1. Číselné obory, dělitelnost, výrazy 1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

Měřící technika - MT úvod

Měřící technika - MT úvod Měřící techika - MT úvod Historie Už Galileo Galilei zavádí vědecký přístup k měřeí. Jeho výrok Měřit vše, co je měřitelé a co eí měřitelým učiit platí stále. - jedotá soustava jedotek fyz. veliči - símače

Více

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice Matematika I Název studijího programu RNDr. Jaroslav Krieg 2014 České Budějovice 1 Teto učebí materiál vzikl v rámci projektu "Itegrace a podpora studetů se specifickými vzdělávacími potřebami a Vysoké

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

HODNOCENÍ PŘÍSTROJŮ PRO MĚŘENÍ JAKOSTI ZIMNÍCH KAPALIN DO OSTŘIKOVAČŮ V PROVOZU

HODNOCENÍ PŘÍSTROJŮ PRO MĚŘENÍ JAKOSTI ZIMNÍCH KAPALIN DO OSTŘIKOVAČŮ V PROVOZU HODNOCENÍ PŘÍSTROJŮ PRO MĚŘENÍ JAKOSTI ZIMNÍCH KAPALIN DO OSTŘIKOVAČŮ V PROVOZU Ja SKOLIL 1*, Štefa ČORŇÁK 2*, Ja ULMAN 3 1* Velvaa, a.s., 273 24 Velvary, Česká republika 2,3 Uiverzita obray v Brě, Kouicova

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

Příklady k přednášce 9 - Zpětná vazba

Příklady k přednášce 9 - Zpětná vazba Příklady k předášce 9 - Zpětá vazba Michael Šebek Automatické řízeí 205 6--5 Příklad: Přibližá iverze tak průřezu s výškou hladiy y(t), přítokem u(t) a odtokem dy() t dt + 2 yt () = ut () Cíl řízeí: sledovat

Více

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl:

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl: 9 ÁHODÉ VÝBĚR A JEJICH ZPRACOVÁÍ Čas ke studu katol: 30 mut Cíl: Po rostudováí tohoto odstavce budete rozumět ojmům Základí soubor, oulace, výběr, výběrové šetřeí, výběrová statstka a budete zát základí

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

35! n! n k! = n k k! n k! k! = n k

35! n! n k! = n k k! n k! k! = n k Do školí jídely přišla skupia 35 žáků. Určete kolika způsoby se mohli seřadit do froty u výdeje obědů. Řešeí: Počet možostí je 1 2... 35=35! (Permutace bez opakováí) Permutací bez opakováí z -prvkové možiy

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

ANALÝZA SRÁŽKOVÝCH MAXIM

ANALÝZA SRÁŽKOVÝCH MAXIM Rožovský, J., Litschma, T. (ed): Semiář Extrémy počasí a podebí, Bro,. březa 4, ISBN 8-8669-2- Marie Budíková, Ladislav Budík Summary Aalysis of precipitatio maxima ANALÝZA SRÁŽKOVÝCH MAXIM Database of

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK)

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK) Systém itralaboratorí kotroly kvality v kliické laboratoři (SIKK) Doporučeí výboru České společosti kliické biochemie ČLS JEP Obsah: 1. Volba systému... 2 2. Prováděí kotroly... 3 3. Dokumetace výsledků

Více

Optické vlastnosti atmosféry, rekonstrukce optického signálu degradovaného průchodem atmosférou

Optické vlastnosti atmosféry, rekonstrukce optického signálu degradovaného průchodem atmosférou INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Optické vlastosti atmosféry, rekostrukce optického sigálu degradovaého průchodem atmosférou Učebí texty k semiáři Autor: Dr. Ig. Zdeěk Řehoř UO Bro) Datum: 22. 10. 2010

Více

Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv

Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv 3. meziárodí koferece Řízeí a modelováí fiačích rizik Ostrava VŠB-U Ostrava, Ekoomická fakulta, katedra Fiací 6.-7. září 006 tegrace hodot Value-at-Risk lieárích subportfolií a bázi vícerozměrého ormálího

Více

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců. 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl

Více

Rozhodovací stromy. Úloha klasifikace objektů do tříd. Top down induction of decision trees (TDIDT) - metoda divide and conquer (rozděl a panuj)

Rozhodovací stromy. Úloha klasifikace objektů do tříd. Top down induction of decision trees (TDIDT) - metoda divide and conquer (rozděl a panuj) Rozhodovací stromy Úloha klasifikace objektů do tříd. Top dow iductio of decisio trees (TDIDT) - metoda divide ad coquer (rozděl a pauj) metoda specializace v prostoru hypotéz stromů (postup shora dolů,

Více

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ Vlastosti úloh celočíselého programováí VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ PRINCIP ZESILOVÁNÍ NEROVNOSTÍ A ZÁKLADNÍ METODY. METODA VĚTVENÍ A HRANIC. TYPY ÚLOH 1. Úloha lieárího programováí: max{c

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

Vážeí zákazíci dovolujeme si Vás upozorit že a tuto ukázku kihy se vztahují autorská práva tzv. copyright. To zameá že ukázka má sloužit výhradì pro osobí potøebu poteciálího kupujícího (aby èteáø vidìl

Více

METODICKÝ NÁVOD PRO MĚŘENÍ A HODNOCENÍ HLUKU A VIBRACÍ NA PRACOVIŠTI A VIBRACÍ V CHRÁNĚNÝCH VNITŘNÍCH PROSTORECH STAVEB

METODICKÝ NÁVOD PRO MĚŘENÍ A HODNOCENÍ HLUKU A VIBRACÍ NA PRACOVIŠTI A VIBRACÍ V CHRÁNĚNÝCH VNITŘNÍCH PROSTORECH STAVEB 6 VĚSTNÍK MZ ČR ČÁSTKA 4 METODICKÝ NÁVOD PRO MĚŘENÍ A HODNOCENÍ HLUKU A VIBRACÍ NA PRACOVIŠTI A VIBRACÍ V CHRÁNĚNÝCH VNITŘNÍCH PROSTORECH STAVEB Miisterstvo zdravotictví vydává podle 80 odst., písm. a)

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu 1. Defiice elektrického pohou Pod pojmem elektrický poho rozumíme soubor elektromechaických vazeb a vztahů mezi pracovím mechaismem a elektromechaickou soustavou. Mezi základí tři části elektrického pohou

Více