7. P o p i s n á s t a t i s t i k a

Rozměr: px
Začít zobrazení ze stránky:

Download "7. P o p i s n á s t a t i s t i k a"

Transkript

1 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme statistické jedotky. Sledujeme vlastosti statistických jedotek, které azýváme statistické zaky ebo stručěji veličiy (variable). Souhr zaků a veliči tvoří data. Při zkoumáí používáme dva základí druhy statistiky, popisou statistiku (describe statistics) a iterferečí statistiku. Popisá statistika zjišťuje a sumarizuje iformace, zpracovává je ve formě grafů a tabulek a vypočítává jejich číselé charakteristiky jako průměr, rozptyl percetily, rozpětí a pod. Iterferečí statistika čií závěry a základě dat získaých z šetřeí provedeých pro vybraý soubor respodetů. Aalyzuje tyto závěry a predikuje z ich závěr pro celý soubor. (Volebí průzkum, průzkum trhu a pod.) Při statistickém šetřeí máme k dispozici: - základí soubor je soubor všech statistických jedotek; - výběrový soubor je vybraá část ze základího souboru. Rozsah základího (výběrového) souboru je počet jedotek v souboru. Při vytvářeí souboru jedotek provádíme výběr ve tvaru prostého áhodého výběru Defiice: Prostý áhodý výběr (simple radom sample) je áhodý výběr ze základího souboru vytvořeý tak, že každá statistická jedotka ze základího souboru má stejou pravděpodobost, že bude vybráa. Pokud je možé vybrat tutéž jedotku zova, mluvíme o výběru s vraceím, pokud opakovaý výběr eí možý jedá se o výběr bez vraceí. Pozámka: Jié metody používají defiovaý způsob výběru, který je popsá zadaým algoritmem. Využívá se především vytvářeí výběru s meším rozsahem, který podchycuje zákoitosti obsažeé v rozsáhlejším výběru. V dalším se budeme zabývat popisou statistikou. 6

2 Popisá statistika Vlastosti, které se pro jedotlivé jedotky měí azýváme veličiami, případě statistickými zaky ebo proměými (variable). Vyskytují se veličiy - kvatitativí, popsaé číselou hodotou (výška, váha, cea); - kvalitativí, popsaé vlastostmi (muž, žea, barva očí, dosažeé vzděláí). Kvatitativí veličiy mohou být diskrétí (discrete), abývající hodot ze zadaé koečé možiy, ebo spojité (cotiuous), které abývají hodot ze zadaého itervalu. Pozorovaím ebo měřeím hodot zkoumaé veličiy a ěkolika statistických jedotkách získáme vstupí data. Soubor těchto údajů azýváme datový soubor. Teto soubor je jedorozměrý, jestliže sledujeme jede zak, ebo vícerozměrý (multistage radom sample), pokud sledujeme více zaků. Při zpracováí jedorozměrého datového souboru kvatitativích dat x, x 2,..., x potřebujeme pro ěkterá šetřeí data uspořádat podle velikosti. Dostaeme pak uspořádaý datový soubor tvaru x () x (2)... x (), kde x () = mi{x i ; i } a x () = max{x i ; i }. Metody zpracovaí dat 7.3. Tříděí dat je rozděleí dat do skupi provedeé tak, aby vyikly charakteristické vlastosti sledovaých jevů. Uspořádáme a zhustíme data do přehledější formy. Rozezáváme - jedostupňové tříděí, jestliže třídíme data podle změ jedoho statistického zaku; - vícestupňové tříděí, pokud provádíme tříděí podle více zaků ajedou. Nejčastěji při jedostupňovém tříděí kvatitativích dat uspořádáme data podle velikosti a staovíme itervaly, které odpovídají jedotlivým třídám. Mluvíme pak o itervalovém tříděí. Máme-li datový soubor {x, x 2,..., x }, který obsahuje celkem dat, pak iterval mezi ejvětší a ejmeší hodotou rozdělíme a k disjuktích itervalů, tříd (classes), tvaru (a i, a i, i k. Potom prvek 7

3 x j patří do i té třídy, pokud je a i < x j a i. Používáme ásledujících termíů a ozačeí: - třída (class) je část dat z itervalu (a i, a i ; - dolí hraice třídy (lower class limit) je hodota a i ; - horí hraice třídy (upper class limit) je hodota a i ; - střed třídy (class mark) je průměr horí a dolí hraice třídy, tedy y i = 2 (a i + a i ); - šířka třídy (class width) je rozdíl horí a dolí hraice třídy, tedy hodota a i a i ; - (absolutí) četost třídy (frequecy) i je počet prvků souboru, které patří do i té třídy; - relativí četost (relative frequecy) p i = i je poměr četosti třídy ku celkovému počtu dat; - kumulativí (absolutí) četost (cumulative frequecy) N i = i je součet četosti třídy a četostí tříd předchozích; - kumulativí relativí četost (cumulative relative frequecy) P i = p + p p i je součet relativí četosti třídy a relativích četostí tříd předchozích. Potom platí: k i =, k p i =, i j= j = N i, i j= p j = P i, N k =, P k =. Při staoveí hraic tříd obvykle zachováváme tato dvě pravidla: - šířku třídy h volíme pro všechy itervaly shodou, s vyjímkou krajích tříd pokud tvoří eomezeé itervaly: - při staoveí šířky třídy h dodržujeme Sturgesovo pravidlo, kdy pro počet tříd k platí, že k. = + 3, 3 log. V tabulce jsou uvedey počty tříd pro ěkteré hodoty rozsahů souboru k pokud jsou krají itervaly děleí eomezeé, pak za střed prví, resp. posledí třídy volíme bod, který má od koečého krajího bodu třídy stejou vzdáleost jakou má od středu sousedí třídy. Při tříděí kvalitativích dat postupujeme obdobě. Jeom místo itervalu tvoří třídu prvky, které mají stejý zak, ebo skupiu zaků. 8

4 7.4. Grafická zázorěí Pro větší ázorost požíváme místo tabulek zázorěí datového souboru pomocí grafů. Používá se ěkolika typů. Histogram (histogram) je graf kdy a vodorovou osu zázoríme třídy a a svislou osu četosti či relativí četosti. Často se používá ve tvaru, kdy se hodota odpovídající třídě zázorí jako sloupec s itervalem třídy jako základou a výška je dáa četostí. Polygo četostí a relativích četostí je graf, kdy úsečkami spojíme body (y i, i ), resp. (y i, p i ). Bodový graf (dot diagram) dostaeme tak, že a vodorovou osu vyeseme třídy jako body i, i k, a ve svislém směru vyášíme jedotlivé prvky třídy zázorěé jako jedotlivé body (i, j), j =, 2,... i. Sloupkový graf je podobý histogramu, ale sloupce bývají odděleé, mají stejou šířku a každý sloupec odpovídá jedé třídě. Používáme je předeším u kvalitativích dat. Kruhový (výsečový) diagram (pie chart) je zázorěí pomocí výsečí kruhu, kde každé třídě odpovídá jeda výseč. Velikosti obsahů výsečí odpovídají četostem třídy. Stem-ad-Leaf diagram je uspořádáí dat do tabulky, kdy prví sloupec -stem=stoek odpovídá třídě a do řádku -leaf=list vypisujeme prvky třídy. Pokud tyto prvky uspořádáme podle velikosti mluvíme o uspořádaém diagramu. Krabicový ebo vrubový krabicový graf (box or whiskers plot) zázorňuje výzačé a extrémí hodoty souboru Příklad: Ze 7 možých výsledků jsme dostali datový soubor o 4 datech i x i Tab. 7.. Datům odpovídá tabulka četostí Tab. 7.2 a bodový graf a obrázku Obr

5 třída četost i Tab Obr. 7.. Polygo četostí k Tab 7.2. Histogram četostí k Tab i i Obr Obr Sloupkový graf k tabulce Tab i Obr Řada vlastostí datového souboru se dá vyčíst z tvaru histograu či polygou četostí. Ty odpovídají grafu hustoty u rozděleí pravděpodobosti áhodé veličiy. Rozlišuje se ěkolik charakteristických průběhů těchto grafů. - souměrý ve tvaru zvou, trojúhelíku či rovoměrý; - esouměré ve tvaru J, obráceého J, vpravo či vlevo protažeé; - podle počtu vrcholů jedo-, dvou-, či vícevrcholové (uimodal, bimodal, multimodal) Charakteristiky (míry) polohy. Nejzámější a ejčastěji používaou charakteristkou polohy je aritmetický průměr hodot souboru. 20

6 Průměr (mea, sample mea) datového souboru {x, x 2,..., x } je defiová vztahem x = x k. Pokud jsou {z, z k,..., z m } růzé hodoty souboru s četostmi j, j =, 2,..., m, a s relativími četostmi p j, pak k= x = m j= z j j = m j= z j p j. Věta. Vlastosti průměru Pro průměr datového souboru platí:. Součet odchylek hodot souboru od průměru je rove ule, t.j. (x i x) = Přičteme-li k hodotám souboru kostatu a, pak průměr ového souboru {y i = x i + a} je y = (x i + a) = x + a. 3. Násobíme-li hodoty souboru číslem b, ásobí se průměr také b, eboť pro soubor {y i = bx i } je y = bx i = bx. Pokud soubor {x 0, x,..., x } tvoří data, která odpovídají časové řadě sledující tred vývoje, pak jako charakteristiku polohy používáme průměrý přírůstek. Zavádíme jej jako průměr y souboru {y i = x i x 0, i }. Je pak y = x (x i x 0 ) = (x x 0 ). Mediá (media). Průměr datového souboru je citlivý a hrubé chyby, kdy jeda chybá hodota může výrazě změit hodotu průměru. Proto ěkdy používáme robustích charakteristik, které jsou méě citlivé a zadáí chybé hodoty. Mezi ě patří mediá (media) x, který je pro datový soubor x, x 2,... x defiová vztahem x = 2 x (m), pro = 2m, ( ) x(m) + x (m+), pro = 2m. Hodoty mediáů pro dva růzé typy rozsahů souborů zázoríme a obrázcích. 2

7 liché, = 5 x = x 3 x x 2 x 3 x 4 x 5 sudé, = 6 x = (x 3 + x 4 )/2 x x 2 x 3 x 4 x 5 x 6 Obr mediá Obr mediá Používáme jej i v případech, kdy soubor obsahuje ěkterá extrémí data, tzv. odlehlá pozorováí. Ta se v hodotě mediáu výrazěji eprojeví a mediá tak lépe vystihuje průměr souboru. Další z robustích charakteristik je modus (mode) ˆx, který je defiová jako hodota souboru s ejvětší četostí, tedy ˆx = z j, j i, i m. Pozameejme, že modus emusí být jedozačě urče, může abývat ěkolika hodot. Používáme jej v případech, kdy ás zajímají špičkové hodoty souboru, apř. při sledováí dopraví zátěže v místě, počet cestujících v hromadé dopravě, spotřeba elektrické eergie během de a roku, či průtok řekou. Kvatily, kvartily, decily, percetily Pro podrobější popis rozděleí hodot datového souboru používáme kvatily (quatiles). Kvatil datového souboru rozděluje soubor a dvě části. V jedé jsou hodoty souboru, které jsou meší či ejvýše rovy kvatilu a ve druhé jsou hodoty větší ež kvatil. Defiujeme pro p, 0 < p <, p kvatil, resp. 00p%kvatil, (quatile) jako tu hodotu x 00p ze souboru {x, x 2,..., x }, pro kterou je přibližě 00p% hodot ze souboru meších a 00( p)% hodot je větších ež x 00p. Nejjemější používaé rozděleí souboru je pomocí percetilů (percetile) x, x 2,..., x 99. Často se využívají decily (deciles) x 0,..., x 90. Speciálí ázvy mají kvatily: - x 50 je mediá (media); - x 25 dolí kvartil (lower quartile); - x 75 horí kvartil (upper quartile). Jako mezikvartilové rozpětí IQR (iterquartile rage) se defiuje rozdíl IQR = x 75 x 25. Jsou-li x () x (2)... x () hodoty souboru uspořádaé podle 22

8 velikosti pak p kvatil, resp. 00p% kvatil určíme podle vzorce x 00p = x ([p]+), pokud p eí celé číslo, 2 (x (p) + x (p)+ ) pro p celé, kde [p] je celá část čísla, tedy celé číslo, které je ejbližší meší. Při větších rozdílech mezi jedotlivými daty používáme pro přesější vymezeí kvatilů lieárí aproximace mezi sousedími hodotami. Závěr modus sado se ajde, má ale miimálí vypovídací hodotu: mediá určuje střed souboru a je méě citlivý a chyby; průměr zohledňuje všechy hodoty, ale je citlivý a chyby. Usekuté průměry Je-li x () x (2)... x () uspořádaý výběr, pak pro číslo 0 < α < 0, 5 azýváme hodotu x α = 2[α] [α] i=[α]+ x (i) α-usekutým průměrem (alpha-trimmed mea). Hodotu x αw = [α] i=[α]+ ( [α]x([α]) + x (i) + [α]x ( [α]+) ) azýváme α-wisorizovaý průměr (α-wisored mea). Symbol [α] ozačuje ejvětší celé číslo k, pro které je k α. Jié průměrové charakteristiky polohy. Pro soubory kladých dat používáme také jié průměry. Jsou to: Geometrický průměr (geometric mea) x G, který je pro soubor x, x 2,..., x kladých dat defiová vztahem x G = x x 2... x. Takový charakter mají apř. hodoty, které zachycují časový vývoj, apř. v ekoomice růst produkce, či ce, přírůstek počtu obyvatel a pod. Je-li časový vývoj popsá hodotami souboru {x 0, x,..., x }, pak položíme z k = x k x k, k a hodoty z k vyjadřují poměrý přírůstek 23

9 během zvoleého úseku sledovaého období. Průměrý přírůstek za celé období je pak dá hodotou x z G = z.z 2... z =. x 0 Vlastosti geometrického průměru. Násobíme-li hodoty původího souboru číslem c, ásobí se týmž číslem i geometrický průměr. Pro logaritmus geometrického průměru platí: lx G = lx = Věta 2. Pro soubor s kladými daty je x G x lx i. a rovost astae jediě pro x = x 2 =... = x. Důkaz: Fukce f(x) = l x je kovexí a tedy pro x a h je Situaci zázoríme a obrázku f(x) f(h) + f (h)(x h). y y = y(x) + y (x)(x x) y = lx x x Obr Jestliže zvolíme x = x i a h = x, pak pro i platí erovice ( ) l x i l x + (x i x)f (x), i. Sečteím dostaeme erovici l x i l x + f (x) (x i x) = l x, 24

10 protože podle věty je tedy Dále je (x i x) = 0. l x G = l( x x 2... x ) = l x G l x x G x, l x i, eboť je fukce l x rostoucí. Rovost ve vztahu ( ) astae jediě pro x i = x, tedy pokud je x = x 2 =... = x. Harmoický průměr (harmoic mea) x H, který je pro soubor kladých dat defiová vztahem x H = x + x x Pozámka: Využívá se tam, kde má vypovídací hodotu převráceá hodota k původí. Nejčastěji je to v případech, kdy hodota x i odpovídá době uté k provedeí ějakého pracovího úkou. Převráceá hodota pak uvádí, jaká část pracovího úkou je splěa za jedotku času. Věta 3. Pro soubor s kladými daty je x H x G x, přičmž rovost astae pouze pro x = x 2 =... = x. Důkaz: Z defiice harmoického průměru vyplývá vztah x H = což je aritmetický průměr souboru x H = x x x x = i x i. { } x i. Podle věty 2 je ale Rovost platí pouze v případě, že x = x 2 =... = x. = x H x G. x x 2... x x G Kvadratický průměr (quadratic mea)x K je defiová vztahem x K = 25 x 2 i.

11 Věta 4. Je x x K a rovost platí pouze v případě, že x = x 2 =... x. Důkaz: Fukce f(x) = x 2 je kokáví a tedy je x 2 h 2 +f (h)(x h). Situace zázoríme a obrázku y y = y(x) + y (x)(x x) x y = x 2 x Obr Jestliže položíme x = x i a h = x, pak x 2 i (x) 2 + f (x)(x i x) x 2 i (x) 2 + f (x)(x i x) (x K ) 2 (x) 2 x K x. Rovost astae pouze pro x i = x, tedy pro x = x 2 =... = x. Věta 5. Pro soubory kladých dat je x () x H x G x x K x () a rovost astae pouze v případě, že x = x 2 =... = x Charakteristiky (míry) rozptýleosti. Rozpětí datového souboru (rage) je hodota R = x max x mi. Hodota se po uspořádáí souboru sado spočítá, ale její hodota je citlivá a zavlečeé chyby. Vychází pouze ze dvou hodot a igoruje iformaci z ostatích hodot souboru. V ěkterých případech proto používáme jako charakteristiku tohoto druhu hodotu x 90 x 0. Provedeme vlastě ořezáí souboru, když vyecháme hodoty meší ež x 0 a větší ež x 90, tedy 0% ejmeších a 0% ejvětších hodot.odstraíme tím vliv případých chybých hodot, které leží a hraicích souboru. Podobou charakteristikou je mezikvartilové rozpětí (iterquartile rage) IQR = x 75 x

12 Středí kvadratická odchylka (MSD) (mea of squared deviatio) je průměr čtverců odchylek od průměru a je defiová vztahem s 2 = (x i x) 2. Rozptyl (dispersio, variace) je defiová vzrcem S 2 = MSD = (x i x) 2 a směrodatá odchylka (stadard deviatio) S je odmociou z rozptylu. Věta 6. Vlastosti rozptylu a MSD a vzorce pro výpočet.. Je ( )S 2 = (x i x) 2 = x 2 i 2x x i + (x) 2 = = S 2 = x 2 i 2x x i + x x i = x 2 i (x) 2 x 2 i (x) 2, s 2 = x 2 (x) Je-li y i = bx i + a, i, pak s 2 y = b 2 s 2 x, s y = b s x ; S 2 y = b 2 S 2 x, S y = b S x Věta 7. Fukce S(α) = (x i α) 2 abývá svého miima s 2 pro α = x. Důkaz: Je S (α) = 2(x i α)( ) = 0 (x i α) = 0 x = α. Pro soubory, které obsahují velké možství dat je výhodější charakteristiky polohy a rozpětí odhadovat. Uvedeme ěkteré jedoduché odhady a o dalších pojedáme později. Pomocé tvrzeí (Cauchyova erovost): Pro tice čísel (a, a 2,..., a k ) a (b, b 2,..., b k ) je k a i b i 2 k a 2 k i b 2 i. 27

13 Jestliže iterpretujeme tice čísel jako aritmetické vektory v R k, pak lze uvedeou erovici přepsat do tvaru ( a. b) 2 a 2. b 2. Ta ale platí, eboť skalárí souči dvou vektorů je rove a. b = a. b. cos ( a, b). Protože je fukce kosius omezeá v absolutí hodotě jedičkou, uvedeá erovice platí. Ve vztahu platí rovost pouze v případě, že je kosius úhlu ulový a to astae, je-li b = α a, t.j. b i = αa i, i. Věta 8. Pro soubor x i, i platí max{ x i x ; i } s. Důkaz: Položme v tvrzeí pomocé věty a = (x x,..., x i x, x i+ x,..., x x) a b = (,,..., ). Potom je j i(x j x) Protože je 2 ( ) j i(x j x) 2 = ( ) j= j x) = 0 (x i x) = j=(x (x j x) j i tak z předchozí erovice vyplývá, že (x j x) 2 (x i x) 2 (x i x) 2 ( ) (x j x) 2 ( )(x i x) 2 (x i x) 2 j= j= (x j x) 2 = ( )s 2 =. ( )2 S 2 ( )S 2. Odmocěím získáme dokazovaou erovici. Tato erovice platí pro všechy hodoty idexu i, i, platí tedy i pro tu kde abývá fukce maximuma. Věta 9. Pro rozpětí souboru platí s 2 R2 4, S2 R2 4( ) tedy S R 2. 28

14 Důkaz: Ozačme m = 2 (x () + x () ). Je tedy x i m R 2, i. Fukce S(α) z věty 7 abývá svého miima pro α = x a tedy je s 2 = S(x) S(m) = (x i m) 2 R2 4. Ze vztahu S 2 = s2 dostaeme uvedeý odhad. Průměrá odchylka (mea of absolute deviatio) d a od bodu a je pro soubor dat x i defiováa vztahem d a = x i a. Nejčastěji se používá průměrá odchylka od aritmetického průměru x ebo mediáu x. K tomu ás vede ásledující vlastost. Věta 0. Fukce d a abývá svého miima pro mediá a = x. Důkaz: Je-li a < x (), pak je d a = (x i a) = x a, tedy d (a) = a tudíž je fukce d a klesající v itervalu (, x () ). Obdobě pro a > x () je d a = a x, tedy d (a) = a tudíž je fukce d a rostoucí v itervalu (x (), ). Nechť je x (j) < a < x (j+) pro ějaké j. Potom je Je tedy d a = x (i) ) + (a i=j+ (x (i) a). d (a) = 2j (j + ( j)( )) =. Derivace fukce d a je záporá a tedy fukce je klesající pro 2j < 0 a je kladá, tedy fukce je rostoucí, pro 2j > 0. Je-li = 2m + liché číslo, pak 2j < = 2m + j < m +, tedy fukce d a je klesající v itervalu (, x (m+) ) a 2j > 2m + j > m +, je tedy fukce d a rostoucí v itervalu (a (m+), ). Nabývá tedy svého miima v bodě x (m+) což je mediá x. Je-li = 2m sudé číslo, pak má fukce d a derivaci ulovou a tedy je kostatí v itervalu (x (m), x (m+) ). Hodota v tomto itervalu je její miimum a střed itervalu je mediá x. Situaci pro rozsahy,2 a 3 zázoríme a obrázcích, a kterých je patrá idea důkazu. 29

15 y x d a a y x x 2 d a a y Obr.7.9 Obr. 7.0 x x 2 x 3 d a a Obr.7. Pokud používáme jako charakteristiku polohy mediá x = x 0,5, pak místo směrodaté odchylky s používáme jako charakteristiku rozptylu mezikvartilové rozpětí IQR = x 0,75 x 0,25. V tomto itervalu leží 50% hodot souboru. Omezujeme tím vliv případých extrémích hodot, které mohou být zatížeé chybou. Pětičíselá charakteristika (five-umber summary)souboru je pětice čísel x mi, x 25, x 50, x 75, x max, a které jsou založey krabicové grafy. Relativí variabilita Můžeme také používat charakteristiky relativí variability, které jsou defiováy jako poměr směrodaté odchylky a ěkterého průměru. Nejčastěji se používá variačí koeficiet, který je defiová vztahem V = s x. Určuje ám jakou částí se podílí směrodatá odchylka a aritmetickém průměru dat. Je-li V > 0, 5 pak se jedá o esourodý soubor. Variačí 30

16 koeficiet má tyto vlastosti, které pro jedoduchost budeme uvažovat pro kladá data. Věta. Ozačme x soubor dat {x i }, i, bx = {bx i }, b > 0 a x ± a = {x i ± a}, a > 0. Potom pro variačí koeficiet V platí: a) V (bx) = V (x); b) V (x + a) < V (x); c) V (x + a) < V (x) < V (x a), 0 < a < x. Pozameejme, že s(bx) = bs(x), s(x + a) = s(x) a bx = bx, x + a = x + a. Odtud dostaeme, že V (bx) = s(bx) bx Dále je s(x + a) V (x + a) = x + a a obdobě pro 0 < a < x je V (x a) = s(x a) x a = bs(x) bx = V (x). = s(x) x + a < s(x) x = s(x) x a > s(x) x = V (x) = V (x). Jako aproximace se používá relativí kvartilová odchylka Q r je defiováa vztahem Q r = x 0,75 x 0,25 x 0,75 + x 0,25 Jié charakteristiky Koeficiet šikmosti (skewess) A 3 = s 3 a koeficiet špičatosti (kurtosis) A 4 = s 4 (x i x) 3 (x i x) 4 3 Pro data, která jsou rozložea symetricky kolem hodoty x je A 3 = 0. Hodoty A 3 blízké ule odpovídají rozděleí, které se blíží symetrickému. Je-li A 3 > 0, pak je rozložeí dat sešikmeé vpravo, meší hodoty ež průměr x jsou k ěmu více ahuštěy ež hodoty větší. Pro A 3 < 0 je 3

17 rozděleí sešikmeé vlevo, větší hodoty jsou více ahuštěy k průměru ež hodoty ižší. Je-li A 4 blízké ule, říkáme, že jedá o soubor s ormálí špičatostí. Při A 4 < 0 mluvíme o souborech plochých a při A 4 > 0 mluvíme o souborech špičatých. Příklad: Uvedeme výpočty uváděých charakteristik pro soubor dat z tabulky Tab. 7.. Je x = 4 44 = 3, 43, R = 7 = 6 a s2 = 3, 565, s =, 875. Pro kvatily dostaeme: x 0 = x 2 =, x 90 = x 3 = 5, x 25 = x 4 = 2, x 50 = x 3 = 5, x 75 = x = 5. Mezikvartilové rozpětí IQR = x 75 x 25 = 5 2 = 3. Variačí koeficiet V = s, 875 = = 0, 597. x 3, 43 Sheppardovy korekce V případě výpočtů číselých charkteristik ze setříděého souboru opravujeme ěkteré výběrové momety, abychom potlačili vliv chyb, které vzikou při ahrazeí dat průměrem příslušé třídy. Ozačme: {x, x 2,..., x } původí datový soubor; {z, z 2,..., z k } setříděý soubor; j, j k absolutí četost j té třídy; p j = j, j k relativí četost j té třídy; h rozpětí třídy. Výběrové momety původího souboru M r = M r = x r i, r tý obecý momet; (x i x) r, r tý cetrálí momet; x = M = x i ; Výběrové momety setříděého souboru 32

18 m r = m r = k j= k j= z r j j = k j= Opraveé hodoty M = m = x; z r j p j, r tý obecý momet; (z j x) r j = k (z j x) r p j, r tý cetrálí momet; j= M 2 = m 2 h2 2, M 2 = m 2 h2 2 ; M 3 = m 3 h2 4 m, M 3 = m 3 ; M 4 = m 4 h2 2 m 2 + 7h4 240, M 4 = m 4 h2 2 m 2 + 7h Písmekové charakteristiky V ěkterých aplikacích se používají ozačeí charakteristik polohy a variability pomocí písme. Ozačujeme tak kvatily, které mají po řadě hodoty p = 2 a ěkteré veličiy, které charakterizují rozptýleí hodot souboru. M mediá x = x 0,5, tedy 0, 5 kvatil; F kvartily; F D dolí kvartil x 0,25 ; F H horí kvartil x 0,75 ; E oktily; E D dolí oktil, kvatil x /8 ; E H horí oktil, kvatil x 7/8 ; D sedecily; D D dolí sedecil, kvatil x /6 ; D H horí sedecil, kvatil x 5/6. R F = F H F D = IQR je mezikvartilové rozpětí. B D, B H vitří hradby souboru, kde B D = F D, 5R F, B H = F H +, 5R F. Pozameejme, že pro ormovaé ormálí rozděleí N(0; ) je B H B D 4, 2 a P (X < B D X > B H ) =. 0, 04. (I D, I H ) iterval spolehlivosti pro mediá, kde I D = M,57R F a I H = M +,57R F, přičemž je počet prvků v souboru Grafická zázorěí I. Graf dat x () B D F D M F H B H x () 33

19 Obr. 7.2 II. Krabicový graf Šířku obdélíka volíme úměrou hodotě x () B D B H x () M F D F H Obr. 7.3 III. Vrubový krabicový graf hodotě Šířku obdélíka volíme úměrou x () B D B H x () M F D I D I H F H Obr. 7.4 Krabicové grafy jsou vhodé pro porváí dvojice souborů, kdy případé rozdíly jsou okamžitě patré z rozměrů krabic. IV. Histogram V. Graf polosum k testováí symetrie. Na osu x vyášíme hodoty x(i) a a osu y hodoty polosum y i = 2 (x (i) + x (+ i) ). Pro symetrické rozděleí leží body kolem přímky y = M. VI. Kvatil=kvatilový Q Q graf je grafem kvatilové fukce. Na osu x vyášíme hodoty P i kvatilů Q(P i ), P i = i + a a osu y hodoty y = x (i). VII. Pravděpodobostí P P graf je grafem distribučí fukce. Na osu x vyášíme hodoty x (i) a a osu y hodoty P i = i +. Oba grafy slouží k testováí shody rozděleí, kde porováváme průběhy pro dva soubory. Používáme je ve dvojici, kdy využíváme toho, že 34

20 Q Q graf je citlivější a chyby v okrajových datech souboru a P P graf je aopak citlivý a chyby v okolí mediáu. VIII. Rakitový graf je kvatilový Q Q graf, ve kterém porováváme rozděleí s ormálím rozděleím. Na osu x vyášíme P i kvatil x Pi ormálího rozděleí a a osu y hodoty y = x(i). Parametry příslušéo ormálího rozděleí odhademe pomocí hodot ˆµ = M, ˆσ = 3 4 (F H F D ). Odpovídající kvatily určíme pomocí vzorců ( ) ( x(i) ˆµ U i = Φ, x Pi = Φ ˆσ 2 (U i + U i+ ) V případě ormálího rozděleí leží body a přímce. ), U 0 = 0, U + =. 7.. Vícerozměré soubory Sledujeme-li dva zaky, pak soubor dat má charakter uspořádaých dvojic {(x i, y i ), i }. Prví otázkou, kterou obvykle řešíme je popis závislosti prvího a druhého zaku. Jako charakteristiku polohy volíme dvojici (x, y). Za charakteristiku variability obvykle volíme směrodaté odchylky s x, s y. Jako míru statistické závislosti volíme koeficiet korelace Koeficiet korelace (covariace, coefficiet of variatio) r xy dvou souborů {x i } a {y i }, i je defiová vztahem r xy = (x i x)(y i y) s x.s y Vlastosti ( koeficietu korelace ) a) r xy = ( x iy i ) xy /(s x.s y ); b) r xy = r yx ; r xx = ; c) r xy ; d) pro y i = ax i + b je r xy = sga. e) r xy = ± y = ax + b. Důkaz: a) Pro čitatel zlomku dostaeme (x i x)(y i y) = (x i y i x i y xy i + xy) = (x i y i xy). 35

21 Odtud dostaeme odvozovaý vzorec. b) Tvrzeí jsou zřejmá. c) Z Cauchyovy erovosti dostaeme (x i x)(y i y) 2 (x i x) 2. (y i y) 2 = 2 s 2 x.s 2 y a odtud plye příslušé tvrzeí. d) Pro soubor y = ax + b je podle: s y = a s x a y = ax + b. Dále je x i y i = x i (ax i + b) = a x i y i + bx. Je tedy r xy = ( a (x i) 2 (x) 2 a s x.s x ) + bx bx = a a = sga. Druhá část tvrzeí plye z Cauchyovy erovosti, kde rovost astává pouze v případě, že y i y = a(x i x), tedy pro y i = ax i + b. Vztah ve dvojici (x i, y i ), který jsme použili lze jedoduše graficky zázorit. Do roviy vyeseme body o souřadicích (x i x, y i y). Závislost podobá lieárí závislosti y = ax+b se projeví tak, že kladé hodotě x bude odpovídat kladá hodota y a záporé hodotě x záporá hodota y pro a > 0. V obrázku je to oblast I, která odpovídá kladým hodotám čitatele ve vzorci pro koeficiet korelace. Čím budou body bliže přímce y = ax, tím bude hodota r xy blíže. Pro a < 0 bude závislost opačá, body ležet v oblasti II a hodota bude bližší. V případě ezávislosti hodot x a y budou body rozmístěy rovoměrě v obou částech I i II a hodota koeficietu korelace bude blízká ule, záporé a kladé hodoty v součtu se vyrovají. II y I I II x Obr

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter. Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

13 Popisná statistika

13 Popisná statistika 13 Popisá statistika 13.1 Jedorozměrý statistický soubor Statistický soubor je možia všech prvků, které jsou předmětem statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický

Více

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

11. Popisná statistika

11. Popisná statistika . Popsá statstka.. Pozámka: Př statstckém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákotost, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme statstcké jedotky. Př

Více

Elementární zpracování statistického souboru

Elementární zpracování statistického souboru Elemetárí zpracováí statistického souboru Obsah kapitoly 4. Elemetárí statistické zpracováí - parametrizace vhodými empirickými parametry Studijí cíle Naučit se výsledky měřeí parametrizovat vhodými empirickými

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

2 EXPLORATORNÍ ANALÝZA

2 EXPLORATORNÍ ANALÝZA Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů.

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t. Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

vají statistické metody v biomedicíně

vají statistické metody v biomedicíně Statistika v biomedicísk ském m výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Proč se používaj vají statistické metody v biomedicíě Biomedicísk

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky

Více

2. Náhodná veličina. je konečná nebo spočetná množina;

2. Náhodná veličina. je konečná nebo spočetná množina; . Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité

Více

Pravděpodobnostní model doby setrvání ministra školství ve funkci

Pravděpodobnostní model doby setrvání ministra školství ve funkci Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí

Více

1.2. NORMA A SKALÁRNÍ SOUČIN

1.2. NORMA A SKALÁRNÍ SOUČIN 2 NORMA A SKALÁRNÍ SOUČIN V této kapitole se dozvíte: axiomatickou defiici ormy vektoru; co je to ormováí vektoru a jak vypadá Euklidovská orma; axiomatickou defiici skalárího (také vitřího) součiu vektorů;

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i : ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V Předáška 1: Vektorové prostory Vektorový prostor Pro abstraktí defiici vektorového prostoru jsou podstaté vlastosti dvou operací, sčítáí vektorů a ásobeí vektoru (reálým číslem) Tyto dvě operace musí být

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Geometrická optika. Zákon odrazu a lomu světla

Geometrická optika. Zákon odrazu a lomu světla Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

1. Číselné obory, dělitelnost, výrazy

1. Číselné obory, dělitelnost, výrazy 1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá

Více

Matematika přehled vzorců pro maturanty (zpracoval T. Jánský) Úpravy výrazů. Binomická věta

Matematika přehled vzorců pro maturanty (zpracoval T. Jánský) Úpravy výrazů. Binomická věta Matematika přehled vzorců pro maturaty (zpracoval T. Jáský) Úpravy výrazů a r. a s = a r+s a r = ar s as a r s = a r.s a. b r = a r b r a b r = ar b r a. b a b = a b = a. b ( a) m = a m m a m. = a a k.

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad... Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1

Více

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý.

Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý. evost a životost - Hr III EVNOT a ŽIVOTNOT Hr III Mila Růžička, Josef Jreka, Zbyěk Hrbý zbyek.hrby@fs.cvt.cz evost a životost - Hr III tatistické metody vyhodocováí dat evost a životost - Hr III 3 tatistické

Více

Iterační metody řešení soustav lineárních rovnic

Iterační metody řešení soustav lineárních rovnic Iteračí metody řešeí soustav lieárích rovic Matice je: diagoálě domiatí právě tehdy, když pozitivě defiití (symetrická matice) právě tehdy, když pro x platí x, Ax a ij Tyto vlastosti budou důležité pro

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

Petr Šedivý Šedivá matematika

Petr Šedivý  Šedivá matematika LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je + + + + ) + = = 0 + + Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvatová a statistická fyzika (Termodyamika a statistická fyzika) Boltzmaovo - Gibbsovo rozděleí - ilustračí příklad Pro ilustraci odvozeí rozděleí eergií v kaoickém asámblu uvažujme ásledující příklad.

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymázium, Šterberk, Horí ám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šabloa III/2 Iovace a zkvalitěí výuky prostředictvím ICT Ozačeí materiálu VY_32_INOVACE_Hor018 Vypracoval(a), de Mgr. Radek

Více

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM Difereciálí počet fukcí jedé reálé proměé - - DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ ÚVODNÍ POZNÁMKY I derivace podobě jako limity můžeme počítat ěkolikerým způsobem a to kokrétě pomocí: defiice vět o algebře

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

Přednáška 7, 14. listopadu 2014

Přednáška 7, 14. listopadu 2014 Předáška 7, 4. listopadu 204 Uvedeme bez důkazu klasické zobecěí Leibizova kritéria (v ěmž b = ( ) + ). Tvrzeí (Dirichletovo a Abelovo kritérium). Nechť (a ), (b ) R, přičemž a a 2 a 3 0. Pak platí, že.

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

6. FUNKCE A POSLOUPNOSTI

6. FUNKCE A POSLOUPNOSTI 6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

Doc. Ing. Dagmar Blatná, CSc.

Doc. Ing. Dagmar Blatná, CSc. PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

Úloha II.S... odhadnutelná

Úloha II.S... odhadnutelná Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

Příklad statistické zpracování dat z dotazníku

Příklad statistické zpracování dat z dotazníku Příklad statistické zpracováí dat z dotazíku Proměá POČET ČLENŮ DOMÁCNOSTI - kardiálí, espojitá proměá, - otázka otevřeá. Frequecy Table for pocet_cleu_dom Value Frequecy Frequecy Frequecy Frequecy,3667,3667

Více

ZÁKLADY STATISTIKY (s aplikací na zdravotnictví)

ZÁKLADY STATISTIKY (s aplikací na zdravotnictví) PŘEMYSL ZÁŠKODNÝ RENATA HAVRÁNKOVÁ JIŘÍ HAVRÁNEK VLADIMÍR VURM ZÁKLADY STATISTIKY (s aplikací a zdravotictví) Vzik publikace byl ispirová myšlekami, pracemi a ávrhy výzamého sloveského vědce v oblasti

Více

Pravděpodobnost a statistika - absolutní minumum

Pravděpodobnost a statistika - absolutní minumum Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky

Více

množina všech reálných čísel

množina všech reálných čísel /6 FUNKCE Základí pojmy: Fukce sudá a lichá, Iverzí fukce Nepřímá úměrost, Mociá fukce, Epoeciálí fukce a rovice Logaritmus, logaritmická fukce a rovice Opakováí: Defiice fukce, graf fukce Defiičí obor,

Více

Přednášky část 7 Statistické metody vyhodnocování dat

Přednášky část 7 Statistické metody vyhodnocování dat DŽ ředášky část 7 tatistické metody vyhodocováí dat Mila Růžička mechaika.fs.cvt.cz mila.rzicka@fs.cvt.cz DŽ tatistické metody vyhodocováí dat Jak velké rozptyly lze očekávat mezi dosažeými pevostmi ebo

Více

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika Přijímací řízeí akademický rok 0/0 c. studium Kompletí zěí testových otázek matematika Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá. Které číslo doplíte místo 8? 6 6 8 C. Které číslo

Více

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním Lekce Itervalový odhad Itervalový odhad je jedou ze stadardích statistických techik Cílem je sestrojit iterval (kofidečí iterval, iterval spolehlivosti, který s vysokou a avíc předem daou pravděpodobostí

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopraví Statistika Semestrálí práce Zdražováí pohoých hmot Jméa: Martia Jelíková, Jakub Štoudek Studijí skupia: 2 37 Rok: 2012/2013 Obsah Úvod... 2 Použité

Více

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou 4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

1.1 Dva základní typy statistiky Popisná statistika (descriptive statistics) Inferenční statistika (inferential statistics)

1.1 Dva základní typy statistiky Popisná statistika (descriptive statistics) Inferenční statistika (inferential statistics) 1. PODSTATA STATISTIKY Původní význam - pouhé sbírání čísel (název z latinského status = stát, použití k označení vědy zabývající se sběrem informací o státu - o počtu obyvatel, ekonomice,...) Dnešní pojetí

Více

8.2.1 Aritmetická posloupnost

8.2.1 Aritmetická posloupnost 8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž

Více

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů. Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu

Více

UŽITÍ MATLABU V KOLORIMETRII. J.Novák, A.Mikš. Katedra fyziky, FSv ČVUT, Praha

UŽITÍ MATLABU V KOLORIMETRII. J.Novák, A.Mikš. Katedra fyziky, FSv ČVUT, Praha UŽITÍ MATLABU V KOLORIMETRII J.Novák A.Mikš Katedra fyziky FSv ČVUT Praha Kolorimetrické metody jsou velmi často používáy jako diagostické metody v řadě oblastí vědy a techiky. V čláku jsou ukázáy příklady

Více

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

1. JEV JISTÝ a. je jev, který nikdy nenastane b. je jev, jehož pravděpodobnost = ½ c. je jev, jehož pravděpodobnost = 0 d.

1. JEV JISTÝ a. je jev, který nikdy nenastane b. je jev, jehož pravděpodobnost = ½ c. je jev, jehož pravděpodobnost = 0 d. ZÁPOČTOVÝ TEST. JEV JISTÝ a. je jev, který ikdy eastae b. je jev, jehož pravděpodobost ½ c. je jev, jehož pravděpodobost 0 d. je jev, jehož pravděpodobost e. je jev, který astae za jistých okolostí f.

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Zhodnocení přesnosti měření

Zhodnocení přesnosti měření Zhodoceí přesosti měřeí 1. Chyby měřeí Měřeím emůžeme ikdy zjistit skutečou (pravou) hodotu s měřeé veličiy. To je způsobeo edokoalostí metod měřeí, měřicích přístrojů, lidských smyslů i proměých podmíek

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více