Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Rozměr: px
Začít zobrazení ze stránky:

Download "Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika"

Transkript

1 Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má však ceé údae.. (Zdeěk Svěrák) Statistika e auka, která ám říká ak získat přesé iformace z epřesých čísel. (Ja Hedl) Nevěřím statistice, kterou sem sám ezfalšoval. (Podvržeý výrok Wistoa Churchilla rozšířil Joseph Goebbels.) Statistiky už máme atolik sofistikovaé, že z ich lze doložit prakticky cokoliv. (Ja Keller) Statistické myšleí bude edoho de pro zdatého občaa právě tak ezbyté, ako e schopost číst a psát. (H. G. Wells) Úvod statistické myšleí Jasé vymezeí problému, který má být řeše. Staoveí rozhoduící veličiy akostí vlastosti azpůsobu eího zišťováí. Zabezpečeí stálých podmíek při eím zišťováí. Uvědoměí si, že výsledky měřeí vykazuí istou (často e částečě odstraitelou) variabilitu. Vytvářeí podskupihomogeích výsledků, zahruících pouze áhodou promělivost. Respektovat áhodé odebíráíedotek do áhodých výběrů, tak aby každá edotka v souboru mělasteou pravděpodobost, že může být vybráa do výběru. Úvod statistické myšleí Studium ee celkové variability, ale i variability uvitř podskupi a variability mezi podskupiami (v čase). Prováděí dostatečého počtu pozorováí. Vážeí rizikchybých závěrů, čiěých a základě eúplé iformace z áhodých výběrů. Prezetováí datpřehledě, ve zhuštěé formě číselě, ebo graficky. Charakterizováí dat číselě, udáím polohya číselé ose a míry promělivosti variability. Uvědoměí si ee variability studovaé áhodé veličiy, ale i z í odvozeé variability vypočítaých statistik výběrových charakteristik. Úvod statistické myšleí Popisá statistika A B Iformace obsažeé ve velkém počtu dat se eví lidskému pozorovateli ako epřehledé. Úkolem popisé statistiky e tuto iformaci zhustit do saděi vímatelé formyrůzých tabulek, grafů, číselých a iých charakteristik. 1

2 Popisá statistika Popisá statistika Hromadé evy evy, které vzikaí za určitých podmíek opakovaě u velkého počtu prvků (statistických edotek) Příklad: sériová a hromadá výroba, výsledky laboratorích zkoušek, výsledky kotrol kvality, ekoomické výsledky, vlastosti lidí. Statistické edotky elemetárí edotky statistického pozorováí Příklad: zaměstaci v podiku, výrobky, poskytovaé služby, eshodé výrobky, stroe, zařízeí, měřidla, lidé, zvířata, věci, události. Statistický soubor možia všech statistických edotek, u ichž zkoumáme příslušé statistické zaky Jedorozměrý statistický soubor u každé statistické edotky zišťueme pouze ede statistický zak Vícerozměrý statistický soubor u každé statistické edotky zišťueme dva a více statistických zaků Základí soubor statistický soubor všech edotek, který e předmětem sledováí a o ěmž chceme provádět závěry Popisá statistika Popisá statistika Statistické zaky kvalitativí (sloví, kategoriálí) kvatitativí (číselé, umerické) meé (omiálí) měřitelé (kardiálí) pořadové (ordiálí) pořadové (ordiálí) spoité espoité (diskrétí) Statistické zkoumáí Statistické zkoumáí shromažďováí dat Statistické zkoumáí lze zpravidla rozdělit do tří etap: 1. shromažďováí dat(příprava a sběr). zpracováí dat 3. rozbor dat(vyhodoceí) 1. zadáí úkolu. volba edotky (zkušebí místo, část kostrukce, ) 3. vymezeí souboru (kterých edotek se zkoumáí týká) 4. určeí statistického zaku (rozměr, obem, hmotost, pevost v tlaku, ) 5. způsob měřeí (hodoceí) zaku (kvatitativí, kvalitativí, spoité, ) 6. sběr dat (kdo a akým způsobem data zišťue a evidue)

3 Statistické zkoumáí zpracováí dat 1. Výpočet popisé statistiky, ástroe matematické statistiky. Grafické zázorěí Grafy dávaí rychlou a přehledou představu edak o rozložeí dat uvitř souboru a edak o tredech (časová řada). Statistické zkoumáí popisá statistika Tříděí edorozměrý statistický soubor s kvatitativím zakem Uspořádáme data sledovaého kvatitativího zaku do rostoucí poslouposti. Ke každé variatě zaku přiřadíme počty příslušých edotek, které azýváme četosti. Hodoty zazameáme do tzv. tabulky četostí. Statistické zkoumáí popisá statistika Variata zaku i absolutí f i Četost relativí f i / Kumulativí četost absolutí F i relativí F i / 1 f 1 f 1 / F 1 = f 1 f 1 / f f / F = f 1 + f f 1 / + f / f f / Celkem k = 1 f = k = 1 f = 1 F = f = k = 1 k fk F = = 1 k = 1 Popisá statistika charakteristiky polohy Určuí umístěí souboru a číselé ose. výběr o rozsahu : 1,,..., Aritmetický (výběrový) průměr eroztříděý soubor 1 = i roztříděý soubor i = 1 1 * f = 1 = Popisá statistika charakteristiky polohy Mediá hodota kokrétí prostředí edotky statistického souboru uspořádáí podle velikosti: (1), (),..., () prostředí hodota; pro liché ɶ = průměr dvou prostředích hodot; pro sudé Modus hodota v eíž okolí se vyskytue evíce hodot ečetěší hodota souboru Popisá statistika charakteristiky variability Rozptyl = s 1 1 ( = i ) i i = 1 i = 1 Výběrový rozptyl: s 1 1 = = ( i ) i 1 i = 1 1 i = 1 Směrodatá odchylka a výběrová směrodatá odchylka s = s s = s 3

4 Popisá statistika charakteristiky variability Variačí koeficiet s V = Jde o relativí míru variability (uvádí se též v %). Má smysl pouze pro zak, který abývá pouze kladých ebo záporých hodot. Popisá statistika charakteristiky souměrosti Koeficiet šikmosti (asymetrie) A = 1 i ( ) 3 i= 1 s 3 ukazue, ak sou hodoty kolem aritmetického průměru rozložey; symetrické rozložeí má koeficiet šikmosti rove ule. Popisá statistika charakteristiky souměrosti Korelačí koeficiet 1 r = ( i )( yi y ) i= 1 s( ) s( y) ukazue míru lieárí závislosti dvou veliči -1 r 1 r - sledovaé veličiy sou ekorelovaé r 1- sledovaé veličiy sou korelovaé Výpočty v MS EXCEL Výběrový průměr - PRŮMĚR(číslo1; číslo; ) Výběrový mediá - MEDIAN(číslo1; číslo; ) Výběrový modus - MODE(číslo1; číslo; ) Směrodatá odchylka stat. souboru - SMODCH(číslo1; číslo; ) Výběrová směrodatá odchylka - SMODCH.VÝBĚR(číslo1; ) Výběrový rozptyl - VAR.VÝBĚR(číslo1; číslo; ) Maimálí hodota - MAX(číslo1; číslo; ) Miimálí hodota - MIN(číslo1; číslo; ) Počet hodot - POČET(číslo1; číslo; ) Výpočty v MS EXCEL Výpočty v MS EXCEL 4

5 Statistické zkoumáí zpracováí dat grafické zázorěí Bodový graf Spoicový graf Histogram Výsečový graf (koláč) Krabicový graf Grafické zázorěí - bodový graf Slouží ke zištěí či ověřeí vzáemé závislosti mezi dvěma kvatitativími zaky Nahrazue výpočty korelačích koeficietů v případech, kdy chceme získat o případé závislosti pouze orietačí iformaci. Glyf (radarový graf) Grafické zázorěí - bodový graf Grafické zázorěí - bodový graf y y y y Silá záporá závislost Slabá záporá závislost Nezávislost Silá kladá závislost Grafické zázorěí spoicový graf Grafické zázorěí dat - histogram slouží k prostému zázorěí četostí polygo četostí počet výskytů sledovaá veličia itervalové děleí 5

6 Číslo měřeí Rychlost [m/s] Číslo měřeí Rychlost [m/s] Grafické zázorěí dat - histogram Příklad: Rychlost prostupu ultrazvukových vl Grafické zázorěí dat - histogram 1. Seřazeí podle velikosti. Výpočet rozpětí R = ma mi = 74 m/s 3. Výpočet délky třídy h= R/počet_tříd= 74/7 = 39,14 4. Sestaveí tříd Grafické zázorěí dat - histogram 7 Grafické zázorěí dat - histogram a) Symetrický histogram zvoovitého tvaru 6 Počet pozorováí Rychlost prostupu ultrazvukových vl [m/s] Grafické zázorěí dat - histogram b) Dvovrcholové histogramy Grafické zázorěí dat - histogram c) Histogramy plochého a hřebeovitého tvaru

7 Grafické zázorěí dat - histogram d) Histogramy asymetrického tvaru Grafické zázorěí dat výsečový graf Grafické zázorěí dat krabicový graf Grafické zázorěí dat krabicový graf Slouží ke zázorěí etrémích hodot a kvartilů(kvartilydělí statistický soubor a 4 části přičemž každá část obsahue 5% edotek). mi ma Grafické zázorěí dat glyf Slouží k určeí vzáemých souvislostí dvou či více obektů. PROŠKOLENÍ ŠETRNOST FIRMY K ŽIVOTNÍMU PROSTŘEDÍ 1,3 KVALITA 1,8,5 1,5 1,5 DODRŽENÍ TERMÍNU,3 PORADENSK Á ČINNOST, sběr údaů, eich popis a aalýzu rozšířeí platosti závěrů z malého počtu vzorků a soubor, z ěhož vzorky pocházeí REAKCE NA ZMĚNY V PRŮBĚHU STAVBY 1,6 KOMUNIKAC E 1,7 zpracováí a vyhodocováí iformací o realitě, která eí zámá JAKOST PROVEDENÍ 1,9 ZPŮSOB JEDNÁNÍ 1,7 7

8 Věrohodost závěrů aalýzy vyžadue, aby: výrobí dávky byly vyrobey za steých podmíek, podmíky pokusubyly specifikováy předem a byly dodržováy během celého pokusu, vzorky byly odebráy áhodě a byly reprezetativí pro soubor, z ěhož sou odebráy. Náhodý pokus e takový pokus, který může dávat růzé výsledky i při dodržeí steých podmíek Náhodý ev e tvrzeí o výsledku áhodého pokusu, o kterém lze po eho uskutečěí edozačě rozhodout, zda e či eí pravdivé. Pravděpodobost míra astoupeí áhodého evu Výsledky áhodého pokusu (realizace áhodé veličiy) tedy ai realizace áhodého evu elze s istotou předpovědět. Náhodá veličia Xe reálá proměá, která abývá áhodě reálých číselých hodot. spoitá diskrétí Náhodá veličia e edozačě určea svou distribučí fukcí: F( ) = P( X < ) Distribučí fukce určue tzv. rozděleí pravděpodobosti áhodé veličiy spoitááhodá veličia spoité rozděleí pravděpodobosti diskrétí áhodá veličia diskrétí rozděleí pravděpodobosti Spoitá áhodá veličia: hustota pravděpodobosti Vlastosti: + 1. f ( ) d = f ( ) = F`( ) F( ) f( t) dt = P( a X b) = P( a < X < b) = P( a X < b) = P( a < X b) = b = f( ) d = F( b) F( a) a P( X = c) = Diskrétí rozděleí pravděpodobosti Biomické rozděleí áhodý výběr s vraceím Hypergeometrické rozděleí áhodý výběr bez vraceí Poissoovo rozděleí Spoité rozděleí pravděpodobosti Rovoměré rozděleí Normálí rozděleí fukčí charakteristiky: středí hodota µ směrodatá odchylka σ Studetovo rozděleí (t rozděleí) 8

9 hustota pravděpodobosti distribučí fukce F( ) f( t) dt = Kvatil e hodota, která rozdělue soubor hodot určitého statistického zaku a dvě části, eda obsahue ty hodoty, které sou meší (ebo steé) ež teto kvatil, a druha část aopak obsahue hodoty, které sou větší (ebo steé) ež kvatil. X spoitá áhodá veličia s distribučí fukcí F() eí P-kvatil(P*1%kvatil) e číslo P, pro které platí: P= F( P ) Používaí se tyto kvatily: mediá (prostředí kvatil):,5 dolí kvartil:,5 horí kvartil:,75 decily:,1,,, percetily:,1,,, Náhodý výběr statistický soubor ( 1,, ) získáme -krát opakováím áhodého pokusu > pozorováí áhodé veličiy = pozorovaá hodota áhodého výběru (X 1,, X ) Realizací áhodého výběru získáme obecě růzé statistické soubory. Statistika(výběrová charakteristika) = fukce áhodého výběru T(X 1,, X ) odhady parametrů rozděleí Skutečou hodotu parametrů rozděleí pravděpodobosti áhodé veličiy obvykle ezáme. Odhadueme i pomocí statistického souboru Odhad: Nestraý Straý(vychýleý) Bodový odhad parametru e pozorovaá hodota t = T( 1,, ) a statistickém souboru ( 1,, ) 9

10 odhady parametrů rozděleí Bodové odhady: Středí hodota aritmetický průměr Směrodatá odchylka výběrová směrodatá odchylka Rozptyl druhá mocia výběrové směrodaté odchylky odhady parametrů rozděleí Itervalový odhad (iterval spolehlivosti, kofidečí iterval) pro parametr εse spolehlivostí 1 α, kde α ;1 e iterval <t 1; t >, kde hodoty t 1 a t sou daé statistickým souborem Spolehlivost 1 αvolíme,95 ebo,99 Itervalový odhad středí hodoty ormálího rozděleí: s s t1 α / ; + t1 α / 1 1 Při sledováí áhodých veliči sme často ucei ověřit určité předpoklady či doměky o eich vlastostech pomocí eích pozorovaých hodot. Statistická hypotézahe tvrzeí o vlastostech rozděleí pravděpodobosti pozorovaé áhodé veličiy X. Postup ímž ověřueme daou hypotézu, se azývá test statistické hypotézy. H: η= η ulová hypotéza H A : η η alterativí hypotéza volíme dle požadavků úlohy Hypotéza: Dvoustraá Jedostraá Pro testováí hypotézy H: η= η proti ěaké zvoleé alterativí hypotéze se kostruue vhodé testovací kritériumt(x 1,,X ). Obor hodot testovacího kritéria T se za předpokladu, že platí hypotéza H, rozdělí a dvě podmožiy: Kritický obor W α Obor ezamítutí W α Hladia výzamosti α pravděpodobost toho, že testovací kritérium abude hodotu z kritického oboru. Rozhodutí o hypotéze Jestliže pozorovaá hodota testovacího kritéria t= T( 1,, ) a statistické souboru ( 1,, ) pade do kritického oboru, zamítáme hypotézuh současě ezamítáme alterativí hypotézu H A. Chyby Chyba prvího druhu hypotéza H platí a my i zamítáme. Pravděpodobost této chyby e hladia výzamosti α. Chyba druhého druhu Hypotéza H eplatí a my i ezamítáme. Pravděpodobost této chyby se azývá síla testu. 1

11 Obvyklým výstupem většiy softwarů, které umožňuí testovaí statistických hypotéz, eí přímo zamítutí či ezamítutí hypotézy, ale tzv. P - hodota. P -hodota udává mezí hladiu výzamosti, při které bychom daou hypotézu eště zamítali. Hypotézu H zamítáme a hladiě výzamosti, estliže P -hodota e meší ež α. Studetův t-test Hypotézy: zda ormálí rozděleí, z ěhož pochází áhodý výběr, má určitou kokrétí středí hodotu, přičemž rozptyl e ezámý; Zda dvě ormálí rozděleí se steým (třeba i ezámým) rozptylem, z ichž pocházeí dva ezávislé áhodé výběry maí steé středí hodoty (případě lišící se o určitou hodotu). Studetův t-test Studetův t-test Jedovýběrový H : µ = µ Párový testue se rozdíl středích hodot, steý rozsah Dvouvýběrový dva výběry, růzý rozsah Studetův t-test Studetův t-test 11

12 ANOVA (AalysisOfVariace) ANOVA (AalysisOfVariace) Srováváme, zda rychlost prostupu ultrazvukových vl e ve třech růzých částech ŽB kostrukce steá. Obecě srováváme a více skupi Proč esrovat po dvoicích? -> roste šace, že uděláme chybu prvího druhu. => e výhoděší testovat pouze edu hypotézu Hypotéza: H : µ 1 = µ = µ 3 =... = µ k. Předpoklad homogeity variace (a ormality). H A : eí pravda, že sou všechy středí hodoty steé (tedy alespoň eda se liší od ostatích) ANOVA (AalysisOfVariace) Needodušší variata: Sigle Factor ANOVA Model: X i = μ+α i + ε i áhodá variabilita N(,σ ) ANOVA (Aalysis Of Variace) příklad : Porováí tří částí kostrukce rychlost šířeí ultrazvukových vl Společá středí hodota posuutí i-té skupiy proti společému průměru H e tedy možé vyádřit α i = pro všecha i (iými slovy -posuutí mezi skupiami eí, e tam e áhodá variabilita) 1

13 Testy dobré shody Testováí a fitováí rozděleí pravděpodobosti Testy dobré shody Testováí a fitováí rozděleí pravděpodobosti Aderso Darlig Rya Joier(Shapiro Wilk) Kolmogorov- Smirov Regresí aalýza Hledáí a zkoumáí závislostí proměých, eichž hodoty získáme při realizaci eperimetu. apř.: vztah mezi epřímou a přímou metodou zkoušeí y Proložeí bodového diagramu Regresí aalýza Závislost mezi veličiami X a Y vyadřue regresí fukce: y = ϕ(; β), kde β= (β 1,, β m ) sou regresí koeficiety Regresí aalýza Pro určeí ezámých regresích koeficietů β= (β 1,, β m ) miimalizueme tzv. reziduálí součet čtverců: S* = yi ϕ ( i, β ) i = 1 => Metoda emeších čtverců Lieárí regresí fukce: m = ( ) y β f = 1 13

14 Dotazy? Děkui za pozorost! Petr Misák 14

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

8. cvičení 4ST201-řešení

8. cvičení 4ST201-řešení cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá Statitická šetřeí a zpracováí dat Statitika e věda o metodách běru, zpracováí a vyhodocováí tatitických údaů. Statitika zkoumá polečeké, přírodí, techické a. evy vždy a dotatečě rozáhlém ouboru údaů. Matematická

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B) Přijímací řízeí pro akademický rok 24/5 a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata B) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

Pravděpodobnost a statistika - absolutní minumum

Pravděpodobnost a statistika - absolutní minumum Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie Veteriárí a farmaceutická uiverzita Bro Základy statistiky pro studující veteriárí medicíy a farmacie Doc. RNDr. Iveta Bedáňová, Ph.D. Prof. MVDr. Vladimír Večerek, CSc. Bro, 007 Obsah Úvod.... 5 1 Základí

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

2 EXPLORATORNÍ ANALÝZA

2 EXPLORATORNÍ ANALÝZA Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů.

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

Statistika. Poznámky z přednášek

Statistika. Poznámky z přednášek Statistika Pozámky z předášek Materiál obsahuje pozámky ze předášek plus to co se musíme doučit včetě ukázkových příkladů, které se objevily a předášce, ebo z aplikace etstorage. J.T. OBSAH Úvodí stráka

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů. Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu

Více

1. Číselné obory, dělitelnost, výrazy

1. Číselné obory, dělitelnost, výrazy 1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

b c a P(A B) = c = 4% = 0,04 d

b c a P(A B) = c = 4% = 0,04 d Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá

Více

8 Průzkumová analýza dat

8 Průzkumová analýza dat 8 Průzkumová aalýza dat Cílem průzkumové aalýzy dat (také zámé pod zkratkou EDA - z aglického ázvu exploratory data aalysis) je alezeí zvláštostí statistického chováí dat a ověřeí jejich předpokladů pro

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

Variabilita měření a statistická regulace procesu

Variabilita měření a statistická regulace procesu Variabilita měří a statistická rgulac procsu Ig. Darja Noskivičová, CSc. Katdra kotroly a řízí jakosti, VŠB-TU Ostrava Abstrakt: Efktivost využití statistických mtod pro aalýzu a řízí procsů j odvislá

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

Obsah. Opravy pro toto vydání: opravy2.proflakace.cz

Obsah. Opravy pro toto vydání: opravy2.proflakace.cz Obsah Úvod... 5 Základí pojmy... 7. Tříděí dat... 7. Míry úrově polohy... 8.3 Míry variability... 8 Počet pravděpodobosti.... Průik a sjedoceí jevů.... Náhodá veličia... 6.3 Rozděleí áhodé veličiy... 8

Více

AMC/IEM J - HMOTNOST A VYVÁŽENÍ

AMC/IEM J - HMOTNOST A VYVÁŽENÍ ČÁST JAR-OPS 3 AMC/IEM J - HMOTNOST A VYVÁŽENÍ ACJ OPS 3.605 Hodoty hmotostí Viz JAR-OPS 3.605 V souladu s ICAO Ae 5 a s meziárodí soustavou jedotek SI, skutečé a omezující hmotosti vrtulíků, užitečé zatížeí

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

ANALÝZA SRÁŽKOVÝCH MAXIM

ANALÝZA SRÁŽKOVÝCH MAXIM Rožovský, J., Litschma, T. (ed): Semiář Extrémy počasí a podebí, Bro,. březa 4, ISBN 8-8669-2- Marie Budíková, Ladislav Budík Summary Aalysis of precipitatio maxima ANALÝZA SRÁŽKOVÝCH MAXIM Database of

Více

Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv

Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv 3. meziárodí koferece Řízeí a modelováí fiačích rizik Ostrava VŠB-U Ostrava, Ekoomická fakulta, katedra Fiací 6.-7. září 006 tegrace hodot Value-at-Risk lieárích subportfolií a bázi vícerozměrého ormálího

Více

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t. Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

METODICKÝ NÁVOD PRO MĚŘENÍ A HODNOCENÍ HLUKU A VIBRACÍ NA PRACOVIŠTI A VIBRACÍ V CHRÁNĚNÝCH VNITŘNÍCH PROSTORECH STAVEB

METODICKÝ NÁVOD PRO MĚŘENÍ A HODNOCENÍ HLUKU A VIBRACÍ NA PRACOVIŠTI A VIBRACÍ V CHRÁNĚNÝCH VNITŘNÍCH PROSTORECH STAVEB 6 VĚSTNÍK MZ ČR ČÁSTKA 4 METODICKÝ NÁVOD PRO MĚŘENÍ A HODNOCENÍ HLUKU A VIBRACÍ NA PRACOVIŠTI A VIBRACÍ V CHRÁNĚNÝCH VNITŘNÍCH PROSTORECH STAVEB Miisterstvo zdravotictví vydává podle 80 odst., písm. a)

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

Test hypotézy o parametru π alternativního rozdělení příklad

Test hypotézy o parametru π alternativního rozdělení příklad Test hypotézy o parametru π alterativího rozděleí příklad Podik předpokládá, že o jeho ový výrobek bude mít zájem 7 % osloveých domácostí. Proběhl předběžý průzkum, v ěmž bylo osloveo 4 áhodě vybraých

Více

Diskrétní matematika

Diskrétní matematika Diskrétí matematika Biárí relace, zobrazeí, Teorie grafů, Teorie pravděpodobosti Diskrétí matematika látka z I semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia Obsah Biárí relace2

Více

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je + + + + ) + = = 0 + + Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a

Více

Úvod do korelační a regresní analýzy

Úvod do korelační a regresní analýzy Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou

Více

ij m, velikosti n je tvořen (n m) rozměr-ným polem dat x 11 ... x 12 ... x 22 x n1 ... x n2 7.1 Druhy korelačních koeficientů

ij m, velikosti n je tvořen (n m) rozměr-ným polem dat x 11 ... x 12 ... x 22 x n1 ... x n2 7.1 Druhy korelačních koeficientů 1 7 KORELACE Pro vyádřeí itezity vztahů ezi složkai ξ ξ -rozěrého áhodého vektoru 1 ξ se používá korelačích koeficietů Data tvoří áhodý výběr z -rozěrého rozděleí áhodého vektoru ξ Neuvažue se obyčeě a

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

ŘADY Jiří Bouchala a Petr Vodstrčil

ŘADY Jiří Bouchala a Petr Vodstrčil ŘADY Jiří Bouchala a Petr Vodstrčil Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 2. století (reg. č. CZ..07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská Techická

Více

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK)

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK) Systém itralaboratorí kotroly kvality v kliické laboratoři (SIKK) Doporučeí výboru České společosti kliické biochemie ČLS JEP Obsah: 1. Volba systému... 2 2. Prováděí kotroly... 3 3. Dokumetace výsledků

Více

Geometrická optika. Zákon odrazu a lomu světla

Geometrická optika. Zákon odrazu a lomu světla Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ Vlastosti úloh celočíselého programováí VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ PRINCIP ZESILOVÁNÍ NEROVNOSTÍ A ZÁKLADNÍ METODY. METODA VĚTVENÍ A HRANIC. TYPY ÚLOH 1. Úloha lieárího programováí: max{c

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

35! n! n k! = n k k! n k! k! = n k

35! n! n k! = n k k! n k! k! = n k Do školí jídely přišla skupia 35 žáků. Určete kolika způsoby se mohli seřadit do froty u výdeje obědů. Řešeí: Počet možostí je 1 2... 35=35! (Permutace bez opakováí) Permutací bez opakováí z -prvkové možiy

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Jednotkou tepla je jednotka energie, tj. 1 Joule (J). Z definice dále plyne, že jednotkou tepelného toku je 1 J/s ( neboli 1 W )

Jednotkou tepla je jednotka energie, tj. 1 Joule (J). Z definice dále plyne, že jednotkou tepelného toku je 1 J/s ( neboli 1 W ) 5. Sdíleí tepla. pomy: Pomem tepelá eergie ozačueme eergii mikroskopického pohybu částic (traslačího, rotačího, vibračího). Měřitelou mírou této eergie e teplota. Teplo e část vitří eergie, která samovolě

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor

1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor 1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvaltěí výuky prostředctvím IC éma III..3 echcká měřeí v MS Excel Pracoví lst 5 Měřeí teploty. Ig. Jří Chobot VY_3_INOVACE_33_5 Aotace Iovace a zkvaltěí

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Úvod do zpracování měření

Úvod do zpracování měření Laboratorí cvičeí ze Základů fyziky Fakulta techologická, UTB ve Zlíě Cvičeí č. Úvod do zpracováí měřeí Teorie chyb Opakujeme-li měřeí téže fyzikálí veličiy za stejých podmíek ěkolikrát za sebou, dostáváme

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu):

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu): Pricip matematické idukce PMI) se systematicky probírá v jié části středoškolské matematiky. a tomto místě je zařaze z důvodu opakováí matka moudrosti) a proto, abychom ji mohli bez uzarděí použít při

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvatová a statistická fyzika (Termodyamika a statistická fyzika) Boltzmaovo - Gibbsovo rozděleí - ilustračí příklad Pro ilustraci odvozeí rozděleí eergií v kaoickém asámblu uvažujme ásledující příklad.

Více

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů

Číslicové filtry. Použití : Analogové x číslicové filtry : Analogové. Číslicové: Separace signálů Restaurace signálů Číslicová filtrace Použití : Separace sigálů Restaurace sigálů Číslicové filtry Aalogové x číslicové filtry : Aalogové Číslicové: + levé + rychlé + velký dyamický rozsah (v amplitudě i frekveci) - evhodé

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21 Příklad 1 Soutěž o nelepší akost výrobků obeslali čtyři výrobci A, B, C, D celkem 26 výrobky. Porota sestavila toto pořadí (uveden pouze původ výrobku od nelepšího k nehoršímu): Pořadí 1 2 3 4 5 6 7 8

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určté předpoklady (hypotézy) o základím souboru STATISTICKÁ HYPOTÉZA předpoklad (tvrzeí) o parametru G základího

Více

Jednoduchá lineární regrese

Jednoduchá lineární regrese Jedoduchá leárí regrese Motvace: Cíl regresí aalýz - popsat závslost hodot velč Y a hodotách velč X. Nutost vřešeí dvou problémů: a) jaký tp fukce se použje k popsu daé závslost; b) jak se staoví kokrétí

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

Rozhodovací stromy. Úloha klasifikace objektů do tříd. Top down induction of decision trees (TDIDT) - metoda divide and conquer (rozděl a panuj)

Rozhodovací stromy. Úloha klasifikace objektů do tříd. Top down induction of decision trees (TDIDT) - metoda divide and conquer (rozděl a panuj) Rozhodovací stromy Úloha klasifikace objektů do tříd. Top dow iductio of decisio trees (TDIDT) - metoda divide ad coquer (rozděl a pauj) metoda specializace v prostoru hypotéz stromů (postup shora dolů,

Více

Střední průmyslová škola zeměměřická GEODETICKÉ VÝPOČTY. 2. část. Ing. Danuše Mlčková

Střední průmyslová škola zeměměřická GEODETICKÉ VÝPOČTY. 2. část. Ing. Danuše Mlčková Středí průmslová škola zeměměřická GEODETICKÉ VÝPOČTY. část Ig. Dauše Mlčková Úvod Tet avazuje a. část, je urče pro studet. až 4. ročíku středích průmslových škol se zaměřeí a geodézii. Jedá se o přepracovaou

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

stavební obzor 1 2/2014 11

stavební obzor 1 2/2014 11 tavebí obzor /04 Exploratorí aalýza výběrového ouboru dat pevoti drátobetou v tlau Ig. Daiel PIESZKA Ig. Iva KOLOŠ, Ph.D. doc. Ig. Karel KUBEČKA, Ph.D. VŠB-TU Otrava Faulta tavebí Věrohodé vyhodoceí experimetálích

Více