Metoda konečných prvků Typy konečných prvků (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Rozměr: px
Začít zobrazení ze stránky:

Download "Metoda konečných prvků Typy konečných prvků (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)"

Transkript

1 Inoce stdjnío obor Geotecnk Reg. č. CZ..07/..00/ Metod konečnýc prků Tp konečnýc prků (ýkoá preentce pro. ročník njícío stdjnío obor Geotecnk) Doc. RDr. E Hrbešoá P.D.

2 Metod konečnýc prků Tp konečnýc prků Tp konečnýc prků počet loýc bodů sosí s olbo tp proční fnkce n prk která je deternoán následjící ákldní fktor: Poždoná přesnost řešení Tp řešené úlo deforční nebo stbltní pro stbltní úlo (rčjící jso npětí) se doporčjí proční fnkce ššíc řádů Poždk n stžení geoetre nějšíc ntřníc rnc odel Výkonnost ýpočetní tecnk (kpct pět dsk) Všší počet loýc bodů ožňje přesnt řešení šk předstje ýšení dene sost ronc šší nárok n ýpočetní čs kpct operční pět dsk

3 Metod konečnýc prků Tp konečnýc prků PRUTOVÉ PRVKY (PRVKY D) ejjednodšší prek jedné den prt s loý bod krjníc bodec prt toto prk odpoídá lneární proce posnů n toto prk konstntní průbě poěrnéo přetoření npětí n toto prk tc tost le stnot nltck průbě posnů

4 Metod konečnýc prků Tp konečnýc prků ejčstěj požíný prek roně : trojúelník s loý bod: e rcolec trojúelník (nejjednodšší prek roně) ( loý prek) proce posnů n prk je lneární není přílš přesný nestje ején lokální etré deforcí n npětí e ětšně koerčníc softrů se nežíá e rcolec trojúelník e středec strn (6-t loý prek) proce fnkce posnů n prk je polnoe. řád dosttečná přesnost přípdě deforční nlý pro stbltní nlý nepřesný e rcolec trojúelník e středec strn ntř trojúelník (5-t loý prek) proce fnkce posnů n prk polnoe. řád doporčje se předeší přípdě npěťoé nlý (stbltní úlo odnocení čerpání skoé penost pod.)

5 Metod konečnýc prků Tp konečnýc prků Testocí nlý l tp prků n ýsledk deforčnío stbltnío ýpočt etodo konečnýc prků Testocí úlo l elkost odel n ýsledk řešení (Pls D): netžené dílo kroéo příčnéo průře o poloěr r= 5 ýšk ndloží: = 5 Objeoá tí okolní ornn: g= 0 k/ (oogenní prostředí) Modl pržnost okolnío prostředí: E=0 MP Mteráloý odel: lneárně pržný Vrntní roěr odel: dálenost bočníc sslýc rnc spodní rnce od střed díl žd k-násobcíc poloěr díl (k=4680)

6 Metod konečnýc prků Tp konečnýc prků Scé pretrcké odeloé stde: rntní roěr odel 0 =4*r 0 =6*r 50 =0*r 40 =8*r 60 =*r

7 ertkální posn () Metod konečnýc prků Tp konečnýc prků Sronání sslýc posnů pro růné tp prků(strop poč) 005 Posn pro ob tp trojúelníkoýc prků (6-t 5-t loé) jso posn dentcké k-násobek poloěr r ální sslý posn strop(5-t loé prk) ální d poč (5-t loé prk) ální sslý posn strop (6-t loé prk) ální d poč (6-t loé prk)

8 .npětí počě (kp) Metod konečnýc prků Tp konečnýc prků Sronání álníc npětí pod počo pro růné tp prků k-násobek poloěr r. lní npětí pod počo(5-t loé prk). lní npětí pod počo (6-t loé prk) Mální npětí kole díl ( počě) je pro růné prk rodílné

9 Metod konečnýc prků Tp konečnýc prků ejjednodšší prek prostor - prostoroý čtřstěn (tetredr) s loý bod jeo rcolec 4 l kždé l složk posnů()

10 Celke ted příslší kždé prostoroé prk tooto tp loýc pretrů T Vektor loýc pretrů prostoroéo prk Metod konečnýc prků Tp konečnýc prků

11 Tř složk posnů n prk jso prooán lneární fnkcí tří prostoroýc sořdnc nenáýc konstnt je rčeno loý pretr e 4 rcolec čtřstěn Metod konečnýc prků Tp konečnýc prků

12 Stejně jko přípdě trojúelníkoéo prk jádříe příslšné báoé fnkce 4 příslšející dný lů 4 dné prk. Pk ted dostááe průbě posnů n prk jádřený poocí báoýc fnkcí loýc odnot n dné prk: Metod konečnýc prků Tp konečnýc prků

13 Vlede k lnertě proční fnkce plne geoetrckýc ronc konstntní průbě poěrnýc přetoření e npětí s n dné prk. K Metod konečnýc prků Tp konečnýc prků e s e e e g s s s g g T T Mtc tost le toto přípdě nltck ntegrot: T T A B D A t dv A T T B D A V V V obje prk

14 Metod konečnýc prků Tp konečnýc prků Tento nejjednodšší prostoroý prek není sce přílš přesný le tento tr se kál jko nejýodnější pro plně totcké generoání sítě konečnýc prků troě složtýc objeů. Doporčje se šk požít čtřstěn s šší počte loýc bodů které ožňjí proot průbě posnů proční fnkce ššíc řádů (t oše ždjí nercko derc tce tost).

15 Metod konečnýc prků Tp konečnýc prků Iopretrcké prk Geoetrck se obecně jedná se o prk se křený rn(rnt pro D úlo ronno prostoroo úlo) kd je geoetre prk popsán nlogcký polnoe jko ledné pole posnů. Polno á ted stejný počet pretrů odtd náe opretrcký. Hrnce opretrckýc prků jso obecně křené I občejný prtoý prek trojúelníkoý prek čtřstěn s příý nekřený rnce oo být požoán opretrcké prk.

16 Metod konečnýc prků Tp konečnýc prků Iopretrcký trojúelníkoý prek ) Trojúelníkoý prek s příý rn b) Odpoídjící opretrcký prek

17 Metod konečnýc prků Tp konečnýc prků Trnsforce opretrckýc prků U těcto trů křenýc prků se s ýodo žíá trnsforce geoetre krtéskéo ssté sořdnc n t. jednotkoý prek přroené sořdné ssté křočrýc sořdnc (nloge přecod n polární sořdnce př ntegrc kr)

18 Metod konečnýc prků Tp konečnýc prků Po této trnsforc se podsttně jednodší ntegrční ee ntegrál pro odnocení odpoídjící tce tost le potřebjee stnot tto trnsforční t e krtéský přroený sořdnce : K Pk pro ntegrc tce tost pltí: T T A B D A t d A J Jkobán trnsforce J T B T D A t det Jdd

19 Báoé fnkce jso pk forloán přío přroené sořdné ssté fnkce posnů n prk le pk psát e tr : n n Pro trnsforční t pk pltí: ~ ~ ~ n n kde jedná se o opretrcký prek Metod konečnýc prků Tp konečnýc prků podínk pro opretrcký prek

Téma Přetvoření nosníků namáhaných ohybem

Téma Přetvoření nosníků namáhaných ohybem Pružnost plsticit,.ročník bklářského studi Tém Přetvoření nosníků nmáhných ohbem Zákldní vth předpokld řešení Přetvoření nosníků od nerovnoměrného oteplení etod přímé integrce diferenciální rovnice ohbové

Více

studentská kopie Př. 9 Složený členěný prut ze dvou úhelníků 15ε = 15 = 15...bezpečně třída 3 (nemusíme redukovat plochu)

studentská kopie Př. 9 Složený členěný prut ze dvou úhelníků 15ε = 15 = 15...bezpečně třída 3 (nemusíme redukovat plochu) Př. 9 Složený členěný prut e dou úhelníků Stnote únosnost prutu tořeného dojcí ronormenný úhelníků 9x8. Prut toří dgonálu příhrdoého tuždl sstémoá délk prutu je 4 m. Spojk P-8x8 jsou umístěn třetná prutu.

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2) 5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete

Více

7.2.3 Násobení vektoru číslem I

7.2.3 Násobení vektoru číslem I 7..3 Násobení ektor číslem I Předpoklad: 70 Př. : Zakresli do sosta sořadnic alespoň dě různá místění ektorů: = 3; = 3;0 = ; a) ( ) ( ) c) ( ) - - - x - Pedagogická poznámka: Předchozí příklad není zbtečný.

Více

Téma Přetvoření nosníků namáhaných ohybem

Téma Přetvoření nosníků namáhaných ohybem Pružnost psticit,.ročník bkářského studi Tém Přetvoření nosníků nmáhných ohbem Přetvoření nosníků - tížení nerovnoměrnou tepotou Přetvoření nosníků tížení siové Zákdní vth předpokd řešení Vth mei sttickými

Více

7.2.10 Skalární součin IV

7.2.10 Skalární součin IV 7.2.10 Sklární sočin IV Předpokld: 7209 Pedgogiká poznámk: Tto hodin je kontet čebnie zláštní. Obshje d důkz jeden příkld z klsiké čebnie. Všehn tři zdání jso znčně obtížná ždjí nápd, proto je řeším normálně

Více

PŘÍDAVNÁ JMÉNA 1910-1953

PŘÍDAVNÁ JMÉNA 1910-1953 PŘÍDAVNÁ JMÉNA 1 1910-1953 Něktrá roká přídvá jé, příkld bro jí v čště víc výzů, ktré j třb právě rozlšovt. Bro ůž zt VLÝ, DLUHÝ, VYSÝ bo tké HLUBÝ. Sldjt áldjící příkldy: Bro vš Hlboký l Br čr Vyoká tráv

Více

Ohýbaný nosník - napětí

Ohýbaný nosník - napětí Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

3. Kvadratické rovnice

3. Kvadratické rovnice CZ..07/..08/0.0009. Kvdrtické rovnice se v tetice oznčuje lgebrická rovnice druhého stupně, tzn. rovnice o jedné neznáé, ve které neznáá vystupuje ve druhé ocnině (²). V zákldní tvru vypdá následovně:

Více

É Á Ť š č č š ď Ž č š š č š š ď č Í š č ť č š ť č š č č š š č č š š č č š š š Í č č č Í Ů Ť Ó š š č š ť ť š Í š č š ú š č š ť č š č š š č Ť š č š š š š č Ů ú š š š č Ž ď š č č č č š š ť š Ů š č č č š č

Více

25 Měrný náboj elektronu

25 Měrný náboj elektronu 5 Měrný náboj elektronu ÚKOL Stnovte ěrný náboj elektronu e výsledek porovnejte s tbulkovou hodnotou. TEORIE Poěr náboje elektronu e hotnosti elektronu nzýváe ěrný náboj elektronu. Jednou z ožných etod

Více

Obr Lineární diskrétní systém

Obr Lineární diskrétní systém Mtetcé odel Uvžue leárí dsrétí ssté (or.. ). Or.. Leárí dsrétí ssté Steě u spotýc sstéů t u dsrétíc sstéů exstue ěol ožostí půsou věšío popsu cováí, teré vdřuí vt e výstupí velčou ( ) dsrétí vstupí velčou

Více

ť Ť Ť Ť Š Á ň É ť Š ň ÍÍ ň ť ň Ť Ť Ť Í Í Ó Ť Ť Í ň ň Ť Ť Ť Í ň ť Ť ň ň ň Ť ň ň ň Ť ň Í ř Ť ť ň Ť Ž ň Ť Ó Ť ť ň ň ř Í Í Ť ň Ť ň Í ř Ť Í ň ň ň ň ť Ť ť ť ň ť ť ň Ť ť Í Ť Í Í ň Í Í ň Ý Ě ň Ť Í Ť ň É Ť Í Í

Více

Obsahy - opakování

Obsahy - opakování .7.0 Obshy - opkoání Předpokldy: 00709 Př. : Vypiš edle sebe zorce pro obsh ronoběžníku, trojúhelníku lichoběžníku. Kždý e šech rintách. Ke kždému zorci nkresli obrázek s yznčenými rozměry, které e zorci

Více

III.4. Fubiniova (Fubiniho) věta pro trojný integrál

III.4. Fubiniova (Fubiniho) věta pro trojný integrál E. Brožíková, M. Kittlerová, F. Mrá: Sbírk příkldů Mtemtik II ( III.. Fubiniov (Fubiniho vět pro trojný integrál Vpočítejte trojné integrál n dných množinách E : Příkld. I Řešení : I ( + d d d; {[,, E

Více

7.5.8 Středová rovnice elipsy

7.5.8 Středová rovnice elipsy 758 Středová rovnice elips Předpokld: 750, 7507 Př : Vrchol elips leží v odech A[ ;], B [ 3;], [ ;5], [ ; 3] elips souřdnice jejích ohnisek Urči prmetr Zdné souřdnice už n první pohled vpdjí podezřele,

Více

Metoda konečných prvků. Robert Zemčík

Metoda konečných prvků. Robert Zemčík Metod konečných prvků Robert Zemčík Zápdočeská unverzt v Plzn 2014 1 Rovnce mtemtcké teore pružnost Předpokládáme homogenní, zotropní lneární mterál, mlé deformce. Jednoosá nptost Cuchyho podmínky rovnováhy

Více

3.2.5 Pythagorova věta, Euklidovy věty I. α = = Předpoklady: 1107, 3204

3.2.5 Pythagorova věta, Euklidovy věty I. α = = Předpoklady: 1107, 3204 3..5 ythgoro ět, Euklidoy ěty I ředpokldy: 1107, 304 roúhlý trojúhelník = trojúhelník s nitřním úhlem 90 (s prým nitřním úhlem) prý úhel je z nitřníh úhlů nejětší (zýjíí d musí dát dohromdy tké 90 ) strn

Více

JEDNOOSÁ STLAČITELNOST A KONSOLIDACE (EDOMETRICKÁ ZKOUŠKA)

JEDNOOSÁ STLAČITELNOST A KONSOLIDACE (EDOMETRICKÁ ZKOUŠKA) JEDNOOSÁ STLAČITELNOST A KONSOLIDACE (EDOMETRICKÁ ZKOUŠKA) 1 VYSVĚTLENÍ/UJASNĚNÍ DŮLEŽITÝCH POJMŮ Stlčení (komprese) zeminy je přípd ztížení zeminy, při kterém dochází k redukci objemu zeminy ytlčením

Více

DERIVACE A INTEGRÁLY VE FYZICE

DERIVACE A INTEGRÁLY VE FYZICE DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická

Více

Kuželosečky. ( a 0 i b 0 ) a Na obrázku 1 je zakreslena elipsa o poloosách 3 a 7. Pokud střed elipsy se posunul do bodu S x 0

Kuželosečky. ( a 0 i b 0 ) a Na obrázku 1 je zakreslena elipsa o poloosách 3 a 7. Pokud střed elipsy se posunul do bodu S x 0 Generted b Foit PDF Cretor Foit Softwre http://www.foitsoftwre.com For elution onl. Kuželosečk I. Kuželosečk zákldních polohách posunuté to prtie je opkoání látk obkle probírné n střední škole. Kružnice

Více

Posouzení stability svahu

Posouzení stability svahu Verifikční nuál č. 3 Aktulizce 04/016 Posouzení stbility svhu Progr: Soubor: Stbilit svhu Deo_v_03.gst V toto verifikční nuálu je uveden ruční výpočet posouzení stbility svhu posouzení stbility svhu zbezpečeného

Více

ANALYTICKÁ GEOMETRIE

ANALYTICKÁ GEOMETRIE Technická niverzit v Liberci Fklt přírodovědně-hmnitní pedgogická Ktedr mtemtiky didktiky mtemtiky NLYTICKÁ GEOMETRIE Pomocný čební text Petr Pirklová Liberec, listopd 2015 NLYTICKÁ GEOMETRIE LINEÁRNÍCH

Více

Auto během zrychlování z počáteční rychlost 50 km/h se zrychlením dráhu 100 m. Jak dlouho auto zrychlovalo? Jaké rychlosti dosáhlo?

Auto během zrychlování z počáteční rychlost 50 km/h se zrychlením dráhu 100 m. Jak dlouho auto zrychlovalo? Jaké rychlosti dosáhlo? ..7 Ronoměrně zrychlený pohyb příkldech III Předpokldy: 6 Pedgogická poznámk: Hodinu dělím n dě části: 5 minut n prní d příkldy zbytek n osttní. I když šichni nestihnout spočítt druhý příkld je potřeb,

Více

Větu o spojitosti a jejich užití

Větu o spojitosti a jejich užití 0..7 Větu o spojitosti jejich užití Předpokldy: 706, 78, 006 Pedgogická poznámk: Při proírání této hodiny je tře mít n pměti, že všechny věty, které studentům sdělujete z jejich pohledu neuvěřitelně složitě

Více

INSTALAČNÍ POKYNY 77-3001 I. MEMBRÁNY TYPU B a D, DRŽÁKY FA-7R, SVORNÍKOVÉ, S PŘEVLEČNOU MATICÍ a ZÁVITOVÉ

INSTALAČNÍ POKYNY 77-3001 I. MEMBRÁNY TYPU B a D, DRŽÁKY FA-7R, SVORNÍKOVÉ, S PŘEVLEČNOU MATICÍ a ZÁVITOVÉ INSTALAČNÍ POKYNY MEMRÁNY TYPU, RŽÁKY FA-7R, SVORNÍKOVÉ, S PŘEVLEČNOU MATICÍ ZÁVITOVÉ 77-3001 I NOVÉ INSTALACE VÝMĚNA MEMRÁN V EXISTUJÍCÍCH INSTALACÍCH NÁHRANÍ MEMRÁNY OJENÁVEJTE POLE ČÍSLA LOTU Kooá Kooá

Více

P Y T H A G O R O V A V T A V P R O S T O R U (2 hodiny)

P Y T H A G O R O V A V T A V P R O S T O R U (2 hodiny) P Y T H A G O R O V A V T A V P R O T O R U hodiny V této ýkoé hodin si zksíš nkolik málo úloh n žití Pythgoroy ty tlesech. Doosd znáš dobe oze tto tles kádr, krychle jso to lstn tyboké hrnoly, trojboký

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost plsticit II. ročník klářského studi doc. In. Mrtin Krejs, Ph.D. Ktedr stvení mechnik Řešení nosných stěn pomocí Airho funkce npětí inverzní metod Stěnová rovnice ΔΔ(, ) Stěnová rovnice, nzývná

Více

5.1.5 Základní vztahy mezi body přímkami a rovinami

5.1.5 Základní vztahy mezi body přímkami a rovinami 5.1.5 Zákldní vzthy mezi body přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů. Přímk - jednorozměrná podmnožin prostoru (množin bodů) Rovin - dvojrozměrná podmnožin prostoru (množin

Více

Smíšený součin

Smíšený součin 7..14 Smíšený součin Předpokldy: 713 Je dán ronoěžnostěn LMNOPR. R O P N M L Jeho ojem umíme spočítt stereometrikým zorem: V = S. p Ronoěžnostěn je tké určen třemi ektory, : R O P N M L jeho ojem musí

Více

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku Zákldní principy fyziky seestrální projekt Studiu dyniky kldky, závží vozíku Petr Luzr I/4 008/009 Zákldní principy fyziky Seestrální projekt Projekt zdl: Projekt vyprcovl: prof. In. rntišek Schuer, DrSc.

Více

Smlouva o příspěvku na provoz školy (dále jen smlouva)

Smlouva o příspěvku na provoz školy (dále jen smlouva) v zstoupení : Ing. Hn Novotná, ředitelk jko strn oprávněná (dále jen oprávněná strn) I.2. studentk student denního studi oboru 23-45-L/005 Mechnik číslicově řízených strojů studentkou - studentem. v zstoupení

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé

Více

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia - - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin

Více

Analytická geometrie

Analytická geometrie MATEMATICKÝ ÚSTAV Slezská uverzt N Rybíčku, 746 0 Opv DENNÍ STUDIUM Alytcká geoetre Té 5.: Shodá zobrzeí Defce 5.. Zobrzeí f eukldovského prostoru E do eukldovského prostoru E se zývá shodé (zoetrcké),

Více

13. Soustava lineárních rovnic a matice

13. Soustava lineárních rovnic a matice @9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky

Více

Téma 9 Přetvoření nosníků namáhaných ohybem II.

Téma 9 Přetvoření nosníků namáhaných ohybem II. Pružnost psticit,.ročník kářského studi Tém 9 Přetvoření nosníků nmáhných ohem. ohrov metod Přetvoření nosníků proměnného průřeu Sttick neurčité přípd ohu Viv smku n přetvoření ohýného nosníku Ktedr stvení

Více

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4) KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1

Více

Lineární algebra. 1) Vektor, lineární závislost a nezávislost. Def.: Číselným vektorem n-rozměrného prostoru nazýváme uspořádanou množinu n čísel

Lineární algebra. 1) Vektor, lineární závislost a nezávislost. Def.: Číselným vektorem n-rozměrného prostoru nazýváme uspořádanou množinu n čísel Lineání lge ) Vekto, lineání záislost nezáislost Def: Číselným ektoem n-ozměného postou nzýáme uspořádnou množinu n čísel,, ) ( n Čísl,, n nzýáme souřdnice ektou, číslo n dimenzí neo ozměem ektou Opece

Více

1. Cvičení: Opakování derivace a integrály

1. Cvičení: Opakování derivace a integrály . Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x. KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou

Více

VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE V ROVINĚ

VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE V ROVINĚ VEKTOROVÁ LGEBR NLYTICKÁ GEOMETRIE V ROVINĚ Délk úsečk, střed úsečk,, B Délk úsečk B : B C, BC Střed úsečk : B S s, s souřdice středu: s, s Vektor Vektor = oži všech souhlsě orietových rovoěžých úseček

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt relizovný n PŠ Nové Město nd Metují s finnční podporou v Operční proru Vzdělávání pro konkurencescopnost Královérdeckéo krje Modul 03 - Tecnické předěty In. Jn Jeelík - nuk o rovnováze kplin jejic

Více

II. INTEGRÁL V R n. Obr. 9.1 Obr. 9.2 Integrál v R 2. z = f(x, y)

II. INTEGRÁL V R n. Obr. 9.1 Obr. 9.2 Integrál v R 2. z = f(x, y) . NTEGRÁL V R n Úvod Určitý integrál v intervlu, b Pro funki f :, b R jsme definovli určitý integrál jko číslo, jehož hodnot je obshem obrze znázorněného n obrázíh. Pro funki f : R n R budeme zvádět integrál

Více

OBECNÝ URČITÝ INTEGRÁL

OBECNÝ URČITÝ INTEGRÁL OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,

Více

Dodatek C: Lommelovy funkce dvou proměnných

Dodatek C: Lommelovy funkce dvou proměnných DODATEK C: LOMMELOVY FUNKCE DVOU PROMĚNNÝCH 45 Dodatek C: Lommeloy fnkce do proměnných C. Defnce Lommeloých fnkcí U ν, ), V ν, ) C. Určtý ntegrál yjádřený Lommeloým fnkcem C.3 Lommeloy fnkce pro specální

Více

je nutná k tomu, aby byl odhad takto pořízený je potřebná k tomu, aby proměnné-instrumenty vysvětlující veličiny v rovnici je nahrazovaly co

je nutná k tomu, aby byl odhad takto pořízený je potřebná k tomu, aby proměnné-instrumenty vysvětlující veličiny v rovnici je nahrazovaly co Obecná etod nstruentálních proěnných (G)IV (Generl Instruentl Vrbles ethod) v soustvě sultánních regresních rovnc utor etody: J.D. Srgn [958] Metod nstruentálních proěnných je jstý zobecnění dvoustupňové

Více

9 - Zpětná vazba. Michael Šebek Automatické řízení 2015 16-3-15

9 - Zpětná vazba. Michael Šebek Automatické řízení 2015 16-3-15 9 - Zpětná vz Michel Šeek Atomtické řízení 2015 16-3-15 Atomtické řízení - Kernetik rootik Proč řídit? Řídicí sstém msí zjistit stilit chování Klsické poždvk n chování přípstná stálená reglční odchlk při

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

Á č ý ě š ě š č é ě š č ř é ý ů ž ě ž ě é ě ě ý ů é ó é ž ů ý ý ř ý é č ě Ž řč ě š č ý é ě š ě é é ě č č ř řňč ý ý č ý řň ů ř ý ý ř č ě ý č ý ř řň ě ř

Á č ý ě š ě š č é ě š č ř é ý ů ž ě ž ě é ě ě ý ů é ó é ž ů ý ý ř ý é č ě Ž řč ě š č ý é ě š ě é é ě č č ř řňč ý ý č ý řň ů ř ý ý ř č ě ý č ý ř řň ě ř Ě Ý Č ě ř Á Č ř č é č č ň ý č š ř ě ú ýř ě ů ř š ů é ě č č é é šř ě ú ů ý ě é ě é ú ě ž č é é ř č č ě ě Á ĚČ ů č ě ř é ř é ů ř ž ř ě ý č ě ě ř ýž ěž Č š ý ů ž é ř š ě č ž č ě ž č č ě é Á č ý ě š ě š č

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Smlouva o příspěvku na provoz školy (dále jen smlouva)

Smlouva o příspěvku na provoz školy (dále jen smlouva) bnk. spojení : KB,.s. Brno-město, exp. Kuřim, č.ú. 201203621/0100 v zstoupení : Ing. Hn Novotná, ředitelk jko strn oprávněná I.2. studentk student denního studi oboru 26-41-L/01 Mechnik elektrotechnik

Více

matematika vás má it naupravidl

matematika vás má it naupravidl VÝZNAM Algebrický výrz se zvádí intuitivn bez p esn ího vmezení v kolizi s názv dvoj len, troj len, mnoho len. Stále se udr uje fle ná p edstv, e ísl ozn ují mno ství, e jsou zobecn ním vnímné skute nosti.

Více

Stavební mechanika 1 (K132SM01)

Stavební mechanika 1 (K132SM01) Stní mnik 1 (K132SM01) Přnáší: o. ng. Mtěj Lpš, P.D. Ktr mniky K132 místnost D2034 konzult Čt 9:30-11:00 -mil: mtj.lps@fs.ut.z ttp://m.fs.ut.z/~lps/ting/inx.tml Řáný trmín zápočtoé písmky j ÚTERÝ 25. un

Více

c 2 b 2 a 2 2.8.20 Důkazy Pythagorovy věty Předpoklady: 020819

c 2 b 2 a 2 2.8.20 Důkazy Pythagorovy věty Předpoklady: 020819 .8.0 Důkzy Pythgorovy věty Předpokldy: 00819 Pedgogická poznámk: V řešení kždého příkldu jsou uvedeny rdy, které dávám postupně žákům, bych jim pomohl. Pedgogická poznámk: Diskuse o následujícím příkldu

Více

SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ

SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ h Předmět: Ročník: Vytvořil: Dtum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 11. SRPNA 2013 Název zprcovného celku: SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ Ke sloţenému nmáhání dojde tehdy, vyskytnou-li se součsně

Více

V = π f 2 (x) dx. f(x) 1 + f 2 (x) dx. x 2 + y 2 = r 2

V = π f 2 (x) dx. f(x) 1 + f 2 (x) dx. x 2 + y 2 = r 2 Odození zorců pro ýpočet objemů porchů některých těles užitím integrálního počtu Objem rotčního těles, které znikne rotcí funkce y f(x) n interlu, b kolem osy x, lze spočítt podle zorce b V f (x) dx Porch

Více

KRYSTALOCHEMIE. Symetrie krystalů. Difrakce na polykrystalech. Struktury odvozené z nejtěsnějšího uspořádání atomů. Title page

KRYSTALOCHEMIE. Symetrie krystalů. Difrakce na polykrystalech. Struktury odvozené z nejtěsnějšího uspořádání atomů. Title page KRYSTALOCHEMIE Syetrie krystlů. Difrkce n polykrystlech. Struktury odozené z nejtěsnějšího uspořádání toů. Title pge Krystloé ligndoé pole. Metod těsné zby. Metod DFT. Terodynické odely. lo.fzu.cz (odkz

Více

Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í

Více

Určení geometrických a fyzikálních parametrů čočky

Určení geometrických a fyzikálních parametrů čočky C Určení geoetrickýc a yzikálníc paraetrů čočky Úkoly :. Určete poloěry křivosti ploc čočky poocí séroetru. Zěřte tloušťku čočky poocí digitálnío posuvnéo ěřítka 3. Zěřte oniskovou vzdálenost spojné čočky

Více

T leso. T leso. nap ě tí na prostorovém elementu normálové - působí kolmo k ploše smykové - působí v ploše

T leso. T leso. nap ě tí na prostorovém elementu normálové - působí kolmo k ploše smykové - působí v ploše Prostorový model ákladní veli č in a vtah nejlépe odrážejí skte č nost obtížn ě ř ešitelný sstém rovnic obtížn ě jší interpretace výsledků ákladní vtah posktjí rámec pro odvoení D a 2D modelů D a 2D model

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

PLANETOVÉ PŘEVODY. Pomůcka do cvičení z předmětu Mobilní energetické prostředky Doc.Ing. Pavel Sedlák, CSc.

PLANETOVÉ PŘEVODY. Pomůcka do cvičení z předmětu Mobilní energetické prostředky Doc.Ing. Pavel Sedlák, CSc. PLANETOVÉ PŘEVODY Pomůck do cvičení předmětu Mobilní energetické prostředky Doc.Ing. Pvel Sedlák, CSc. Pro pochopení funkce plnetových převodů jejich kinemtiky je nutné se senámit se ákldy především kinemtikou

Více

Teoretický souhrn k 2. až 4. cvičení

Teoretický souhrn k 2. až 4. cvičení SYSTÉMOVÁ ANALÝZA A MODELOVÁNÍ Teoretcký souhrn k 2. ž 4. cvčení ZS 2009 / 200 . Vyezení zákldních poů.. Systé e Systé e účelově defnovná nožn prvků vze ez n, která spolu se svý vstupy výstupy vykzue ko

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla)

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla) KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 23TVVM hoogenizce (sěšovcí prvidl) Hoogenizce Stvební teriály sou z hledisk zstoupení doinntních složek několikfázové systéy: Dvoufázové trice, vzduch (póry)

Více

ů ů Č ů ů Š ž ů žď ž ž ž žď ů ů ž ů ó Č Ý Š ú Ý Á Š ž ů ž ž ž ů Š ú Ž ů ú ž Ř ó ž ú ž ň ž Á Š ň ď ž ú Ý ť Č Ř ň Š Á Š ž Š Š ž ú Ý ť Ř žď Š ž Á ž Š ů ť ť ů ú Ý Č Ř Ň ť Á ž Š ú Ý ž ž ó ž Ř žď Ň ž ž ň Ť ó

Více

Reakce. K618 FD ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní charakter a bude v průbehu semestru

Reakce. K618 FD ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní charakter a bude v průbehu semestru Poznámky ke cičení z předmětu Pružnost penost n K8 D ČVUT Prze (prconí erze). Tento mteriá má pouze prconí chrkter bude průbehu semestru postupně dopňoán. utor: Jn Vyčich E mi: ycich@fd.cut.cz Příkd reize:.

Více

evod povahy kritérií v modelech vícekriteriální analýzy variant Anotace Klí ová slova Annotation Keywords Úvod

evod povahy kritérií v modelech vícekriteriální analýzy variant Anotace Klí ová slova Annotation Keywords Úvod Převod povhy krtérí v odelech vícekrterální nlýzy vrnt Mln Houšk, Ludl Döeová Ktedr operční systéové nlýzy PEF ČZU v Prze e-l: housk@pef.czu.cz, doeov@pef.czu.cz Anotce Př řešení úloh vícekrterální nlýzy

Více

Přijímací test studijních předpokladů

Přijímací test studijních předpokladů Univerzit obrny Přijímcí test stdijních předpokldů Test ze dne 10. 4. 018 (03) Fklt vojenských technologií V kždém příkldě je právě jedn z nbízených vrint řešení správná. Z správně zkrožkovno vrint jso

Více

Pružnost a plasticita II CD03

Pružnost a plasticita II CD03 Pržost a plasticita II CD3 Lděk Brdčko VUT Brě Faklta stabí Ústa stabí mchaik tl: 541147368 mail: brdcko.l @ fc.tbr.c http:www.fc.tbr.cstbrdcko.lhtmldistc.htm Obsah přdmět 1. přdáška spolhliost kostrkcí

Více

5.1.5 Základní vztahy mezi body, přímkami a rovinami

5.1.5 Základní vztahy mezi body, přímkami a rovinami 5.1.5 Zákldní vzthy mezi body, přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů přímk - jednorozměrná podmnožin prostoru (množin bodů), rovin - dvojrozměrná podmnožin prostoru (množin

Více

č Ě Ě Š Á Š č Ť Š ď Ú čť Ť Ť č č Ů č Ů š ž Ť Ů Ť Ů Ť Š č Ů Ť š š č Ť Ť š Ť š č č Ť Ť Š š Ť Ť š Ť č č č č Ť č š č č č č Š č č Š Č Ř Ť Ť č Ť š š č č č Ť š Š č Ó Š č č Ů Ť Š Ť š Ů Ť č č Ť Ť š č Š Š Š č š

Více

ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC. Řešme na množině reálných čísel rovnice: log 5. 3 log x. log

ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC. Řešme na množině reálných čísel rovnice: log 5. 3 log x. log Řešme n množině reálných čísel rovnice: ) 6 b) 8 d) e) c) f) ŘEŠENÍ JEDNODUCHÝCH LOGARITMICKÝCH ROVNIC Co budeme potřebovt? Chápt definici ritmu. Znát průběh ritmické funkce. Znát jednoduché vět o počítání

Více

Matematika II: Testy

Matematika II: Testy Mtemtik II: Testy Petr Schreiberová Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Mtemtik II - testy 69. Řy 9 - Test Ktedr mtemtiky deskriptivní geometrie, VŠB - Technická univerzit

Více

Spojitost funkce v bodě, spojitost funkce v intervalu

Spojitost funkce v bodě, spojitost funkce v intervalu 10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí

Více

Odraz na kulové ploše Duté zrcadlo

Odraz na kulové ploše Duté zrcadlo Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. Podle oázku

Více

ň ý ř š ý č ř ž ř ý ř Š č č Š ý Ž č Ž Č č ú ž ř Ť ň ž Ť Ú ý Ť ř ž ý ú ů ó ý Ů č ý ý č ý š š ů ř ž ů ů ž š š š ů ýš Ý ř ř ó č č ý ž č ř ř ř ů řť ř č č ř č ř ř Š č ď ýš č ů č ž ž ó ž č č č ř č ž ůž ýš ň

Více

2.7.9 Obsah lichoběžníku

2.7.9 Obsah lichoběžníku 79 Osh lihoěžníku Předpokldy: 00708 Př : Trojúhelník A má osh jednotek Urči oshy trojúhelníků A n ) A ) A ) A Vzore pro osh trojúhelníku: S = osh trojúhelníku se změní, pokud se změní uď strn neo k ní

Více

SPS SPRÁVA NEMOVITOSTÍ

SPS SPRÁVA NEMOVITOSTÍ SMLOUVA O REZERVACI POZEMKU A SMLOUVA O BUDOUCÍ SMLOUVĚ O DÍLO Níže uvedeného dne, měsíce roku uzvřeli: 1. EURO DEVELOPMENT JESENICE, s.r.o., IČ 282 44 451, se sídlem Ječná 550/1, Prh 2, PSČ 120 00, zpsná

Více

Příklad 1 Osově namáhaný prut průběhy veličin

Příklad 1 Osově namáhaný prut průběhy veličin Příkld 1 Osově nmáhný prut průběhy veličin Zdání Oelový sloup složený ze dvou částí je neposuvně ukotven n obou koníh v tuhém rámu. Dolní část je vysoká, m je z průřezu 1 - HEB 16 (průřezová ploh A b =

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně nvert Tomáše Bt ve Zlíně LBOTONÍ CČENÍ ELEKTOTECHNKY PŮMYSLOÉ ELEKTONKY Náev úlohy: Metody řešení stejnosměrných elektrckých ovodů v ustáleném stvu Zprcovl: Petr Lur, Josef Morvčík Skupn: T / Dtum měření:

Více

POVRCH A OBJEM HRANOLU A JEHLANU

POVRCH A OBJEM HRANOLU A JEHLANU Projekt ŠABLONY NA GM Gymnázim elké Meziříčí registrční číslo rojekt: CZ..07/.5.00/.098 I- Inoce zklitnění ýky směřjící k rozoji mtemtické grmotnosti žáků středních škol PORCH A OBJEM HRANOLU A JEHLANU

Více

2.4.7 Shodnosti trojúhelníků II

2.4.7 Shodnosti trojúhelníků II 2.4.7 Shodnosti trojúhelníků II Předpokldy: 020406 Př. 1: oplň tbulku. Zdání sss α < 180 c Zdání Náčrtek Podmínky sss sus usu b + b > c b + c > c + c > b b α < 180 c α + β < 180 c Pedgogická poznámk: Původní

Více

Integrace PER PARTES

Integrace PER PARTES Integrace PER PARTES Integraci per partes požíáme případě, kdy potřebjeme integroat sočin do fnkcí. Vyžíáme při tom následjícího zorce:, který je ntné některých příkladů požít i několikrát po sobě, než

Více

SMR 2. Pavel Padevět

SMR 2. Pavel Padevět SR Pve Pevět PRICIP VIRTUÁLÍCH PRACÍ jenošená eformční meto, esiové vivy, Sčítání účinků ztížení ezi nesiové vivy vžjeme v D: viv posntí popor, viv tepoty. ESILOVÉ VLIVY Popštění popory vyvoává v sttiky

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.

Více

( ) ( ) Pythagorova věta, Euklidovy věty II. γ = 90, je-li dáno: c = 10, c = 6. Předpoklady: 3205

( ) ( ) Pythagorova věta, Euklidovy věty II. γ = 90, je-li dáno: c = 10, c = 6. Předpoklady: 3205 3..6 Pythgoro ět, Euklidoy ěty II Předpokldy: 305 V kždém proúhlém trojúhelníku s oděsnmi, přeponou pltí: =, =, =, kde je ýšk n přeponu, jsou úseky přepony přilehlé ke strnám,. Kždou z předhozíh ět je

Více

Obsah. Perspektivy krajinného managementu - inovace krajinářských discipĺın. Jakob Steiner švýcarský matematik - geometr. vzorce, integrační metody

Obsah. Perspektivy krajinného managementu - inovace krajinářských discipĺın. Jakob Steiner švýcarský matematik - geometr. vzorce, integrační metody Moment setrvčnosti průřezů - použití určitýc integrálů v ecnické mecnice Dn Říová, Pvl Kotásková Mendelu Brno Perspektiv krjinnéo mngementu - inovce krjinářskýc discipĺın reg.č. CZ..7/../5.8 Os Moment

Více

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t.

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t. ročík - loeý lgebrický výrz, lieárí rovice s ezáou ve jeovteli Loeý lgebrický výrz Lieárí rovice s ezáou ve jeovteli Doporučujee žáků zopkovt vzorce tpu ( + pod úprvu výrzu souči Loeý výrz Číselé výrz

Více

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje. 4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Kapacita a uložená energie

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Kapacita a uložená energie ELEKTŘINA A MAGNETIZMUS Řešené úlohy postupy: Kpcit uložená energie Peter Dourmshkin MIT 6, překld: Jn Pcák (7) Osh 4. KAPACITA A ULOŽENÁ ENERGIE 4.1 ÚKOLY 4. ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ ÚLOHA 1: VÁLCOVÝ

Více

uzavírají ve smyslu ust. 1746 odst. 2 zákona č. 89/2012 Sb., občanský zákoník tuto DOHODU O JISTOTNÍM ÚČTU,

uzavírají ve smyslu ust. 1746 odst. 2 zákona č. 89/2012 Sb., občanský zákoník tuto DOHODU O JISTOTNÍM ÚČTU, Reg. č. UniCredit Bnk Czech Republic nd Slovki,.s. sídlem Prh 4 Michle, Želetvská 1525/1, PSČ 140 92, IČ 64948242, zpsná v obchodním rejstříku vedeném Městským soudem v Prze, oddíl B, vložk 3608, zstoupená

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr

Více