Metoda konečných prvků. Robert Zemčík

Rozměr: px
Začít zobrazení ze stránky:

Download "Metoda konečných prvků. Robert Zemčík"

Transkript

1 Metod konečných prvků Robert Zemčík Zápdočeská unverzt v Plzn

2 Rovnce mtemtcké teore pružnost Předpokládáme homogenní, zotropní lneární mterál, mlé deformce. Jednoosá nptost Cuchyho podmínky rovnováhy Geometrcké rovnce onsttutvní vzth X x 3 0 [Nm ] u [1] x E 2 [Nm ] enzorový záps pro prostorovou nptost Cuchyho podmínky rovnováhy Geometrcké rovnce onsttutvní vzth x X 0 1 u u 2 x x E kl kl 2

3 Vektor posuvů Vektor npětí Vektor deformcí Mtcový záps pro obecnou (3D) prostorovou nptost u [ u, u, u ] x y z σ [,,,,, ] x y z x y z ε [,,,,, ] x y z x y z Vektor obemových sl b [ X, Y, Z] Mtce dferencálních operátorů x z y Φ y z x z y x Mtce mterálové tuhost (mtce elstckých konstnt) E D (1 )(1 2 ) G G G kde E e Youngův modul pružnost v thu, e Possonovo číslo G e smykový modul, který lze (pro zotropní mterál) vyádřt ko E G 2(1 ) Cuchyho podmínky rovnováhy Φσ b 0 Geometrcké rovnce ε Φ u onsttutvní vzth (v nšem přípdě zobecněný Hookeův zákon) σ Dε Máme tedy celkem 15 rovnc pro 15 neznámých složek. tomu, by exstovlo právě edno přesné řešení u( x), x s hrncí, e dále nutné defnovt příslušné okrové podmínky (v přípdě sttckého problému) v nšem přípdě geometrcké okrové podmínky u u x, u kde u sou konkrétní hodnoty posunutí n zvolené část hrnce u. 3

4 Prncp vrtuálních prcí PVP Vrtuální práce vněším slm. U vykonná vntřním slm e rovn vrtuální prác W vykonné U W Prncp vrtuálních sl PVs Obecně není vhodný pro odvození metody konečných prvků. Prncp vrtuálních posuvů PVp Pro vrtuální posuvy u [ u, u, u ] x y z kterým odpovídí vrtuální přetvoření ε [,,,,, ] lze PVP zpst tkto kde e vrtuální práce vntřních sl x y z x y z ε σd u b d u pd U W εσ ub d d e vrtuální práce (vněších) obemových sl up d e vrtuální práce (vněších) povrchových sl. Vektor sl n povrchu (nenulový n část ) lze podobně ko obemové síly zpst ve formě p p [ p, p, p ] x y z 4

5 Dskretzce Nebudeme hledt přesné řešení u defnovné n oblst s hrncí, le en přblžné. Dnou oblst rozdělíme (dskretzueme) n konečný počet podoblstí (prvků, elementů), které mí společné hrny uzly. Vznkne tedy konečnoprvková síť s m prvky, n uzly rovněž s hrncí rozdělenou n r hrn m 1 r k1 k Přblžné řešení pk hledáme ve tvru funkce proxmovné pomocí hodnot posuvů uzlech sítě. u 3n 1 N N v Pozor! Počet tzv. zobecněných souřdnc e 3n, neboť prcueme se třem složkm posunů ( u x, u y u z ) v kždém uzlu, t. -tý uzel bude mít posuvy očíslovné tkto [ ux, uy, uz] [ 3 2, 3 1, 3 ] Pozn. Pokud by se ednlo o typ prvku, ve kterém sou posuvy u proxmovné pomocí hodnot ntočení v uzlech, bude celkový počet zobecněných souřdnc vetší, tkže npř. 6n v přípdě 3 posuvů 3 ntočení v kždém uzlu. Dlší velčny pk můžeme vyádřt pomocí tkto zvolené proxmce ko ε Φ u Φ N B σ Dε DB Vrtuální posuvy pk budou u N N N N 0 vrtuální přetvoření budou ε B B B B 0 B 5

6 PVP můžeme použít n řešení dynmcké úlohy (čsově závslé), neboť do obemových sl lze zhrnout síly setrvčné. N zákldě d'almbertov prncpu lze psát (bez uvžování dlších obemových sl, ko sou grvtční, elektromgnetcké pod.) 2.. b () u u t kde e mterálová hustot. Pro zrychlení lze rovněž využít zvolenou proxmc, tudíž.... u N Pozor! V přípdě dynmcké úlohy e le nutné přpot příslušné počáteční podmínky pro rychlost u... Doszením do PVP ( převedením všech členů n levou strnu) pk dostneme m.. r d d d 0 B σ N N N p 1 k1 k Protože tto rovnost musí být splněn pro lbovolné nenulové vrtuální posunutí, musí být nulový výrz v hrntých závorkách. Dostneme tedy soustvu 3n rovnc m.. m r N Nd B σd N p d 1 1 k1 k Po doszení Hookeov zákon z σ vytknutí před (resp. z) ntegrál dostneme M F m.. m r N Nd B DBd N p d 1 1 k 1 k M nebo-l.. M F což e soustv 3n lgebrckých rovnc, kde M N N d oznčue mtc hmotnost [3n 3 n], mtc tuhost [3n 3 n] B DB F N p vektor zobecněných sl [3n 1]. Velčny s ndexem se vzthuí en k dnému -tému prvku. d d F 6

7 V přípdě sttcké úlohy, kdy znedbáváme setrvčné účnky, se soustv dále zednoduší n F Řešením e pk vektor 1 F z kterého lze pomocí výše zvolených proxmcí vyčíslt veškeré velčny (u, ε, σ dlší) v celé dskretzovné oblst. Vzhledem ke způsobu dskretzce uvžovné oblst e vhodné provést příslušnou dskretzc pro proxmční funkce N. Protože se velčny M, F ntegruí zvlášť přes dné podoblst (prvky) resp. ech hrnce, e v tom neednodušším přípdě výhodné volt proxmční funkce ko spoté po částech lneární funkce nvíc tk, by měly nenulové hodnoty en v příslušném uzlu (deálně hodnotu 1) ve všech okolních uzlech hodnotu nul (troúhelníkové funkce). Ale pozor! Vlstnost mtce tuhost (konkrétně hodnost) chrkterzuí sttckou určtost č neurčtost systému. Inverzní mtce k mtc tuhost sestvené tímto postupem nkdy neexstue soustv rovnc není ednoznčně řeštelná těleso e nedosttečně uchyceno v prostoru. Aby tedy bylo možné mtc tuhost nvertovt, e nyní nutné plkovt n tuto soustvu rovnc zdné okrové podmínky některé hodnoty totž známe. Pokud se edná o neednodušší přípd, kdy sou zdány homogenní okrové podmínky, t. 0 ve zvolených uzlech směrech, můžeme příslušné řádky soustvy vyškrtnout ( rovněž sloupce mtce tuhost) nová mtce tuhost ž nvertovtelná e. 7

8 Rovnný troúhelníkový prvek Předpokládeme, že řešíme úlohu těles ve stvu rovnné nptost v rovně xy, t. 0. Dskretzc plošné oblst provedeme pomocí troúhelníkových prvků z x y se 3 uzly, t. en ve vrcholech. Oznčme hodnoty posunutí v uzlech prvku npříkld tkto [,,,,, ] [,,,,, ] x y x y x y b c d e f N kždém troúhelníku x budeme předpokládt rozložení pole posuvů ve formě blneární funkce 1 2 u( x, y) x y 1 x y u A v( x, y) 4 5x 6 y 1 x y onkrétně pro hodnoty posuvů v uzlech musí potom pltt 1 x1 y1 1 b 1 x1 y 1 2 c 1 x2 y 2 3 A d 1 x2 y2 4 e 1 x3 y 3 5 f 1 x3 y3 6 neznámé koefcenty proto můžeme pro kždý prvek určt ko 8 1 A Vektor deformcí sme výše odvodl v této formě ε Φ u Φ N B B pro tento typ prvku e pk lze určt následovně

9 u x x x v u( x, y) ε y y y v( x, y) Φ u z u v y x y x 1 x 2 1 x y 3 ε y 1 x y Φ A 4 5 y x ε Φ AA Φ N N B 5 6 Vektor npětí e pk E E x x E E σ y 2 2 y 1 1 Dε DB z z G A konečně mtce tuhost prvku [2n 2 n] (zde n 3) e B DB Obdobným způsobem lze získt mtc hmotnost vektor zobecněných sl. Volb blneárních proxmčních funkcí má z následek to, že rozložení deformcí n kždém prvku e konstntní mtce B e konstntní. Proto e ntegrnt B DB konstntní můžeme psát B DB V kde V e obem (ploch tloušťk) prvku. d 9

10 Sestvení globálních mtc vektorů Velčny F (popř. M ), které se určí n kždém prvku, e třeb následně spot do globálních mtc F (popř. M ), to tk, by s odpovídly řádky sloupce těchto mtc vzhledem k vektoru neznámých celé struktury. Pokud rozepíšeme soustvu rovnc F (v nšem přípdě 6 rovnc) pltnou pro kždý prvek pomocí celého vektoru, rozpdnou se mtce tuhost prvku n řídkou mtc [2n 2 n], která má en 6 6 nenulových pozc vektor sl n F [2n 1], který má en 6 nenulových řádků ech pozce sou dány pozcí složek vektoru vzhledem k vektoru. F F F b b F c c F d d F e e F f f F F b F c F d F e F f F 2n Potom výsledné mtce soustvy sou prostou sumou těchto řídkých mtc příslušných ednotlvým prvkům. m, F F m

11 Numercká ntegrce U složtěších prvků sou proxmční funkce bohtší mtce B B( x ) ž obecně konstntní není. Nvíc se ntegrce může provádět v tzv. lokálních souřdncích díky trnsformčním vzthům e dferencál obemu d závslý n poloze x ( xy, ). Z těchto důvodu se používá numercká ntegrce většnou tzv. Gussov kvdrtur. to metod e zložen n přblžném vyádření ntegrálu pomocí sumy několk funkčních hodnot ve vybrných místech (Gussovo body) přenásobených váhovým koefcenty (váhy). n f ( x)d w f, f f ( x ) 1 Pokud e funkce f( x ) polynom, lze tímto postupem určt hodnotu ntegrálu dokonce přesně. Počet poloh Gussovo bodů hodnoty vh sou pk předem dány. V metodě konečných prvků e použtí Gussovo kvdrtury následuící. Mtce tuhost ( dlších velčny) e místo ntegrování vyčíslen tkto n w, ( ) ( ) 1 B x DB x V přípdě nšeho troúhelník by byl počet ntegrčních bodů n 1, příslušná váh e rovn obemu prvku w1 V eho pozce x 1 by se ncházel uprostřed, t. v těžšt troúhelník. V přípdě nečstě používných čtyřhrnných prvků (se 4 nebo 8 uzly) sou pozce váhy (krát obem prvku V ) pro první, druhý třetí stupeň ntegrce (volb závsí n počtu uzlů tvru proxmčních funkcí) určeny tkto: 11

12 Poděkování Investce do rozvoe vzdělávání. ento dokument e spolufnncován Evropským socálním fondem státním rozpočtem České republky v rámc proektu č. CZ.1.07/2.2.00/ Inovce výuky podpořená prxí. 12

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3 ročník bakalářského studa doc Ing Martn Kresa PhD Katedra stavební mechank Řešení pravoúhlých nosných stěn metodou sítí Statcké schéma nosné stěn q G υ (μ) h l d 3 wwwfastvsbcz

Více

SMR 1. Pavel Padevět

SMR 1. Pavel Padevět MR 1 Pvel Pdevět PŘÍHRADOVÉ KONTRUKCE REAKCE A VNITŘNÍ ÍLY PŘÍHRADOVÉ KONTRUKCE jsou prutové soustvy s kloubovým vzbm. Příhrdová konstrukce je tvořen z přímých prutů nvzájem spojených ve styčnících kloubovým

Více

Teoretický souhrn k 2. až 4. cvičení

Teoretický souhrn k 2. až 4. cvičení SYSTÉMOVÁ ANALÝZA A MODELOVÁNÍ Teoretcký souhrn k 2. ž 4. cvčení ZS 2009 / 200 . Vyezení zákldních poů.. Systé e Systé e účelově defnovná nožn prvků vze ez n, která spolu se svý vstupy výstupy vykzue ko

Více

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2) 5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4) KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1

Více

Zadání příkladů. Zadání:

Zadání příkladů. Zadání: Zdání příkldů Zdání: ) Popšte oblst vužtí plánovných expermentů ) Uveďte krtér optmlt plánů ) Co sou Hdmrdov mtce ké mí vlstnost? ) Co sou. fktorové plán k e lze vužít? 5) Blok čtverce - oblst ech vužtí

Více

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo Metoda sítí základní schémata h... krok sítě ve směru x, tj. h = x x q... krok sítě ve směru y, tj. q = y j y j τ... krok ve směru t, tj. τ = j... hodnota přblžného řešení v uzlu (x,y j ) (Possonova rovnce)

Více

POUŽITÍ PRINCIPU VIRTUÁLNÍCH PRACÍ PRO VÝPOČET PŘETVOŘENÍ

POUŽITÍ PRINCIPU VIRTUÁLNÍCH PRACÍ PRO VÝPOČET PŘETVOŘENÍ POUŽITÍ PRINCIPU VIRTUÁLNÍCH PRACÍ PRO VÝPOČET PŘETVOŘENÍ PRINCIP VIRTUÁLNÍCH PRACÍ Ve sttce jsme defnovl vrtuální prác jo prác síly př vrtuálních posunech neo jo prác slové dvojce př vrtuálním pootočení,

Více

Ohýbaný nosník - napětí

Ohýbaný nosník - napětí Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se

Více

Druhé kvantování. Slaterův determinant = χ χ

Druhé kvantování. Slaterův determinant = χ χ Druhé kvntování Druhé kvntování žádná nová fyzk! jný formlsmus upltnění prncpu ntsymetre bez použtí Slterových determnntů. Antsymetrcké vlstnost vlnových funkcí jsou přeneseny n lgebrcké vlstnost dných

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

URČITÝ INTEGRÁL FUNKCE

URČITÝ INTEGRÁL FUNKCE URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()

Více

Termodynamika materiálů verse 2.03 (12/2006)

Termodynamika materiálů verse 2.03 (12/2006) ermodynmk mterálů verse.03 (/006) 8. Dodtek 8.. Zákldní mtemtcký prát Převážná řd pozntků v termodynmce vyplývá z první druhé věty termodynmcké, které postuluí č umožňuí odvodt vzthy mez ednotlvým termodynmckým

Více

Osově namáhaný prut základní veličiny

Osově namáhaný prut základní veličiny Pružnost a pevnost BD0 Osově namáhaný prut základní velčny ormálová síla půsoící v průřezu osově namáhaného prutu se získá ntegrací normálového napětí po ploše průřezu. da A Vzhledem k rovnoměrnému rozložení

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

Přibližné řešení algebraických rovnic

Přibližné řešení algebraických rovnic Přblžné řešení lgebrcých rovnc Algebrcou rovncí stupně n nzýváme rovnc =, tj n n x x x =, de n N, x C, oefcenty P n,,, n R, Budeme prcovt s tzv normovou lgebrcou rovncí ( = ) n n x x x = Řešením (ořenem)

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost plsticit II. ročník klářského studi doc. In. Mrtin Krejs, Ph.D. Ktedr stvení mechnik Řešení nosných stěn pomocí Airho funkce npětí inverzní metod Stěnová rovnice ΔΔ(, ) Stěnová rovnice, nzývná

Více

Tváření kovů - analýza procesů

Tváření kovů - analýza procesů Vysoká škol báňská - Techncká unverzt Ostrv Fkult strojní Tváření kovů - nlýz procesů Jří Hrubý Ostrv prof. Ing. Jří Hrubý, CSc., 8 OBSAH str. Metod chrkterstk - I 4 Metod chrkterstk - II 6 Aplkce metody

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

Studijní materiály ke 4. cvičení z předmětu IZSE

Studijní materiály ke 4. cvičení z předmětu IZSE ZSE 8/9 Studijní mteriály ke 4 vičení z předmětu ZSE Předkládný studijní mteriál je určen primárně studentům kterým odpdlo vičení dne 4 9 (velikonoční pondělí) Ke studiu jej smozřejmě mohou využít i studenti

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Kresa Ph.D. Katera stavební mechank Řešení nosných stěn metoou sítí 3 Řešení stěn metoou sítí metoa sítí (metoa konečných ferencí) těnová

Více

Statika soustavy těles v rovině

Statika soustavy těles v rovině Statka soustavy těles v rovně Zpracoval: Ing. Mroslav yrtus, Ph.. U mechancké soustavy s deálním knematckým dvojcem znázorněné na obrázku určete: počet stupňů volnost početně všechny reakce a moment M

Více

Příklad 1 Osově namáhaný prut průběhy veličin

Příklad 1 Osově namáhaný prut průběhy veličin Příkld 1 Osově nmáhný prut průběhy veličin Zdání Oelový sloup složený ze dvou částí je neposuvně ukotven n obou koníh v tuhém rámu. Dolní část je vysoká, m je z průřezu 1 - HEB 16 (průřezová ploh A b =

Více

ÚSTAV MECHANIKY A MATERIÁLŮ FD ČVUT. DOC. ING. MICHAL MICKA, CSc. PŘEDNÁŠKA 2

ÚSTAV MECHANIKY A MATERIÁLŮ FD ČVUT. DOC. ING. MICHAL MICKA, CSc. PŘEDNÁŠKA 2 ÚSTAV ECHANIKY A ATERIÁLŮ FD ČVUT DOC ING ICHAL ICKA, CSc PŘEDNÁŠKA 2 ÚSTAV ECHANIKY A ATERIÁLŮ FD ČVUT PŘÍKLADY STATICKY NEUTČITÝCH KONSTRUKCÍ Vetnutý tuhý olou s mezlehlou mostovou Lngerův trám (netuhý

Více

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25 56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou

Více

Rozdíly mezi MKP a MHP, oblasti jejich využití.

Rozdíly mezi MKP a MHP, oblasti jejich využití. Rozdíly mezi, oblasti jejich využití. Obě metody jsou vhodné pro určitou oblast problémů. základě MKP vyžaduje rozdělení těles na vhodný počet prvků, jejichž analýza je poměrně snadná a pro většinu částí

Více

Matematika 4: Verze ze dne 18. září Jan Chleboun

Matematika 4: Verze ze dne 18. září Jan Chleboun Mtemtk 4: Příručk pro přežtí Verze ze dne 8. září 208 Jn Chleboun Obsh Úvod................................................................... 2 Komplexní čísl.........................................................

Více

11. cvičení z Matematické analýzy 2

11. cvičení z Matematické analýzy 2 11. cvičení z Mtemtické nlýzy 1. - 1. prosince 18 11.1 (cylindrické souřdnice) Zpište integrály pomocí cylindrických souřdnic pk je spočítejte: () x x x +y (x + y ) dz dy dx. (b) 1 1 x 1 1 x x y (x + y

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

Laboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami:

Laboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami: Truhlář Michl 3 005 Lbortorní práce č 6 Úloh č 5 p 99,8kP Měření odporu, indukčnosti vzájemné indukčnosti můstkovými metodmi: Úkol: Whetstoneovým mostem změřte hodnoty odporů dvou rezistorů, jejich sériového

Více

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306 7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu

Více

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 (Souřdnicové výpočty) 1 ročník bklářského studi studijní progrm G studijní obor G doc Ing Jromír Procházk CSc listopd 2015 1 Geodézie 1 přednášk č7 VÝPOČET SOUŘADNIC JEDNOHO

Více

Numerická matematika A

Numerická matematika A Numercká matematka A 5615 A1 Máme dánu soustava lneárních rovnc tvaru AX = B, kde 4 1 A = 1 4 1, B = 1 a Zapíšeme soustavu rovnc AX = B ve tvaru upravíme a následně (L + D + P X = B, DX = (L + P X + B,

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Kapacita a uložená energie

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Kapacita a uložená energie ELEKTŘINA A MAGNETIZMUS Řešené úlohy postupy: Kpcit uložená energie Peter Dourmshkin MIT 6, překld: Jn Pcák (7) Osh 4. KAPACITA A ULOŽENÁ ENERGIE 4.1 ÚKOLY 4. ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ ÚLOHA 1: VÁLCOVÝ

Více

14. cvičení z Matematické analýzy 2

14. cvičení z Matematické analýzy 2 4. cvičení z temtické nlýzy 2 22. - 26. květn 27 4. Greenov vět) Použijte Greenovu větu k nlezení práce síly F x, y) 2xy, 4x 2 y 2 ) vykonné n částici podél křivky, která je hrnicí oblsti ohrničené křivkmi

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOS A SAISIKA Regulární systém hustot Vychází se z: -,, P - pravděpodobnostní prostor -, R neprázdná množna parametrů - X X 1,, náhodný vektor s sdruženou hustotou X n nebo s sdruženou pravděpodobnostní

Více

Úlohy školní klauzurní části I. kola kategorie C

Úlohy školní klauzurní části I. kola kategorie C 52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.

Více

II. INTEGRÁL V R n. Obr. 9.1 Obr. 9.2 Integrál v R 2. z = f(x, y)

II. INTEGRÁL V R n. Obr. 9.1 Obr. 9.2 Integrál v R 2. z = f(x, y) . NTEGRÁL V R n Úvod Určitý integrál v intervlu, b Pro funki f :, b R jsme definovli určitý integrál jko číslo, jehož hodnot je obshem obrze znázorněného n obrázíh. Pro funki f : R n R budeme zvádět integrál

Více

8. cvičení z Matematiky 2

8. cvičení z Matematiky 2 8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,

Více

P P P S. P P P ix ix ix ix iy iy iy iy iz iz iz iz

P P P S. P P P ix ix ix ix iy iy iy iy iz iz iz iz 54 9 Sestvování pohybových rovnic metodmi nlyticé mechniy Obecná rovnice dynmiy Pro ždé těleso romě prcovních setrvčných sil uvážíme i prcovní setrvčné momenty s tím, že setrvčné síly umístíme do těžišť

Více

1. LINEÁRNÍ ALGEBRA 1.1. Matice

1. LINEÁRNÍ ALGEBRA 1.1. Matice Lineární lgebr LINEÁRNÍ LGEBR Mtice Zákldní pojmy Mticí typu m/n nzýváme schém mn prvků, které jsou uspořádány do m řádků n sloupců: n n m/n = = = ( ij ) m m mn V tomto schémtu pro řádky sloupce užíváme

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně nvert Tomáše Bt ve Zlíně LBOTONÍ CČENÍ ELEKTOTECHNKY PŮMYSLOÉ ELEKTONKY Náev úlohy: Metody řešení stejnosměrných elektrckých ovodů v ustáleném stvu Zprcovl: Petr Lur, Josef Morvčík Skupn: T / Dtum měření:

Více

Vzorová řešení čtvrté série úloh

Vzorová řešení čtvrté série úloh FYZIKÁLNÍ SEKCE Přírodovědecká fkult Msrykovy univerzity v Brně KORESPONDENČNÍ SEMINÁŘ Z FYZIKY 8. ročník 001/00 Vzorová řešení čtvrté série úloh (5 bodů) Vzorové řešení úlohy č. 1 (8 bodů) Volný pád Měsíce

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

VYNUCENÉ TORSNÍ KMITÁNÍ KLIKOVÝCH HŘÍDELŮ

VYNUCENÉ TORSNÍ KMITÁNÍ KLIKOVÝCH HŘÍDELŮ VYNUCENÉ TORSNÍ KITÁNÍ KLIKOVÝCH HŘÍDELŮ Vlstní torsní kmtání po čse vymí vlvem tlumení, není smo o sobě nebepečné. Perodcký proměnný kroutící moment v jednotlvých lomeních vybudí vynucené kmtání, které

Více

Základy teorie matic

Základy teorie matic Zákldy teorie mtic 1. Pojem mtice nd číselným tělesem In: Otkr Borůvk (uthor): Zákldy teorie mtic. (Czech). Prh: Acdemi, 1971. pp. 9--12. Persistent URL: http://dml.cz/dmlcz/401328 Terms of use: Akdemie

Více

6. Setrvačný kmitový člen 2. řádu

6. Setrvačný kmitový člen 2. řádu 6. Setrvčný kmitový člen. řádu Nejprve uvedeme dynmické vlstnosti kmitvého členu neboli setrvčného členu. řádu. Předstviteli těchto členů jsou obvody nebo technická zřízení, která obshují dvě energetické

Více

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11 Mticový počet zákldní pojmy Mtice je obdélníkové schém tvru 2...... n 2 22. 2n A =, kde ij R ( i =,,m, j =,,n ) m m2. mn ij R se nzývjí prvky mtice o mtici o m řádcích n sloupcích říkáme, že je typu m/n

Více

Matematika I A ukázkový test 1 pro 2018/2019

Matematika I A ukázkový test 1 pro 2018/2019 Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete

Více

I. termodynamický zákon

I. termodynamický zákon řednášk 4 I. termodynmický zákon I. termodynmický zákon jkožto nejobecnější zákon zchování energie je jedním ze zákldních stvebních kmenů termodynmiky. této přednášce zopkujeme znění tohoto zákon n jeho

Více

ALGORITMUS SILOVÉ METODY

ALGORITMUS SILOVÉ METODY ALGORITMUS SILOVÉ METODY CONSISTENT DEFORMATION METHOD ALGORITHM Petr Frantík 1, Mchal Štafa, Tomáš Pal 3 Abstrakt Příspěvek se věnuje popsu algortmzace slové metody sloužící pro výpočet statcky neurčtých

Více

SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ

SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ h Předmět: Ročník: Vytvořil: Dtum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 11. SRPNA 2013 Název zprcovného celku: SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ Ke sloţenému nmáhání dojde tehdy, vyskytnou-li se součsně

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

Úloha syntézy čtyřčlenného rovinného mechanismu

Úloha syntézy čtyřčlenného rovinného mechanismu Úloha syntézy čtyřčlenného rovnného mechansmu Zracoval: Jaroslav Beran Pracovště: Techncká unverzta v Lberc katedra textlních a ednoúčelových stroů Tento materál vznkl ako součást roektu In-TECH 2, který

Více

Využití logistické regrese pro hodnocení omaku

Využití logistické regrese pro hodnocení omaku Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost

Více

Lineární nerovnice a jejich soustavy

Lineární nerovnice a jejich soustavy teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice

Více

Tenzor malé deformace

Tenzor malé deformace Moerní technologe ve stuu plkovné fk CZ..7/../7.8 Tenor mlé eformce stuní opor k přenášce SLO/EXTM Anlý stvu eformce těles e ž po řu esetletí enou nečetněších úloh mechnk. Účelem tohoto krátkého stuního

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI

ZÁPADOČESKÁ UNIVERZITA V PLZNI ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Semestrální práce z předmětu MM Stanovení deformace soustav ocelových prutů Václav Plánčka 6..006 OBSAH ZADÁNÍ... 3 TEORETICKÁ ČÁST... 4 PRAKTICKÁ ČÁST...

Více

Algoritmus určování rovnice roviny pro laserové skenování

Algoritmus určování rovnice roviny pro laserové skenování Algortus určování rovnce rovny pro lserové skenování Úvod Ing Bronslv Kosk, Ing Mrtn Štroner, PhD, Doc Ing Jří Pospíšl, CSc, ČVU - Fkult stvební, Prh V rác řešení projektu GA ČR Moderní optoelektroncké

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázi zákldní vzdělávání Jroslv Švrček kolektiv Rámcový vzdělávcí progrm pro zákldní vzdělávání Vzdělávcí oblst: Mtemtik její plikce Temtický okruh: Nestndrdní plikční

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

= 2888,9 cm -1. Relativní atomové hmotnosti. leží stejný přechod pro molekulu H 37 Cl? Výsledek vyjádřete jako

= 2888,9 cm -1. Relativní atomové hmotnosti. leží stejný přechod pro molekulu H 37 Cl? Výsledek vyjádřete jako Přijímcí zkoušk n nvzující mgisterské studium - 018 Studijní progrm Fyzik - všechny obory kromě Učitelství fyziky-mtemtiky pro střední školy, Vrint A Příkld 1 Určete periodu periodického pohybu těles,

Více

VÝPOČET PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ SILOVOU METODOU řešený příklad pro BO004

VÝPOČET PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ SILOVOU METODOU řešený příklad pro BO004 VÝPOČET PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ SILOVOU METODOU řešený příklad pro BO00 Slová metoda využívá prncp vrtuální práce. Zavádí se nový zatěžovací stav vrtuální zatížení. V tomto zatěžovacím stavu

Více

Modelování BLDC motoru

Modelování BLDC motoru Moelování BDC otoru BDC otor - konstruke Sttor e složen z plehů, které sou optřeny n vntřní strně rážk pro vnutí (eno neo třífázové) Rotor e n ovou optřen pernentní gnety (npř. N-Fe-B) Koutátorový DC otor

Více

2.5. MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC

2.5. MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC 25 MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC V této kaptole se dozvíte: jak lze obecnou soustavu lneárních rovnc zapsat pomocí matcového počtu; přesnou formulac podmínek řeštelnost soustavy lneárních rovnc

Více

NMAF061, ZS Písemná část zkoušky 25. leden 2018

NMAF061, ZS Písemná část zkoušky 25. leden 2018 Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 3 4 5 6 Celkem bodů Bodů 6 6 4

Více

6. Zobrazení δ: (a) δ(q 0, x) obsahuje x i, x i Z. (b) δ(x i, y) obsahuje y j, x i y j P 7. Množina F je množinou koncových stavů.

6. Zobrazení δ: (a) δ(q 0, x) obsahuje x i, x i Z. (b) δ(x i, y) obsahuje y j, x i y j P 7. Množina F je množinou koncových stavů. Vzth mezi reg. výrzy kon. utomty Automty grmtiky(bi-aag) 7. Převody mezi reg. grm., reg. výrzy kon. utomty Jn Holu Algoritmus (okrčování): 6. Zorzení δ: () δ(, x) oshuje x i, x i Z. () δ(x i, y) oshuje

Více

Lineární a adaptivní zpracování dat. 8. Kumulační zvýrazňování signálů v šumu 2

Lineární a adaptivní zpracování dat. 8. Kumulační zvýrazňování signálů v šumu 2 Lneární a adaptvní zpracování dat 8. Kumulační zvýrazňování sgnálů v šumu 2 Danel Schwarz Investce do rozvoe vzdělávání Opakování Kumulační zpracování sgnálů co to e, k čemu to e? Prncp metody? Nutné podmínky

Více

Podobnosti trojúhelníků, goniometrické funkce

Podobnosti trojúhelníků, goniometrické funkce 1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší

Více

5. října Modelování BLDC motoru

5. října Modelování BLDC motoru 5. řín 015 Moelování BDC otoru BDC otor - konstruke Sttor e složen z plehů, které sou optřeny n vntřní strně rážk pro vnutí (eno neo třífázové) Rotor e n ovou optřen pernentní gnety (npř. N-Fe-B) Moelování

Více

2.1 - ( ) ( ) (020201) [ ] [ ]

2.1 - ( ) ( ) (020201) [ ] [ ] - FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé

Více

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA)

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA) NLÝZ OZPYLU (nalyss of Varance NOV) Používá se buď ako samostatná technka, nebo ako postup, umožňuící analýzu zdroů varablty v lneární regres. Př. použtí: k porovnání středních hodnot (průměrů) více než

Více

Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků

Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků Nelineární analýza materiálů a konstrukcí (V-132YNAK) Přednáška 2 Princip metody konečných prvků Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele, 2007-2014 Obsah Variační principy

Více

1.1 Shrnutí základních poznatků

1.1 Shrnutí základních poznatků 1.1 Shrnutí základních poznatků Pojmem nádoba obvykle označujeme součásti strojů a zařízení, které jsou svým tvarem a charakterem namáhání shodné s dutými tělesy zatíženými vnitřním, popř. i vnějším tlakem.sohledemnatopovažujemezanádobyrůznápotrubíakotlovátělesa,alenapř.i

Více

Téma 8 Přetvoření nosníků namáhaných ohybem I.

Téma 8 Přetvoření nosníků namáhaných ohybem I. Pružnost psticit, ročník kářského studi Tém 8 Přetvoření nosníků nmáhných ohem Zákdní vzth předpokd řešení Přetvoření nosníků od nerovnoměrného otepení etod přímé integrce diferenciání rovnice ohové čár

Více

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu.

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu. Přednášk 1 Určitý integrál V této přednášce se budeme zbývt určitým integrálem. Eistuje několik definic určitého integrálu funkce jedné reálné proměnné. Jednotlivé integrály se liší v tom, jké funkce lze

Více

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce. Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

Přednášky část 8 Analýza provozních zatížení a hypotézy kumulace poškození

Přednášky část 8 Analýza provozních zatížení a hypotézy kumulace poškození DPŽ Přednášky část 8 Anlýz provozních ztížení hypotézy kumulce poškození Mln Růžčk mechnk.fs.cvut.cz mln.ruzck@fs.cvut.cz DPŽ Anlýz dynmckých ztížení DPŽ 3 Hrmoncké ztížení x(t) přes soubor relzcí t t

Více

13. Soustava lineárních rovnic a matice

13. Soustava lineárních rovnic a matice @9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky

Více

Rovinný svazek sil. Lze odvodit z obecného prostorového svazku sil vyloučením jedné dimenze. =F i. =F ix. F 2x. e 2. = F 1x. F ix. n Fi sin i.

Rovinný svazek sil. Lze odvodit z obecného prostorového svazku sil vyloučením jedné dimenze. =F i. =F ix. F 2x. e 2. = F 1x. F ix. n Fi sin i. Rovnný svazek sl Lze odvodt z obecného prostorového svazku sl vloučením edné dmenze = cos cos =sn e 2 = cos = sn = e 1 e 2 e 1 Určení výslednce r n r = =1 r e 1 r e 2 =...e 1...e 2 : r = n = n =1 =1 n

Více

PRUŽNOST A PLASTICITA

PRUŽNOST A PLASTICITA PRUŽOST A PLASTICITA Ing. Lenk Lusová LPH 407/1 Povinná litertur tel. 59 732 1326 lenk.lusov@vs.cz http://fst10.vs.cz/lusov http://mi21.vs.cz/modul/pruznost-plsticit Doporučená litertur Zákldní typy nmáhání

Více

Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)

Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5) Nosné desky Deska je těleso, které má jeden rozměr mnohem menší než rozměry zbývající. Zatížení desky je orientováno výhradně kolmo k její střednicové rovině. 1. Kirchhoffova teorie ohybu tenkých desek

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 11. červenec 2012 Název zpracovaného celku: LINEÁRNÍ ROVNICE S PARAMETREM

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 11. červenec 2012 Název zpracovaného celku: LINEÁRNÍ ROVNICE S PARAMETREM Předmět: Ročník: Vytvořil: Dtum: MATEMATIA DRUHÝ Mgr. Tomáš MAŇÁ 11. červenec 01 Název zrcovného celku: LINEÁRNÍ ROVNICE S PARAMETREM LINEÁRNÍ ROVNICE S PARAMETREM Rovnice s rmetrem obshuje kromě neznámých

Více

4 NÁHODNÝ VEKTOR. Čas ke studiu kapitoly: 60 minut. Cíl: Po prostudování této kapitoly budete umět

4 NÁHODNÝ VEKTOR. Čas ke studiu kapitoly: 60 minut. Cíl: Po prostudování této kapitoly budete umět 4 NÁHODNÝ VEKTOR Čs ke studu kptol: 6 mnut Cíl: o prostudování této kptol udete umět popst náhodný vektor eho sdružené rozdělení vsvětlt pom mrgnální podmíněné rozdělení prvděpodonost popst stochstckou

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Krejsa, Ph.D. Katera stavební mechanky Moely položí Záklaové konstrukce Záklaové konstrukce zajšťují: přenesení tíhy vrchní stavby o položí

Více

13. Exponenciální a logaritmická funkce

13. Exponenciální a logaritmická funkce @11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze

Více

4. cvičení z Matematiky 2

4. cvičení z Matematiky 2 4. cvičení z Mtemtiky 2 14.-18. březn 2016 4.1 Njděte ity (i (ii (iii (iv 2 +(y 1 2 +1 1 2 +(y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y 1 2 +1 1 2 +(y

Více

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby: .. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

Nelineární problémy a MKP

Nelineární problémy a MKP Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)

Více

MENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF

MENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF MENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF RNDr. Petr Rádl RNDr. Bohumil Černá RNDr. Ludmil Strá 0 Petr Rádl, 0 ISBN 97-0-77-9- OBSAH Předmluv... Poždvky k přijímcí zkoušce z mtemtiky..

Více

Zkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p.

Zkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p. 1. V oboru reálných čísel řešte soustvu rovnic x 2 xy + y 2 = 7, x 2 y + xy 2 = 2. (J. Földes) Řešení. Protože druhou rovnici můžeme uprvit n tvr xy(x + y) = 2, uprvme podobně i první rovnici: (x + y)

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více