Základní postuláty a Lorentzovy transformace
|
|
- Zdeňka Žáková
- před 6 lety
- Počet zobrazení:
Transkript
1 Záladní poslá a Lorenov ransformae Do álad své speiální eorie relaivi 905 položil Alber Einsein poe dva jednodhé prinip poslá : Všehn fiální áon mají ve všeh ineriálníh sosaváh sejný var msí bý invarianní Rhlos svla ve va je ve všeh ineriálníh sosaváh onsanní be ohled na rhlos droje a poorovaele Je ejmé, že v lasié fie áladní eleromagneié áon - Mawellov rovnie - pi pehod jedné ineriální sosav do drhé mní svj var vžd jen napílad e saionárníh náboj v jedné soadné sosav se v drhé sosav sano prod. Maemai pa aový pehod mei dvma ineriálními sosavami popisjí Galileov ransformae. Je proo jasné, že poršení prvního Einseinova prinip psobjí práv o ransformaní vah. ' S m r ' O R ' Pipomeme si jejih var. V lasié mehanie jsme je odvodili a pedpolad, že se jedna ineriální sosava S pohbje vi drhé ineriální sosav S posvným ranslaním pohbem onsanní nášivo rhlosí a že v poáením nlovém ase ob sosav splývají :
2 Galileov ransformae Jednodho derivaí prvodi jsme aé naleli vah mei rhlosmi v obo ineriálníh sosaváh : v v sládání rhlosí v lasié mehanie Je ejmé, že pi planosi éo rovnie je poršen i drhý Einseinv prinip. Kdb se oiž pohboval svelný paprse v sosav S podél os rhlosí, pa b v sosav S bla jeho rhlos jiná než rhlos svla : Ted : Pro splnní poslá speiální eorie relaivi bdo mse pehod mei ineriálními sosavami popisova jiné ransformaní vah. Posíme se je nní odvodi pímým požiím obo Einseinovýh poslá pro nejjednodšší siai dvo ineriálníh sosav - d nášivá rhlos je rovnobžná se spolenými bývajíí os jso rovnobžné vi obr. : -ovými osami a S ' m r O R ' ' Poom bdo mí lasié Galileov ransformae var :
3 3 Galileov ransformae jednodšené To rovnie vlasn pedsavjí maemai nejjednodšší vah lineari mei promnnými veliinami prosorovýh soadni a as, erý arje jednonané piaení mís a as - v. dálosí - v obo sosaváh. Pedpoládejme, že nový vah pro -ové soadnie aé bde vjadova lineární vah mei nimi, ale s jiným oefiienem : Transformaní vah je aé fiálním áonem, proo podle prvního Einseinova prinip msí mí obráený ransformaní vah pro drho sosav sejný var se sejným oefiienem poe s opaným naménem nášivé rhlosi, nebo ao rhlos je hledisa drhé sosav, j. S vi S aé opaná : Pro mn rovnosí soadni osaníh dvo os, olmýh na smr nášivé rhlosi, nebl naleen žádný fiální dvod, proo bde sále plai : asové soadnie vša rohodn sejné nebdo. Jesliže oiž dosadíme a árované první rovnie, dosaneme : Vnilá rovnie možje vvoi jevn neriviální pevodní vah mei as v obo sosaváh : V následjíím ro požijeme drhý Einseinv poslá o nemnné rhlosi svla. Vžijeme aé již díve vedený pedpolad, že ob sosav jso oožné na poá ode obo as, j. pro :
4 0 Neh v omo ase nla v mís jejih spolenýh poá ablesne výboja a v obo sosaváh je pa mena rhlos svla, eré se podle drhého prinip msí šíi vžd sejno rhlosí - a sejno ve všeh smreh - proo v aždé sosav bde poorována sejná svelná ole - j. lová vlnoploha eleromagneiého vlnní vi. obr.. S S Kdž ed bde v sosav S men v njaém ase polomr éo lové vlnoploh - ož je vlasn dráha svla a eno as na libovolném paprs, vháejíím poá, napílad i na ose pa msí plai : Proože v sosav S je rhlos svla sejná, msí pro árované soadnie plai analogi : Do éo rovnie dosadíme pedhoíh vah : Upravíme pro výpoe -ové soadnie : A dosaneme : 4
5 5 Porovnání ísané rovnie se vahem pro polomr svelné ole v sosav S nám dá podmín pro velios lom : Z ní pa pospn dosáváme : / / A vpoíáme nenámý oefiien : Po odmonní : Po dosaení ohoo výsled do pedhoíh rovni pro a dosaneme ransformaní vah mei ineriálními sosavami ve speiální eorii relaivi : Lorenov ransformae
6 Ja jsme již vážili, ransformaní vah pro obráený pevod soadni msí bý formáln úpln sejné, liší se poe naménem nášivé rhlosi : Lorenov ransformae inverní To ransformaní vah bl prvn objeven Kramerem v pond odlišném var v 80. leeh 9. soleí pi robor vlnové rovnie, pa je odvodil Holland 900, dž omal podmín invariane Mawellovýh rovni v ineriálníh ssémeh a inenivn je požíval Loren pi rovíjení své eleronové eorie eleromagneiýh jev v pohbjííh se leseh 904 a aé Poinare 906. Loren Hendri Anoon vša ho ransformaníh vah nevvodil žádné ásadní ávr, snažil se je vsvli v rámi lasié fi. Za jedino správno ineriální sosav, s jedin správnými soadniemi, považoval sále lidový absolní prosor, ve erém plaí áladní var Mawellovýh rovni. V osaníh ineriálníh sosaváh, eré se pohbjí vi absolním prosor, jso pa soadnie nesprávné, reslené raováním míe a pomalováním hodin eré maemai plno ransformaníh vah. Zásadní ro vped dlal až Alber Einsein, dž avrhnl výlnos absolního prosor a as a poládal všehn ineriální sosav a rovnoenné pro nejen eleromagneié áon a soadnie v ho sosaváh považoval a objeivní a správné. Vájemná sovislos prosorovýh a asovýh soadni a jejih ávislos na pohbovém sav soadného ssém - pa pro Einseina namenala ela nové pojeí prosor a as, eré samoejm ovlivnilo ásadním psobem fiální obra elého našeho sva. Díve než se bdeme obdivova úžasným relaivisiým efem, senámíme se s áladními požívanými pojm eorie relaivi a všimneme si nolia pímýh dsled Lorenovýh ransformaí : Sosava soadni je samoejm pedevším maemaiý pojem, erý jsme ponali nejprve v analié geomerii jao aa nehmoný ssém narýsovanýh píme a míe. Všehn fiální veliin poínaje délo, asem, ad. jso vša veliinami mielnými, j. msíme o nih vžd važova v sovislosi s realiaí jejih mení. 6
7 Fiální sosava soadni je ed ejm njaá mehaniá sosava miíh í jis neanedbaelné hmonosi, proože bde asi obsahova mnoho dalšíh onsrníh prv jao rné vpr a pí, eré msí ajisi, ab se mií e neprohýbal a ab svíral pedepsané úhl. Dále msí soadniová sosava obsahova pesné hodin pro mení as, ja dále vidíme, ne poe jedn. Nesmíme apomeno na ajišní praovníh a živoníh podmíne pro píomnos njaého aivního iniele opimáln asi lova, erý provádí vlasní mení v. poorovael. Fiáln ed msíme sosav soadni hápa jao dosi hmoné leso, všino voíí nedílný ele s njaým jiným lesem, eré heme sledova pedsave si její realiai na Zemi, ve vla, v leadle, na oblíbené rae. V soadné sosav nepilad S mené prosorové soadnie,, a as pa vpovídají o om, že na riém mís a v riém ase se no salo - je o v. dálos v sosav S. Všehn i soadnie jso prinipiáln sejn dležié, proo se všino formáln maemai spojjí do romrného asoprosor,,,. Uvažme ješ jedn oolnos pi sanovení mení njaé dálosi v sosav S : Ja prosorové soadnie, a i as msejí bý opravd men v éo sosav, j. poorovael msí odeís soadnie na jejíh miíh íh a aé as na hodináh sosav. Co o je ale a hodin? Mžeme si napílad pedsavi, že si poorovael pinese s sebo na míso sledované dálosi svoje hodin a am na nih odee as, ja vlasn všihni bžn v živo dláme? V eorii relaivi o ale nele dla! Podle poslední rovnie Lorenovýh ransformaí oiž asový údaj ávisí na nášivé rhlosi sosav. Kdb ed poorovael penášel své hodin nenlovo rhlosí po sosav S, ž b o nebl hodin éo sosav - pail b do sosav jiné. Vlasní hodin aždé soadné sosav ed i aždého lesa, eré mají mi její vlasní as, msí bý proo sále v lid vi éo sosav - msí bý sále na sejném mís éo sosav. V eorii relaivi aso sledjeme noli dálosí v rnýh míseh volené sosav a piom rjeme jejih as ed podle pedhoíh úvah v mís aždé dálosi poebjeme mí pedem pipravené vlasní hodin. V aždé sosav soadni msí ed eisova ne jedn hodin, ale elý sobor vlasníh hodin, vhodn romísnýh v míseh oeávanýh dálosí, sejn rhle jdoíh a samoejm vájemn snhroniovanýh. 7
8 Píprava aového sobor se pedpoládá dvma možnými psob : a Všehn vhodné hodin jdoí sejn rhle mžeme shromáždi na jednom mís sosav, snhroniova je seídi na sejný údaj a neonen pomal je posno na poebná mísa. To je jis eorei vniajíí, ale pro seno realiai bhom ri požili drhý psob : b Nebo vhodné hodin naped romísíme na poebná mísa a poom je snhronijeme s njaými lidovými hodinami sosav aspo jedn jis v sosav msejí bý - s vžiím onsanní rhlosi svla j. eleromagneiého signál a mené dél jeho dráh. Všimnme si dále, že Lorenovýh ransformaí pímo plne ab ml lome smsl ásadní podmína pro nášivo rhlos soadné sosav: Každá sosava je ale hmoné leso a naopa aždé leso mže bý soadno sosavo, proo o nerovnos považjeme a áladní podmín na rhlos lesa ve speiální eorii relaivi : rhlos svla ve va je mení rhlosí pohb hmonýh les Ze var Lorenovýh ransformaí je aé ihned vid jejih vniajíí vlasnos - že pro níé rhlosi ve srovnání s rhlosí svla peháejí na lasié Galileov ransformae : << << Pro aové níé rhlosi ed v bžném živo a v bžnýh ehniýh apliaíh mžeme dále požíva lasio Newonov mehani, jejíhož píjemného solad s našimi iniivními pedsavami o oolním sv si pa ž jis bdeme velmi váži one apiol K. Rsá, vere 03/006 rev. 03/007 8
7.4.1 Parametrické vyjádření přímky I
741 Paramerické vyjádření přímky I Předpoklady: 7303 Jak jsme vyjadřovali přímky v rovině? X = + D Ke všem bodů z roviny se z bod dosaneme posním C o vekor Pokd je bod na přímce, posováme se o vekor, E
ÚVOD DO DYNAMIKY HMOTNÉHO BODU
ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí
( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302
7.. Vzájemná oloha aramericky yjádřených římek I Předoklady: 70 Pedagogická oznámka: Tao hodina neobsahje říliš mnoho říkladů. Pos elké čási sdenů je oměrně omalý a časo nesihno sočía ani obsah éo hodiny.
Hlavní body. Úvod do vlnění. Harmonické vlny. Energie a intenzita vlnění. Popis, periodicita v čase a prostoru Huygensův princip, odraz a lom vlnění
Vlnění Úvod do vlnění Hlavní bod Harmoniké vln Popis, periodiia v čase a prosoru Hugensův prinip, odraz a lom vlnění Energie a inenzia vlnění Inerferene vln, Dopplerův jev Vln přenos kmiů prosorem Prosředím
Přibližná linearizace modelu kyvadla
Přibližná linearizace model kyvadla 4..08 9:47 - verze 4.0 08 Obsah Oakování kalkl - Taylorův rozvoj fnkce... Nelineární savový model a jeho řibližná linearizace... 4 Nelineární model vs-výs a jeho řibližná
Všechna reálná tlesa jeví vždy uritou míru pružnosti - asto se používá termín pružné hmotné prostedí.
Vlnní pržného prostedí Vznik vlnní a jeho popis V minlýh kapitoláh jsme dosti podrobn probrali rzné drhy kmit jako speiální pohyb hmotného bod. Ve svt kolem nás však vtšino nekmitají jednotlivé hmotné
a excentricita e; F 1 [0; 0], T [5; 2], K[3; 4], e = 3.
Řešené úlohy na ohnisové vlasnosi uželoseče Řešené úlohy onsruce uželosečy z daných podmíne řílad: Sesroje uželoseču, je-li dáno její ohniso F 1, ečna = T s bodem T doyu a excenricia e; F 1 [0; 0], T [5;
10 Transformace 3D. 10.1 Transformace a jejich realizace. Studijní cíl. Doba nutná k nastudování. Průvodce studiem
Trnsformce 3D Sudijní cíl Teno blok je věnován rnsformcím 3D grfik. V eu budou popsán ákldní rnsformce v prosoru posunuí oočení kosení měn měřík používné při prcování 3D modelu. Jednolivé rnsformce budou
Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.
4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci
PRVKY KOVOVÝCH KONSTRUKCÍ MODUL BO02-M05
VYSOKÉ UENÍ TECHNICKÉ V BRN FAKULTA STAVEBNÍ PROF. ING. JINDICH MELCHER,DR.SC. ING. MARCELA KARMAZÍNOVÁ, CSC. ING. MIROSLAV BAJER,CSC. ING. KAREL SÝKORA PRVKY KOVOVÝCH KONSTRUKCÍ MODUL BO0-M05 PRUTY NAMÁHANÉ
4. Přechodné děje. 4.1 Zapínání střídavého obvodu
4. Přhoné ě Exisí-li v lkriké obvo rvky shoné aklova nrgii, noho v obvo robíha ě, ři nihž by vznikaly skokové zěny éo aklované nrgi. To ovš znaná, ž o ob, ky ohází k zěně nrioiké fory nrgi nahroaěné v
Newtonův zákon II
1.2.4 1. Newonův záon II Předpolady: 1203 Pomůcy: rubice, papír. Př. 1: Rozhodni, eré z následujících vě můžeme chápa jao další formulace 1. Newonova záona. a) Je-li výslednice sil, eré působí na ěleso,
7.2.10 Skalární součin IV
7.2.10 Sklární sočin IV Předpokld: 7209 Pedgogiká poznámk: Tto hodin je kontet čebnie zláštní. Obshje d důkz jeden příkld z klsiké čebnie. Všehn tři zdání jso znčně obtížná ždjí nápd, proto je řeším normálně
! " # $ % # & ' ( ) * + ), -
! " # $ % # & ' ( ) * + ), - INDIVIDUÁLNÍ VÝUKA FYZIKA METODIKA Mechanické kmiání a vlnní RNDr. Ludmila Ciglerová duben 010 Obížnos éo kapioly fyziky je dána ím, že se pi výkladu i ešení úloh využívají
Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2
Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. Fakulta strojní Ústav mechaniky DIPLOMOVÁ PRÁCE. Dynamický model poddajného mechanismu Trijointu s řízením
ČESKÉ VYSOKÉ UČENÍ EHNIKÉ V PRAZE ala sojní Úsav mehan DIPLOOVÁ PRÁE Dnamý moel poajného mehansm jon s řízením Obo: Inženýsá mehana a mehaona 005 omáš HEŘAN íle plomové páe Vvoření namého moel hého mehansm
Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.
Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní
Pasivní tvarovací obvody RC
Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :
4. LOCK-IN ZESILOVAČE
4. LOCK-IN ZESILOVAČE Záladní princip Fázově cilivý deeor (PSD) s řízeným směrňovačem - vlasnosi Fázově cilivý deeor (PSD) s číslicovým zpracováním signál - vlasnosi Vysoofrevenční Loc-in zesilovač X38SMP
II. Elektrodynamická část.
Einsein K elekrodnamice pohbjících se ěles II Elekrodnamická čás 6 Transformace awell-heroých ronic pro prádný prosor O poae elekromoorických sil skjících se při pohb magneickém poli awell-hero ronice
k j j Za pedpokladu, že se vlna šíí ve smru jedné z os souadné soustavy, nap.: ve smru osy z (vlnoplocha je kolmá na tuto osu E E E
6 Eleromagnecá vlna ve volném prosoru, odra, lom. opyl áladní pojmy: Vlnoplocha: plocha na níž je fáe onsanní. Podle varu vlnoplochy roenáváme vlnoplochu sfércou, cylndrcou a rovnnou. ovnná eleromagnecá
= 1, (2.3) b 2 + z2. c2 se nazývá imaginární elipsoid. Jedná se o regulární kvadriku, která, jak vidíme z rovnice (2.3), neobsahuje žádný reálný bod.
.. HYPERBOLOIDY 71 Kvadratiká ploha, jejíž rovnie je a + b + = 1,.3 se naývá imaginární elipsoid. Jedná se o regulární kvadriku, která, jak vidíme rovnie.3, neobsahuje žádný reálný bod.. Hperboloid Hperboloid
LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická
Sední rmslová škola elekroechnická a Všší odborná škola, Pardubice, Karla IV. 3 LABORATORNÍ CVIENÍ Sední rmslová škola elekroechnická Píjmení: Hladna íslo úloh: 2 Jméno: Jan Daum mení: 3. ÍJNA 2006 Školní
DIFRAKCE SVTLA. Rozdlení ohybových jev. Ohybové jevy mžeme rozdlit na dv základní skupiny:
DIFRAKCE SVTLA V paprsové optice jsme se zabývali opticým zobrazováním (zrcadly, oami a jejich soustavami). Pedpoládali jsme, že se svtlo šíí pímoae podle záona pímoarého šíení svtla. Ve sutenosti je ale
62. ročník matematické olympiády III. kolo kategorie A. Jihlava, března 2013
6. ročník matematiké olympiády III. kolo kategorie A Jihlava, 17. 0. března 013 MO 1. Najděte všehny dvojie elýh čísel a, b, pro něž platí rovnost a + 1 b 3 a 1 b 1. Řešení. Zřejmě a 1, proto můžeme danou
5 GRAFIKON VLAKOVÉ DOPRAVY
5 GRAFIKON LAKOÉ DOPRAY Jak známo, konsrukce grafikonu vlakové dopravy i kapaciní výpočy jsou nemyslielné bez znalosi hodno provozních inervalů a následných mezidobí. éo kapiole bude věnována pozornos
7. CVIČENÍ - 1 - Témata:
České vsoké čení echnické v Praze Fakla informačních echnologií Kaedra číslicového návrh Doc.Ing. Kaeřina Hniová, CSc. Kaeřina Hniová POZNÁMKY 7. CVIČENÍ Témaa: 7. Nespojié regláor 7.1Nespojié regláor
o d e vz d á v e j t ek o m p l e t n í, / n e r o z e b r a n é /, a b y s e t y t o
o b d o b í : X e r v e n e c s r p e n z á í 2 0 1 1 U S N E S E N Í Z A S T U P I T E L S T V A Z v e e j n é h o z a s e d á n í Z a s t u p i t e l s t v a o b c e d n e 3 0. 6. 2 0 1 1 p r o s t e
7.3.2 Parametrické vyjádření přímky II
7.. Parametriké vyjádření římky II Předoklady 701 Př. 1 Jso dány body [ ;] a [ ; 1]. Najdi arametriké vyjádření římky. Urči sořadnie bod C [ 1;? ] tak, aby ležel na říme. Na které části římky bod C leží?
{ } Konstrukce trojúhelníků I. Předpoklady: 3404
3.4.5 Konstrue trojúhelníů I Předolady: 3404 U onstručníh úloh rozeznáváme dva záladní tyy: olohové úlohy: jejih zadání většinou začíná slovy Je dána.. Tato věta znamená, že onstrui musíme začít rvem,
1.5.4 Kinetická energie
.5.4 Kineicá energie Předolady: 50 Energie je jeden z nejoužívanějších, ale aé nejhůře definovaelných ojmů ve sředošolsé fyzice. V běžném živoě: energie = něco, co ořebujeme vyonávání ráce. Vysyuje se
5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav
5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických
FAKULTA APLIKOVANÝCH VĚD
FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÁ UNIVERZITA V PLZNI Semesrální práce z předměu KMA/MAB Téma: Schopnos úrokového rhu předvída sazby v době krize Daum: 7..009 Bc. Jan Hegeď, A08N095P Úvod Jako éma pro
NCCI: Určení bezrozměrné štíhlosti I a H průřezů
Teno N předládá meodu pro určení beroměrné šíhlosi při ohbu be určení riicého momenu M cr. Záladní onervaivní meodu le přesni a, že se uváží eomerie průřeu a var momenového obrace. Obsah. Zjednodušená
T leso. T leso. nap ě tí na prostorovém elementu normálové - působí kolmo k ploše smykové - působí v ploše
Prostorový model ákladní veli č in a vtah nejlépe odrážejí skte č nost obtížn ě ř ešitelný sstém rovnic obtížn ě jší interpretace výsledků ákladní vtah posktjí rámec pro odvoení D a 2D modelů D a 2D model
Newtonův zákon III
2.4.3 1. Newonův záon III Předpolady: 020402 Pomůcy: ruličy, ousy oaleťáu Pedaoicá poznáma: Je nuné posupova a, aby se před oncem hodiny podařilo zada poslední přílad. Př. 1: Jaý byl nejdůležiější závěr
Hlavní body. Úvod do nauky o kmitech Harmonické kmity
Harmonické kmiy Úvod do nauky o kmiech Harmonické kmiy Hlavní body Pohybová rovnice a její řešení Časové závislosi výchylky, rychlosi, zrychlení, Poenciální, kineická a celková energie Princip superpozice
6.3.6 Zákon radioaktivních přeměn
.3. Zákon radioakivních přeměn Předpoklady: 35 ěkeré nuklidy se rozpadají. Jak můžeme vysvěli, že se čás jádra (například čásice 4 α v jádře uranu 38 U ) oddělí a vyleí ven? lasická fyzika Pokud má čásice
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY
Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných
Spektrum 1. Spektrum 2. Výsledné Spektrum. Jan Malinský
Jan Malinsý V omo doumenu bude odvozeno sperum vysenuého sinusového signálu pomocí onvoluce ve frevenční oblasi. V časové oblasi e možno eno vysenuý signál vyvoři násobením obdélníového ( V a sinusového
. Najdi parametrické vyjádření přímky AB. Nakresli přímku AB do kartézské soustavy souřadnic a najdi její další vyjádření.
7.3.5 Obená rovnie přímky Předpoklady: 7303 Př. 1: Jsou dány body A[ 1; 1] a B [ 1;3]. Najdi parametriké vyjádření přímky AB. Nakresli přímku AB do kartézské soustavy souřadni a najdi její další vyjádření.
Úlohy domácího kola kategorie B
54. roční Matematicé olympiády Úlohy domácího ola ategorie 1. Určete všechny dvojice (a, b) reálných čísel, pro teré má aždá rovnic x + ax + b 0, x + (a + 1)x + b + 1 0 dva růné reálné ořeny, přičemž ořeny
k 1 P R 2 A t = 0 c A = c A,0 = A,0 c t Poměr rychlostí vzniku produktů P a R je konstantní a je roven poměru příslušných rychlostních konstant.
Ra simulánní Ra bočné (onurnční) Njjnoušší přípa - vě monomolulární ra: ro časovou změnu onnra láy plaí ( + ) + Řšním éo ifrniální rovni pro počáční pomínu R osanm závislos na čas v varu 0,0 ( ) +,0 (analogi
EI GI. bezrozměrný parametr působiště zatížení vzhledem ke středu smyku ζ g =
NB.3 NB.3.1 Rosah planosi Pružný kriický momen π I µ cr 1 + κ w + ζ k 诲诲쩎睃睅 睅 a s 5 s ( + ) I A 1 ψ f )I (hf / ) (1) Posup uvedený v éo příloe je vhodný pro výpoče kriického momenu nosníků konsanního dvojose
Práce a výkon při rekuperaci
Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava
7.2.4 Násobení vektoru číslem
7..4 Násobeí vektor číslem Předpoklady: 703 Tetokrát začeme hed defiicí. Násobek lového vektor číslem k je lový vektor. Násobek elového vektor = B Ačíslem k je vektor C A, přičemž C je bod, pro který platí:
3.6.3 Prvky trojúhelníků
3.6.3 Prvy trojúhelníů Předpolady: 030602 Př. 1: Narýsuj trojúhelní, je-li dáno: = 5m, β = 110, a = 6m. Změř veliosti vnitřníh úhlů a strany b. Zontroluj, zda platí vzore pro součet úhlů v trojúhelníu.
ZÁKLADY POLOVODIČOVÉ TECHNIKY
Obsah 1. Úvod ZÁLDY POLOVODČOVÉ THNY. Polovodičové prvky.1. Polovodičové diody.. Tyrisory.. Triaky.4. Tranzisory. Polovodičové měniče.1. směrňovače.. Sřídače.. Sřídavé měniče napěí.4. Plzní měniče.5 Měniče
+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity
Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní
TLUMIČE TORSNÍHO KMITÁNÍ SILIKONOVÉ TLUMIČE
TLUMIČE TORSNÍHO KMITÁNÍ Připojují se orsní sousavě v mísě nejvěší orsní výhyly, j. na volném oni liového hřídele. V prinipu se jedná o přídavný orní sysém na eliminai orsníh výhyle. Dělíme je na: Třeí..mění
0.1 reseny priklad 4. z
Uvadim dva rsn priklad, abch pokud mozno napravil zmak na cvicni. Js o okomnuju pris.. rsn priklad 4. z 9.. Najd sandardni fundamnalni maici pro Cauchho ulohu = 7 + + 5 = Prislusna maic j 7 5 a jji vlasni
Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t)
čbní xy pro Elkrochnik Ing. Kindrá Alxandr Přchodové jvy Účlm éo knihy j nači sdny řši přchodové jvy v obvodch. řád yp a sznámi j s oricko problmaiko přchodových jvů v obvodch. řádů yp. Přchodové jvy v
1.1.18 Rovnoměrně zrychlený pohyb v příkladech IV
8 Rovnoměně ychlený pohyb v příkladech IV Předpoklady: 7 Pedagogická ponámka: Česká škola v současné době budí ve sudenech předsavu, že poblémy se řeší ásadně najednou Sudeni ak mají obovské poblémy v
Dynamika hmotného bodu. Petr Šidlof
Per Šidlof Úvod opakování () saika DYNAMIKA kinemaika Dynamika hmoného bodu Dynamika uhého ělesa Dynamika elasických ěles Teorie kmiání Aranz/Bombardier (Norwegian BM73) Před Galileem, Newonem: k udržení
Cvičení č. 9 Lineární zobrazení. Jádro a obor hodnot. Matice lineárního zobrazení.
Ciční z linání lg 4 Ví Vonák Ciční č 9 Linání zozní Jáo oo hono Mi lináního zozní Linání zozní ini Zozní V U k U V jso kooé oso s nzýá linání jsliž U U Množin šh lináníh zozní U o V znčím V L U říkl ozhoně
4. Analytická geometrie v prostoru
. alcá geomee v oso V aalcé geome so geomecé obe chaaeová omocí číselých údaů. Vlasos geomecých obeů so sdová v edom e í osoů: ooměý eledovsý oso, o. E (oso), dvooměý eledovsý oso, o. E (ova), edooměý
Matematické modely v ekologii a na co jsou dobré
Maemaické modely v ekologii a na co jsou dobré Indukivní a dedukivní uvažování o Indukce - mám spousu pozorování, a v nich se snažím naléz zákoniosi, zobecnní ad. o Dedukce - mám adu pravd, a hledám jejich
Stísněná plastická deformace PLASTICITA
Stísěá asticá deformace PLASTICITA STÍSNĚNÁ PLASTICKÁ DEORACE VE STATICKY NEURČITÝCH ÚLOHÁCH Elasticé řešeí: N cos, N N cos. Největší síla, tero může prt přeést: N S. Prt přejde do ast. stav prví při zatěž.síle
14. Soustava lineárních rovnic s parametrem
@66 4. Sousava lineárních rovnic s aramerem Hned úvodem uozorňuji, že je velký rozdíl mezi sousavou rovnic řešenou aramerizováním, roože má nekonečně mnoho řešení zadaná sousava rovnic obsahuje jen číselné
= μ. (NB.3.1) L kde bezrozměrný kritický moment μ cr je: Okrajové podmínky při kroucení Krouticí zatížení α β. (volná deplanace) obecné 3,7 1,08
Kroucení NB. Vniřní síl od kroucení Výsledk jednodušené analý pruů oevřeného průřeu se anedbáním účinku prosého kroucení ve smslu 6..7.(7) le upřesni na ákladě následující modifikované analogie ohbu a
ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK
ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné
2 HODINY. ? Na kolik trojúhelník Ti úhlopíka rozdlí AC lichobžník ABCD? Na dva trojúhelníky ABC, ACD
K O N S T R U K E L I H O B Ž N Í K U 2 HOINY Než istouíš samotným onstrucím, zoauj si nejdíve vše, co víš o lichobžnících co to vlastn lichobžní je, záladní druhy lichobžní a jejich vlastnosti. ále si
Matematické základy teorie a aplikací nelineárních dynamických systémů
Maemaiké základy eorie a aplikaí nelineárníh dynamikýh sysémů / Kvaliaivní vlasnosi dynamikýh sysémů Tao prezenae je spolufinanována Evropským soiálním fondem a sáním rozpočem České republiky. 1 Vlasnosi
Direct emailing na míru Emailing podle kategorií Traffic pro váš web Databáze firem SMS kampaně Propagace přes slevový portál Facebook marketing
I N T E R N E T O V Ý M A R K E T I N G e f e k t i v n í a c í l e n ý m a r k e t i n g p r o f e s i o n á l n í e m a i l i n g š p i č k o v é t e c h n i c k é z á z e m í p r o p r a c o v a n é
Získejte nové zákazníky a odměňte ty stávající slevovým voucherem! V čem jsme jiní? Výše slevy Flexibilní doba zobrazení Délka platnosti voucheru
J s m e j e d i n ý s l e v o v ý s e r v e r B E Z P R O V I Z E s v o u c h e r y p r o u ž i v a t e l e Z D A R M A! Z í s k e j t e n o v é z á k a z n í kzy v! i d i t e l n t e s e n a i n t e r!
SPOTŘEBITELSKÝ ÚVĚR. Na začátku provedeme inicializaci proměnných jejich vynulováním příkazem "restart". To oceníme při opakovaném použití dokumentu.
SPOTŘEBITELSKÝ ÚVĚR Úloha 3 - Fiacováí stavebích úprav Rozhodli jsme se pro stavebí úpravy v bytě. Po zhotoveí rozpočt a tyto úpravy jsme zjistili, že ám chybí ještě 30 000,-Kč. Máme možost si tto část
Diferenciální rovnice 1. řádu
Kapiola Diferenciální rovnice. řádu. Lineární diferenciální rovnice. řádu Klíčová slova: Obyčejná lineární diferenciální rovnice prvního řádu, pravá srana rovnice, homogenní rovnice, rovnice s nulovou
Skládání různoběžných kmitů. Skládání kolmých kmitů. 1) harmonické kmity stejné frekvence :
Skládání různoběžných kmitů Uvědomme si principiální bod tohoto problému : na jediný hmotný bod působí dvě nezávislé pružné síl ve dvou různých směrech. Jednotlivé mechanické pohb, které se budou skládat,
y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy
36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem
Úloha V.E... Vypař se!
Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee
MECHANICKÉ KMITÁNÍ TLUMENÉ
MECHNICKÉ KMITÁNÍ TLUMENÉ V skučnosi s čás nrgi u všch mchanických pohybů přměňuj vlivm řní a odporu prosřdí na plo, a nní dy využia V om případě s vlikosi po sobě jdoucích ampliud zmnšují a kmiající sousava
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B
Zákon síly. Hmonos jako míra servačnosi. Vyvození hybnosi a impulsu síly. Závislos zrychlení a hmonosi Cvičení k zavedeným pojmům Jméno auora: Mgr. Zdeněk Chalupský Daum vyvoření: 11. 11. 2012 Číslo DUM:
MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA
Přednáška 7 MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA A INTERAKCE S MĚNOVÝM KURZEM (navazující přednáška na přednášku na éma inflace, měnová eorie a měnová poliika) Měnová poliika
O P A K O V Á N Í A P R O H L O U B E N Í U I V A O J E D N O D U C H Ý C H K O N S T R U K C Í C H 1,5 HODINY
O P A K O V Á N Í A P R O H L O U B E N Í U I V A O J E D N O D U C H Ý C H K O N S T R U K C Í C H 1,5 HODINY Díve, než spolen pikroíme k uivu o množinách bod, pokusíme se zopakovat nkteré jednoduché
Základní pojmy a vztahy speciální teorie relativity
K přednáše NUFY8 Fzika I (mehanika) prozatímní čební tet, erze 7. Základní pojm a ztah speiální teorie relatiit Leoš Dořák, MFF UK Praha, 18 7.1 Relatiistiká kinematika Základní pojm a ztah speiální teorie
Inovace a vytvoření odborných textů pro rozvoj klíčových. kompetencí v návaznosti na rámcové vzdělávací programy. education programs
N V E S T C E D O R O Z V O J E V Z D Ě L Á V Á N Í Operační progra: Název oblas podpory: Název projek: Vzdělávání pro konkrenceschopnos Zvyšování kvaly ve vzdělávání novace a vyvoření odborných exů pro
Derivace funkce více proměnných
Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme
Parciální funkce a parciální derivace
Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci
[2 ] o b c i, [3 ] [4 ]
M O R A V S K Á N Á R O D N Í O B E C o b ƒ a n s k é s d r u ž e n í z a l o ž e n o r o k u 1 9 8 5 J e t e l o v á 4 9 8 / 1 3, 6 4 4 0 0 B-S r no ob ' š i c e in f o @ z a m o r a v u. e u w w w. z
Základy elektrotechniky
Zálady eletrotechniy Přednáša Zesilovače s tranzistory, operační zesilovače Stpeň se společným emitorem (SE) Pracovní bod tranzistor je vázán: jeho charateristiami podle b h (i b, ) i h (i b, ) a rovnicí
ŔᶑPř. 10 Ohyb nosníku se ztrátou stability. studentská kopie
Navrhněe sropní průvla průřeu IPE oceli S35, aížený podle obráu reacemi e sropnic. Nosní je ajišěn proi ráě příčné a orní sabili (lopení) v podporách a v působiších osamělých břemen. haraerisicá hodnoa
Kytlický chrámový sbor (070) Pozdravení Krista Ježíše ukřižovaného (Velikonoční pásmo č. 1) lid. ských. chův. pro. hří. slun. nad. zář. pří. smr.
Kytc chmvý sbr (00) Pzdr t křižv (Venč pásm č. 1) (Svrč mzyk č. ) Adm V. Mich dy m hyzd dy m hyzd dy hz z shlď hz z shlď hz z shlď hz z shlď n, m hyzd dy m hyzd js s js s js s js s z B z B z B z B n, n,
Typ: MTI pevodník stední hodnoty stídavého proudu bez napájení (pasivní)
Typ: MTI 103 - pevodník stední hodnoty stídavého proudu bez napájení (pasivní) Popis funkce: vstupní signál je galvanicky oddlen micím transformátorem uvnit pevodníku. Dále je usmrnn a vyfiltrován. Výstup
4. Střední radiační teplota; poměr osálání,
Sálavé a průmyslové vyápění (60). Sřední radiační eploa; poměr osálání, operaivní a výsledná eploa.. 08 a.. 08 Ing. Jindřich Boháč TEPLOTY Sřední radiační eploa - r Sálavé vyápění = PŘEVÁŽNĚ sálavé vyápění
6.2.1 Zobrazení komplexních čísel v Gaussově rovině
6.. Zobraení komplexních čísel v Gaussově rovině Předpoklad: 605 Pedagogická ponámka: Stihnout obsah hodin je poměrně náročné. Při dostatku času je lepší dojít poue k příkladu 7 a btek hodin spojit s úvodem
Rovinná napjatost a Mohrova kružnice
Rovinná napjatost a ohrova kružnice Dvojosý stav napjatosti - ukák anačení orientace napětí v rovině x Na obr. vlevo dole jsou vnačen složk napětí. Kladná orientace napětí x a je v případě, že vektor směřují
TRANSFORMÁTORY. 4. Konstrukce a provedení transformátor 5. Autotransformátory 6. Mící transformátory 7. Speciální transformátory
TRASFORMÁTORY reno pro stdenty bakaláských stdijních program na FBI. Princip innosti ideálního transformátor. Princip innosti skteného transformátor 3. Pracovní stavy transformátor Transformátor naprázdno
Definice : Jsou li povrchové pímky kolmé k rovin, vzniká kolmá kruhová válcová plocha a pomocí roviny také kolmý kruhový válec.
3. EZY NA VÁLCÍCH 3.1. VÁLCOVÁ PLOCHA, VÁLEC Definice : Je dána kružnice k ležící v rovin a pímka a rznobžná s rovinou. Všechny pímky rovnobžné s pímkou a protínající kružnici k tvoí kruhovou válcovou
j k k k i k k k k k j k j j j j ij i k k jk k k jk k j j i
1.Stá-la Mat-a od-ho-dla-ně v sl-zách ve- dle ří-že Pá-ně, na te-rém Syn e-í pněl. Je- í du-š v hoř-ém lá-ní slí-če - nou, bez sm-lo - vá-ní do hlu-bn meč o-te - vřel. a f d b f Copyrght by
Relativistická dynamika
Relatiistiká dynaika Díky Lorentzoý transforaí ají základní ronie elektroagnetiké teorie Maxwelloy ronie nenný tar e šeh ineriálníh sostaáh. To saozej neplatí pro základní ronie ehaniky Newtonoy pohyboé
MODELOVÁNÍ SOUPROUDÉHO VÝMĚNÍKU TEPLA V SIMULINKU S VYUŽITÍM S-FUNKCÍ
MDELVÁNÍ UPRUDÉH VÝMĚNÍKU EPLA V IMULINKU VYUŽIÍM -FUNKCÍ M. Pieš Š. žana Kaedra měřií a řídií eniky Fakla elekroeniky a informaiky VŠB-U srava Absrak eno článek se zabývá vyvořením a implemenaí maemaikéo
. Najdi parametrické vyjádření přímky AB. Nakresli přímku AB do kartézské soustavy souřadnic a najdi její další vyjádření.
735 Obená rovnie přímky I Předpoklady: 070304 Pedagogiká poznámka: Úvodní příklad se nesmí příliš prodlužovat Nemá enu ztráet čas tím, že si většina žáků nepamatuje lineární funke Raději ryhle napíši řešení
1. Prostor a čas v klasické mechanice
hanah 1. Prosor a čas klasiké mehanie Klasiká mehanika znikla 17. soleí zásluhou I. Newon (1643-177) G. Galilei (1564-164) Základní pojmy: Bodoá událos - děj, kerý nasane určiém mísě prosoru a určiém okamţiku
Centrovaná optická soustava
Centrovaná optická soustava Dvě lámavé kulové ploch: Pojem centrovaná optická soustava znamená, že splývají optické os dvou či více optických prvků. Základním příkladem takové optické soustav jsou dvě
Parciální diferenciální rovnice. Dirichletova úloha pro Laplaceovu (Poissonovu) rovnici Rovnice vedení tepla
arálí dereálí rove Drleova úloa ro Lalaeov ossoov rov Rove vedeí ela Vlová rove Klasae leárí arálí dereálí rov.řád d ě ý ve dvo roměý V oblas Ω E de a b d e a g jso sojé je dáa rove ro [ ] Ω oložíme g
SPECIÁLNÍ TEORIE RELATIVITY
SPECIÁLNÍ TEORIE RELATIVITY GALILEO GALILEI (6.s.) pohbuje-li se ažná sousaa hlee k jiné onoěný příočaý pohbe, je s ní onoenná (pohb je ájený elainí) neeisuje žáná absoluní ažná sousaa, keou jeinou b ěl
( ) 1.7.8 Statika I. Předpoklady: 1707
.7.8 Sik I Přeokly: 707 Peoická oznámk: Hoinu rozěluji n vě čási. V rvní čási (5 minu) očíáme rvní čyři říkly, ve ruhé (0 minu) zývjící ři. Př. : N koncích yče o hmonosi 0 k élce m jsou zvěšen závží o
MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN 80-860-7323-8.
Idenifiáor maeriálu: ICT 1 9 Regisrační číslo rojeu Název rojeu Název říjemce odory název maeriálu (DUM) Anoace Auor Jazy Očeávaný výsu Klíčová slova Druh učebního maeriálu Druh ineraiviy Cílová suina
MATEMATIKA. O paradoxech spojených s losováním koulí
MATEMATIKA O paradoxeh spojenýh s losováním oulí PAVEL TLUSTÝ IRENEUSZ KRECH Eonomiá faulta JU, Česé Budějovie Uniwersytet Pedagogizny, Kraów Matematia popisuje a zoumá různé situae reálného světa. Je
Obr. 1: Elektromagnetická vlna
svtla Svtlo Z teorie elektromagnetického pole již víte, že svtlo patí mezi elektromagnetická vlnní, a jako takové tedy má dv složky: elektrickou složku, kterou pedstavuje vektor intenzity elektrického