Hartre-Fock method (HF)
|
|
- Klára Tesařová
- před 5 lety
- Počet zobrazení:
Transkript
1 Cofgurato Iteracto (CI) Coupled Clusters (CC) Perturbato Theory (PT, MP) Electro correlato H Ψ = EΨ Bor-Oppehemer approxmato Model of depedet electros Product wave fucto (Slater determat) MO LCAO Hartre-Fock method (HF) Sememprcal methods (NDO, AM, PM3) Exteded Hückel Theory Hückel MO Addtoal approxmato No-teractg electros
2 Hartree-Fockova metoda H = () + (, ) h v > Ψ(,,, ) = det( ϕ ) =! ϕ () ϕ()! ϕ ( ) ϕ () ϕ () ϕ ( ) ϕ () ϕ () ϕ ( ) E[ Ψ ] = Ψ H 0 Ψ δe[ Ψ] = Gealta metody spočívá v techckém řešeí - - postupě se řeší problém pro edotlvé elektroy - edotlvé elektroy se pohybuí v zprůměrovaém potecálu ostatích elektroů
3 E [ Ψ] = Ψ H Ψ = h + ( J K ) = Jedoelektroový tegrál h ( = ϕ ) h ϕ () Coulombcký tegrál J ( = ϕ ) ϕ () v (,) ϕ () ϕ () Výměý tegrál K ( = ϕ ) ϕ () v (,) ϕ () ϕ () δe[ψ]=0 => systém Fockových rovc F ϕ ' = ε ϕ ' F() = h() + ϕ () v'(,) ϕ () = Řešeí Fockových rovc probíhá teračě - metoda ozačováa ako SCF
4 Hartree-Fockova metoda atom He ˆ ˆ e' e' e' H = h + h + vˆ = + + m r m r r Ψ (, ) = det( ϕ ) = ϕ () ϕ () ϕ () ϕ () Hamltoá atomu He Vlová fukce ve tvaru Slaterova determatu E[ Ψ ] = Ψ H Ψ Celková eerge systému Eerg systému vyádříme po dosazeí do Schrödgerov rovce: φ ()φ () φ ()φ () hˆ + hˆ + vˆ φ ()φ () φ ()φ () A B Itegrál sestává z celkem částí. Řešíme samostatě A B
5 Jedoelektroové tegrály: Ahˆ A = φ ()φ () hˆ φ ()φ () = φ () hˆ φ () φ () φ () Závsí pouze a souřadcích el. h edoelektroový tegrál = Ahˆ B = φ ()φ () hˆ φ ()φ () = φ () hˆ φ () φ () φ () Bhˆ B Závsí pouze a souřadcích el. ˆ = h Ah A = h Bh B = h ˆ 0 Bh A = Ah ˆ B = 0 Bhˆ A = 0 ˆ = 0
6 Dvouelektroové tegrály: Avˆ A = vˆ = dτ dτ = J * e' * φ ()φ () φ ()φ () φ ()φ () r φ ()φ () el. hustota el. el. hustota el. Bvˆ B = J = J Avˆ B = φ ()φ () vˆ φ ()φ () = K Avˆ B = K = K Výměý tegrál Kulombcký tegrál
7 Hartree-Fockova metoda atom He ˆ ˆ e' e' e' H = h + h + vˆ = + + m r m r r Ψ (, ) = det( ϕ ) = ϕ () ϕ () ϕ () ϕ () Hamltoá atomu He Vlová fukce ve tvaru Slaterova determatu Celková eerge systému ( ) E[ Ψ ] = Ψ H Ψ = h + h + J K = h + h + J K Eerge atomu He e součtem 4 tegralu, echž výpočet eí komplkovaý. Problém zůstává, ak určt optmálí edoelektroové fukce orbtaly.
8 Hartree-Fockova metoda Eerge -elektroové molekuly E[ Ψ ] = Ψ H Ψ = h + ( J K ) = = > h v v = = = = ϕ () () ϕ () + ϕ () ϕ () (, ) ϕ () ϕ () ϕ () ϕ () (, ) ϕ () ϕ () Zavedeme ový operátor: ( ˆ ) vˆ' = vˆ P => Dovolue ám přpsat rovc edodušším způsobem Operátor záměy souřadc el. a Pˆ ϕ () ϕ () = ϕ () ϕ () ϕ h ϕ ϕ ϕ v ϕ ϕ = = = = () () () + () () '(, ) () ()
9 δ Ψ H Ψ = δϕ() h() ϕ() + ϕ() h() δϕ() + + Aplkace varačího prcpu: = = = δϕ() ϕ () v'(, ) ϕ() ϕ () + ϕ() δϕ () v'(, ) ϕ() ϕ () + ϕ() ϕ () v'(, ) δϕ() ϕ () + ϕ() ϕ () v'(, ) ϕ() δϕ () Některé tegrály sou detcké (záměa sčítacího dexu a tegračích proměých): 0 = δ Ψ H Ψ = δϕ () h() ϕ () + δϕ () ϕ () v'(, ) ϕ () ϕ () + = = = + ϕ () h() δϕ () + ϕ () ϕ () v'(, ) δϕ () ϕ () = = = Výrazy a prví a druhé řádce sou a sobě ezávslé (varace komplexě sdružeých fukcí) Každá z ch ezávsle musí být rova ule, stačí řešt edu z ch. Pro řešeí zavedeme Fockův operátor.
10 * * () () '(, ) () () = () () '(, ) () () = = = = δϕ ϕ v ϕ ϕ δϕ ϕ v ϕ ϕ dτ dτ * * = δϕ () ϕ () v'(, ) ϕ () dτ ϕ () dτ = = Popsue terakce se zprůměrovaých = potecálem ostatích elektroů Fockův operátor = = Fˆ () hˆ () ϕ () v '(, ) ϕ () = + ϕ () v'(,) ϕ () Popsue ketckou eerg elektrou, potecál mez elektroem a ádry a terakc mez elektroem a ostatím elektroy reprezetue potecál ve kterém se daý elektro pohybue. Fockův operátor formálě velce zedoduší varačí rovc: 0 = δ Ψ H Ψ = δϕ () F() ϕ () + ϕ () F() δϕ () = = Výsledé edoeletroové fukce (orbtaly) hledáme v ortho-ormálím tvaru, tz., že tyto dodarečé podmíky musíme rověž zahrout ve formě Lagrageových multplkátorů: ϕ () ϕ () = δ δ ϕ () ϕ () = δϕ () ϕ () + ϕ () δϕ () = δδ = 0 Musí být splěy ásleduící rovce (λ sou lagr. multplkátory) λ δϕ () ϕ () λ ϕ () δϕ () = 0 λ δϕ () ϕ () + λ ϕ () δϕ () = 0
11 Varačí rovce spolu s podmíkam ortho-ormalty edelektroových vlastích fukcí Fockova operátoru vedou a soustavu rovc: () ˆ δϕ F() ϕ () λ ϕ () ϕ () Fˆ + λ ϕ () δϕ () = 0 = 0 = 0 = = = Z obou z podmíek získám ekvvaletí rovce stačí pracovat s edou. Soustava rovc o ezámých. Fˆ () ϕ () = λ ϕ () = φ eí vlastí fukcí! Fockův operátor e hermtovský musí exstovat vlastí fukce, ozačíme e φ Nadu tzv. utárí trasformac, kterou převedu {φ } a {φ }, tak aby platlo: ˆ Fϕ' εϕ' = Hartreeho-Fockovy rovce Řešíme teračím způsobem:. Volba počátečích MO. Sestaveí Fockova operátoru 3. Řešeí Fockových rovc 4. Nová sada edoelektroových fukcí (MO) Hartree-Fockov orbtaly řešeím Hartreeho-Fockových rovc. Fockův operátor závsí a svých vlastích fukcích => teračí řešeí. SCF = Self cosstet feld
ck f Podmínka pro nalezení nejvhodnější variační funkce (minimální energie): = 0
Varačí teorém W Φ H Φ = ΦΦ E 0 Aproxmatví vlová fukce dává eerg, která je vždy větší (ebo rova) E 0 Leárí varačí fukce: Φ = k k W Podmíka pro alezeí ejvhodější varačí fukce (mmálí eerge): = 0 ck f c =>
VíceÚvod do kvantové chemie
Úvod do kvatové cheme Operátory Postuláty kvatové mechaky Schrodgerova rovce Aprxmace vedoucí k Hartree-Fockově metodě Slaterův determat Hartree-Fock metoda Báze atomových orbtalů Korelačí eerge Metody
VíceIV. MKP vynucené kmitání
Jří Máca - katedra mechaky - B35 - tel. 435 4500 maca@fsv.cvut.cz IV. MKP vyuceé kmtáí. Rovce vyuceého kmtáí. Modálí aalýza rozklad do vlastích tvarů 3. Přímá tegrace pohybových rovc 3. Metoda cetrálích
Více14. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
VíceOdhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt
Více4. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
VíceOdhady parametrů základního. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme
VíceHartreeho-Fockova metoda (HF)
Staonární Shrödngerova rovne H Ψ = EΨ Metoda konfgurační nterake Metoda vázanýh klastrů Poruhová teore Zahrnutí el. korelae Bornova-Oppenhemerova aproxmae Model nezávslýh elektronů Vlnová funke ve tvaru
VíceRegrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n
Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor
SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor SP Náhodý vektor Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu eho výsledek a
VíceNMAF063 Matematika pro fyziky III Zkoušková písemná práce 17. ledna 2019
Jméo: Příklad 2 3 Celkem bodů Bodů 0 8 2 30 Získáo 0 Uvažujte posloupost distribucí {f } + = D (R defiovaou jako f (x = ( δ x m, kde δ ( x m začí Diracovu distribuci v bodě m Najděte limitu f = lim + f
Více5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC
5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém
VíceMetody zkoumání závislosti numerických proměnných
Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy
VícePoznámky k přednášce Kvantová mechanika. PřF MU v Brně, únor - květen (upraveno v prosinci 2003) Michal Lenc
Pozámky k předášce Kvatová mechaka PřF MU v Brě úor - květe 997 (upraveo v prosc 3) Mchal Lec Prcp superposce 4 Feymaova formulace4 Formulace Ladaua a Lfšce4 Matematcký pops5 Základí pops5 Axomy 5 3 Reprezetace
VícePRAVDĚPODOBNOST A STATISTIKA
SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty
Více8. Zákony velkých čísel
8 Zákoy velkých čísel V této část budeme studovat velm často užívaá tvrzeí o součtech posloupost áhodých velč Nedříve budeme vyšetřovat tvrzeí azývaá souhrě ako slabé zákoy velkých čísel Veškeré úvahy
VícePRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor
SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu
VícePRAVDĚPODOBNOST A STATISTIKA
Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru
VíceHartreeho-Fockova metoda (HF)
Stacionární Schrödingerova rovnice H Ψ = EΨ Metoda konfigurační interakce Metoda vázaných klastrů Poruchová teorie Zahrnutí el. korelace Bornova-Oppenheimerova aproximace Model nezávislých elektronů Vlnová
Víceje číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost
Číselé řady Defiice (Posloupost částečých součtů číselé řady). Nechť (a ) =1 je číselá posloupost. Pro všecha položme s = ak. Posloupost ( s ) azýváme posloupost částečých součtů řady. Defiice (Součet
VíceInterpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2
Iterpolace pomocí sple křvky dáo: bodů v rově úkol: alézt takovou křvku, která daým body prochází y f f 2 f 0 f x0 x... x 2 x x Iterpolace pomocí sple křvky evýhodou polyomálí terpolace změa ěkterého z
Vícerovinná soustava sil (paprsky všech sil soustavy leží v jedné rovině) rovinný svazek sil rovinná soustava rovnoběžných sil
3.3 Obecé soustav sl soustava sl seskupeí sl působících a těleso vláští případ: svaek sl (papsk všech sl soustav se potíaí v edo bodě) soustava ovoběžých sl (papsk všech sl soustav sou aváe ovoběžé) ová
Více( NV, )} Řešením Schrödingerovy rovnice pro N částic
Partčí fuc { E ( V, )} Řším Schrödgrovy rovc pro částc Zdoduší (?) H = H E = E Ψ= Ψ BOSOY stavy sou obsazováy bz omzí FERMIOY frmoy mohou být v stém stavu Přílady: Ply (ízý tla) => mzmolulové trac zadbáy
VíceAb initio výpočty v chemii a biochemii
Ab initio výpočty v chemii a biochemii Doc. RNDr. Ing. Jaroslav Burda, CSc., jaroslav.burda@mff.cuni.cz Dr. Vladimír Sychrovský vladimir.sychrovsky@uochb.cas.cz Studijní literatura Szabo A., Ostlund N.S.
VíceUniverzita Karlova v Praze Matematicko-fyzikální fakulta
Uverzta arlova v Praze Matematcko-fyzkálí fakulta DIPLOMOVÁ PRÁCE Zdeěk Futera TEORETICÉ STUDIUM RUTHENIOVÝCH OMPLEXŮ S PROTINÁDOROVÝMI ÚČINY atedra chemcké fyzky a optky Vedoucí dplomové práce: Doc RNDr
VíceOperátory a maticové elementy
Operátory a matice Operátory a maticové elementy operátory je výhodné reprezentovat maticemi maticové elementy operátorů jsou dány vztahy mezi Slaterovými determinanty obsahujícími ortonormální orbitaly
VícePRAVDĚPODOBNOST A STATISTIKA
SP Náhodý vektor PRAVĚPOOBNOS A SAISIKA Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor přpomeutí pomů z SP V prví část kurzu SP s rozšíříme pomy o áhodém vektoru z SP: Nechť e áhodý vektor eho složky:
VíceKomplexní čísla. Definice komplexních čísel
Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují
VíceAnalytická geometrie
MATEMATICKÝ ÚSTAV Slezská uverzta Na Rybíčku, 746 0 Opava DENNÍ STUDIUM Aalytcká geometre Téma 3.: Aí zobrazeí Dece 3.. Zobrazeí aího prostoru A do aího prostoru A se azývá aí zobrazeí, estlže má ásleduící
VíceU. Jestliže lineární zobrazení Df x n n
MATEMATICKÁ ANALÝZA III předášky M. Krupky Zmí semestr 999/ 3. Iverzí a mplctí zobrazeí V této kaptole uvádíme dvě důležté věty, které acházeí aplkace v moha oblastech matematky: Větu o verzím a větu o
Více1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru
Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v
VíceGenerování dvojrozměrných rozdělení pomocí copulí
Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta
Více3. Lineární diferenciální rovnice úvod do teorie
3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se
VíceV. Normální rozdělení
V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,
Více12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
VíceChemická struktura B
Chemcká struktura B Elektronová struktura molekul Lubomír Rulíšek, Martn Srnec rulsek@uochb.cas.cz; srnec@h-nst.cas.cz (2016/17: pondělí CH3 8:10 9:40, CH3 9:50 10:35) 1 Přednáška 6: Od vodíku k protenům
VícePřednáška V. Úvod do teorie odhadu. Pojmy a principy teorie odhadu Nestranné odhady Metoda maximální věrohodnosti Průměr vs.
Předáška V. Úvod do teore odhadu Pojmy a prcpy teore odhadu Nestraé odhady Metoda mamálí věrohodost Průměr vs. medá Opakováí výběrová dstrbučí fukce Sestrojíme výběrovou dstrbučí fukc pro výšku a váhu
VíceTéma 2 Přímková a rovinná soustava sil
Stavebí statka,.ročík bakalářského studa Téma 2 Přímková a rová soustava sl Přímková soustava sl ový svazek sl Statcký momet síly k bodu a dvojce sl v rově Obecá rová soustava sl ová soustava rovoběžých
VíceOptimalizace portfolia
Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí
VíceTĚŽIŠTĚ A STABILITA. Těžiště tělesa = bod, kterým stále prochází výslednice tíhových sil všech jeho hmotných bodů, ať těleso natáčíme jakkoli
SAIKA - těžště ĚŽIŠĚ A SABILIA ěžště tělesa bod, kterým stále prochází výsledce tíhových sl všech jeho hmotých bodů, ať těleso atáčíme jakkol bod, ke kterému astává rovováha mometů způsobeých tíhou jedotlvých
VícePRAVDĚPODOBNOST A STATISTIKA
SP Záko velkých čísel, cetrálí lmtí věta PRAVDĚPODOBNOST A STATISTIKA Lbor Žák SP Záko velkých čísel, cetrálí lmtí věta Lbor Žák Kovergece podle pravděpodobost Posloupost áhodých proměých,,,, koverguje
VíceLieovy grupy ve fyzice. Gerardus 't Hooft 1*
Leovy grupy ve fyzce Gerardus 't Hooft * Úvod Kvatová mechaka a rotačí varace7 Grupa rotací ve třech dmezích 6 4 Více o represetacích4 5 Žebříkové operátory4 6 Grupa SU()9 7 Sp a ampltuda rozptylu47 8
VíceIlustrativní příklad ke zkoušce z B_PS_A léto 2014.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
VícePři sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací
3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací
VíceSprávnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).
37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým
VíceL7 Energetický a vodní cyklus III. Oddělení numerické předpovědi počasí ČHMÚ 2007
L7 Eergetcký a vodí cyklus III Odděleí umercké předpověd počasí ČHMÚ 2007 Plá předášky Radačí přeos a eho parametrzace v NWP Obecý úvod; Rovce radačího přeosu (RTE); Čtyř tegrály pro řešeí RTE; Problém
Více1.3. ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE
ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE V této kaptole se dozvíte: jak je oecě defováa kolmost (ortogoalta) vektorů; co rozumíme ortogoálí a ortoormálí ází; co jsou to tzv relace ortoormalty a Croeckerovo delta;
Více, jsou naměřené a vypočtené hodnoty závisle
Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,
VíceEKONOMETRIE 9. přednáška Zobecněný lineární regresní model
EKONOMETRIE 9. předáška Zobecěý lieárí regresí model Porušeí základích podmíek klasického modelu Metoda zobecěých emeších čtverců Jestliže sou porušey ěkteré podmíky klasického modelu. E(u),. E (uu`) σ
VíceIlustrativní příklad ke zkoušce z B_PS_A léto 2013.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
VíceNMAF063 Matematika pro fyziky III Zkoušková písemná práce 25. ledna x 1 n
Jméo: Příklad 3 Celkem bodů Bodů 8 0 30 Získáo [8 Uvažujte posloupost distribucí f } D R defiovaou jako f [δ kde δ a začí Diracovu distribuci v bodě a Najděte itu δ 0 + δ + této poslouposti aeb spočtěte
VíceSpolehlivost a diagnostika
Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore
VíceRovnice 1.řádu. (taková řešení nazýváme singulární řešení). řeší rovnici (*) na intervalu ( a, b)
Rovce řáu Rovce se separovaým proměým Derecálí rovc tvaru g h * azýváme rovcí se separovaým proměým latí: Nechť g je spojtá uce a tervalu a b h je spojtá a eulová uce a tervalu c Ozačme postupě G a H prmtví
VíceMATICOVÉ HRY MATICOVÝCH HER
MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem
VíceNMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) =
NAF61, ZS 17 18 Zápočtová písemá práce VZOR 5. leda 18 Jedotlivé kroky při výpočtech stručě, ale co ejpřesěji odůvoděte. Pokud používáte ějaké tvrzeí, ezapomeňte ověřit splěí předpokladů. Jméo a příjmeí:
VíceVícečlenné kinematické řetězce (šesti-, osmi-, desetičlenné-)
Vícečleé kematcké řetězce (šest-, osm-, desetčleé-) Zpracoval: Jří Mrázek, Mart Bílek Pracovště: Techcká uverzta v Lberc katedra textlích a jedoúčelových strojů I-TECH, ozačuje společý projekt Techcké
Vícejako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých
9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie
VíceZkoušková písemná práce č. 1 z předmětu 01MAB3
Katedra matematiky Fakulty jaderé a fyzikálě ižeýrské ČVUT v Praze Příjmeí a jméo 1 2 3 4 5 BONUS CELKEM (13 bodů) Zkoušková písemá práce č. 1 z předmětu 01MAB3 14. leda 2016, 9:00 11:00 Pro kvadratickou
VíceIterační výpočty projekt č. 2
Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....
VíceIntervalové odhady parametrů některých rozdělení.
4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:
VíceANALÝZA VLIVU NUMERICKÉ APERTURY A ZVĚTŠENÍ NA HODNOTU ROZPTYLOVÉ FUNKCE BODU
ANALÝZA VLIVU NUMERICKÉ APERTURY A ZVĚTŠENÍ NA HODNOTU ROZPTYLOVÉ FUNKCE BODU A.Mikš, J.Novák, P. Novák katedra fyziky, Fakulta stavebí ČVUT v Praze Abstrakt Práce se zabývá aalýzou vlivu velikosti umerické
VíceIntervalové odhady parametrů
Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf
VíceMul$determinantální metody: CASSCF
Mul$determinantální metody: CASSCF Mul%konfiguračni (mnohadeterninantálni MC SCF) metody použivají narozdíl od metody Hartreeho- Focka pro popis N- elektronového systému větší počet Slaterových determinantů.
VíceOdhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
VícePosloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b
Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je + + + + ) + = = 0 + + Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a
VíceČasopis pro pěstování matematiky a fysiky
Časops pro pěstováí matematky a fysky Euge Buckj Pozámka k čláku O tegrac úplých dferecálů Časops pro pěstováí matematky a fysky, Vol. 72 (1947), No. 3, 131--136 Persstet URL: http://dml.cz/dmlcz/121554
Více1 Základy Z-transformace. pro aplikace v oblasti
Základy Z-trasformace pro aplikace v oblasti číslicového zpracováí sigálů Petr Pollák 9. říja 29 Základy Z-trasformace Teto stručý text slouží k připomeutí základích vlastostí Z-trasformace s jejími aplikacemi
VíceMETODY VÝPOČETNÍ CHEMIE
METODY VÝPOČETNÍ CHEMIE Metody výpočetní chemie Ab initio metody Semiempirické metody Molekulová mechanika Molekulová simulace Ab initio metody Ab initio - od počátku Metody kvantově-mechanické vycházejí
Vícen=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1
[M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti
VíceDynamická analýza rámu brdového listu
Dacá aalýza ráu rovéo lstu MODELOVÁNÍ MECHANICKÝCH SOUSTAV Šo Kovář 0..0 Brový lst 8..0 Brový lst průřez čů. orí če. olí če. Postrace. áě Tp závěsů těe 8..0 Použté ozačeí sol pops jeota sč oefcet tlueí
VíceSpojitost a limita funkcí jedné reálné proměnné
Spojitost a limita fukcí jedé reálé proměé Pozámka Vyšetřeí spojitosti fukce je možo podle defiice převést a výpočet limity V dalším se proto soustředíme je problém výpočtu limit Pozámka Limitu fukce v
Vícef x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )
DSM Cv 9 Vytvořující fukce Vytvořující fukcí ekoečé poslouposti a0, a,, a, reálých čísel mííme formálí ekoečou řadu =. f a i= 0 i i Příklady: f = + = + + + + + ) Platí: (biomická věta). To zameá, že fukce
VíceMatematika I, část II
1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího
VíceMechanika soustavy hmotných bodů a tuhého tělesa
Mechaka soustavy hmotých bodů a tuhého tělesa Učebí text pro výuku předmětu Fyzka pro KME, letí semestr školího roku 00/ Autor: Mart Žáček, katedra fyzky, Fakulta Elektrotechcká, ČVUT Vymezeí a souvslost
VíceANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DA prof. Ig. Jří Holčík, CSc. INVESICE Isttut DO bostatstky ROZVOJE VZDĚLÁVÁNÍ a aalýz IV. LINEÁRNÍ KLASIFIKACE pokračováí Isttut bostatstky a aalýz (SUPPOR VECOR MACHINE SVM) SEPARABILNÍ
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,
VíceObsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...
Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1
Vícen=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0
Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada
VíceÚVOD DO KVANTOVÉ CHEMIE
ÚVOD DO KVANTOVÉ CHEME. Navození kvantové mechanky Postuláty kvantové mechanky, základy operátorové algebry, navození kvantové mechanky, jednoduché modely.. Vodíkový atom 3. Základní aproxmace používané
VíceSekvenční logické obvody(lso)
Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách
VíceCvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu
Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý
VíceIterační metody řešení soustav lineárních rovnic
Iteračí metody řešeí soustav lieárích rovic Matice je: diagoálě domiatí právě tehdy, když pozitivě defiití (symetrická matice) právě tehdy, když pro x platí x, Ax a ij Tyto vlastosti budou důležité pro
Více6. FUNKCE A POSLOUPNOSTI
6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat
Vícek(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln
Číselé řady - řešeé přílady ČÍSELNÉ ŘADY - řešeé přílady A. Součty řad Vzorové přílady:.. Přílad. Určete součet řady + = + 6 + +.... Řešeí: Rozladem -tého čleu řady a parciálí zlomy dostáváme + = + ) =
Více(3n + 1) 3n Příklady pro samostatnou práci
... 4. 5. 6. 0 0 0 a q koverguje pro q < geometrická řada diverguje harmoická řada koverguje srovejte s teleskopickou řadou + + utá podmíka kovergece + 4 + + 7 ití srovávací kritérium, srováí s ití podílové
VíceJIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH PEDAGOGICKÁ FAKULTA - KATEDRA FYZIKY
JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH PEDAGOGICKÁ FAKULTA - KATEDRA FYZIKY NÁVRH SBÍRKY PŘÍKLADŮ PRO PŘEDMĚT POČÍTAČOVÁ FYZIKA BAKALÁŘSKÁ PRÁCE Vedoucí práce: RNDr. Petr Bartoš, Ph. D. Autor: Jaa
VíceKvantová teorie elementární základy
Kvtová teore elemetárí zákldy Toy Hey, Ptrk Wlters Nový kvtový vesmír Překld Mrt Žofk, váz. s přeblem, 43 str, ISBN 8-7363--, řd zp Co byste měl zát l Zářeí čerého těles by Jeff Juste https://www.youtube.om/plylst?
VíceModelové výpočty na H 2 a HeH +
Modelové výpočty na H 2 a HeH + Minimální báze Všechny teoretické poznatky je užitečné ilustrovat modelovým výpočtem. Budeme aplikovat Hartree-Fockovy výpočty na uzavřených slupkách systémů H 2 a HeH +.
VíceUžití binomické věty
9..9 Užití biomické věty Předpoklady: 98 Často ám z biomického rozvoje stačí pouze jede kokrétí čle. Př. : x Urči šestý čle biomického rozvoje xy + 4y. Získaý výraz uprav. Biomický rozvoj začíá: ( a +
Vícejsou reálná a m, n jsou čísla přirozená.
.7.5 Racioálí a polomické fukce Předpoklad: 704 Pedagogická pozámka: Při opisováí defiic racioálí a polomické fukce si ěkteří studeti stěžovali, že je to příliš těžké. Ve skutečosti je sstém, kterým jsou
VíceVYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA. VZORCE PRO 4ST201 a 4ST210
VYOKÁ ŠKOLA EKONOMICKÁ V RAZE FAKULA INFORMAIKY A AIIKY Kaedra sas a pravděpodobos AIIKA VZORCE RO 4 a 4 verze 8 posledí aualzace:. 9. 8 K 8 opsá sasa p p =,,...,... () () ( ),, z, ( z ) ( z ) ( z), z
VíceUžitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové:
Užitečé zdroje příkladů jsou: Materiály ke cvičeím z Kalkulu 3 od Kristýy Kucové: http://www.karli.mff.cui.cz/~kucova/historie8. php K posloupostem řad a fukcí Ilja Čerý: Iteligetí kalkulus. Olie zde:
Více5 PŘEDNÁŠKA 5: Jednorozměrný a třírozměrný harmonický oscilátor.
5 PŘEDNÁŠKA 5: Jedorozměrý a třírozměrý harmoický oscilátor. Půjde o spektrum harmoického oscilátoru emá to ic společého se spektrem atomu ebo se spektrálími čarami atomu. Liší se to právě poteciálem!
VíceLambertův-Beerův zákon
Lambertův-Beerův zákon Intenzta záření po průchodu kavtou se vzorkem: Integrovaný absorpční koecent: I nal = I ntal e ε c L A = ε ( ~ ν ) d~ ν Bezjednotková včna síla osclátoru: v cm -1 = 4.3 10 9 A Síla
VíceBudeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
VíceSP NV Normalita-vlastnosti
SP - - NV Normala-vlasos Přpomeuí vlasosí Normálího rozděleí Charakerscká fukce Lévyho-Ldebergova věa - cerálí lmí věa -rozměré ormálí rozděleí -rozměré ormálí rozděleí Přpomeuí vlasosí Normálího rozděleí
VíceDůkazy Ackermannova vzorce
Důkazy Akermaova vzore Rady studetům: Důkaz je trohu zdlouhavý, ale přirozeý. Tak byste při odvozeí postupovali, kdybyste vzore předem ezali. Důkaz je krátký, ale je založe a triku, a který byste předem
VíceMěření závislostí. Statistická závislost číselných znaků
Měřeí závslostí Statstcká závslost číselých zaků - závslost dvou velč lze vádřt ako ech fukčí vztah vzorcem, taulkou hodot příslušé fukce eo grafck; - mez zak zkoumaých evů zšťueme estec příčé (kauzálí
VíceInterference. 15. prosince 2014
Iterferece 15. prosice 014 1 Úvod 1.1 Jev iterferece Mějme dvě postupé vly ψ 1 z,t) = A 1 cosωt kz +ϕ 1 ) a ψ z,t) = A cosωt kz +ϕ ). Uvažujme yí jejich superpozici ψ = ψ 1 +ψ a podívejme se, jaká bude
Více