DVĚ METODY ŘEŠENÍ PROBLEMATIKY ŠÍŘENÍ ELEKTROMAGNETICKÝCH VLN
|
|
- Josef Kolář
- před 8 lety
- Počet zobrazení:
Transkript
1 DVĚ TODY ŘŠNÍ ROBLTIKY ŠÍŘNÍ LKTROGNTICKÝCH VLN. ikš J. Novák. Novák České vsoké učení technické v ae Fakulta stavební Kateda fik bstakt V páci jsou uveden dvě etod řešení šíření elektoagnetického pole postoe a to po pole skalání a pole vektoové. Naleené obecné vtah ná uožňují efektivně řešit řadu paktických úloh např. v oblasti inteakce vlnového pole s ateiálový objekte pobleatiku difakce elektoagnetických vln a v dalších oblastech. o nueické řešení uvedené pobleatik je veli vhodné výpočetní postředí TLB kteé v sobě obsahuje všechn funkce a pocedu potřebné při řešení konkétních úloh pae. Úvod V páci jsou uveden dvě etod řešení šíření elektoagnetického pole postoe a to po pole skalání a pole vektoové. vní etoda je aložena na popisu elektoagnetického pole poocí úhlového spekta ovinných vln. Výhodou této etod je ožnost vužít při nueické řešení konkétních pobléů algoitů po chlou Fouieovu tansfoaci. Duhá etoda vužívá po příé řešení ovnic pole etod Geenov funkce. Obě etod jsou aplikován jak na skalání tak na vektoové pole. Naleené obecné vtah ná uožňují efektivně řešit řadu paktických úloh např. v oblasti inteakce vlnového pole s ateiálový objekte pobleatiku difakce elektoagnetických vln a v dalších oblastech. o nueické řešení uvedené pobleatik je veli vhodné výpočetní postředí TLB. Skalání vlnové pole ředpokládeje že vlastnosti vlnového pole budou dostatečně přesně popsán jednou skalání funkcí kteou ůže být např. složka vektou elektické nebo agnetické intenit. ředpokládeje přito že ostatní složk ohou být neávisle kouán stejný působe. Zcela ted ignoujee ten fakt že jednotlivé složk vektoů elektoagnetického pole jsou váán awellovýi ovnicei [-7] a nele je poto kouat neávisle. peient v oblasti difakce však ukaují že skalání teoie dává obdivuhodně přesné výsledk jsou-li splněn následující podínk: ) chaakteistické oě těles na kteých nastává difakce jsou nohonásobně větší než je vlnová délka áření ) difakční jev jsou kouán v dostatečně velkých vdálenostech od těles na kteých nastává difakce. Skutečnost že poocí skalání teoie dostáváe přesné výsledk á velký výna ejéna v teoii optického obaení kde pacujee s přioený (nepolaiovaný) áření a ajíá nás předevší jeho intenita. Také epeient v této oblasti jsou ve veli dobé souhlasu se skalání teoií difakčního obaení. Uvažuje nní skalání vlnové pole kteé je v libovolné bodě postou a časové okažiku t popsáno skalání funkcí V(t). Jak je náo teoie elektoagnetického pole splňuje funkce V(t) vlnovou ovnici Vt ( ) v ( ) Vt () t
2 kde v načí fáovou chlost vlnění a Laplaceův opeáto. Hledeje nní řešení vlnové ovnice () ve tvau ( ) ( ) Vt U e ω i t () kde ω πν přičež ν je fekvence áření. Funkce U() je pak řešení Helholtov ovnice ( ) ( ) U + k U (3) kde k ω/v π/λ přičež λ je vlnová délka áření v dané postředí. Řešení difakční úloh spočívá v řešení Helholtov ovnice (3) kde funkce U() splňuje vhodné okajové podínk. etoda Geenov funkce Řešení Helholtov ovnice (3) nní povedee etodou Geenov funkce [67] a dostáváe U() 4π kde G() je Geenova funkce našeho pobléu a vhovuje ovnici S U() G( ) G( ) U() ds (4) n n ( ) ( ) 4πδ ( ) G + k G a splňuje na haniční ploše S okajovou podínku G( ) a G( ) + a po S n S kde a a () a a a () jsou spojité funkce na S přičež a 0 a 0 a načí deivaci ve sěu vnější noál k ploše S. a + a 0. G/n Vtah (4) ná uožňuje učit stav pole v libovolné bodě uvnitř oblasti uavřené plochou S náe-li stav pole na této haniční ploše a Geenovu funkci G. Vtah (4) á centální výna ve skalání teoii difakce. Např. v případě difakce na otvou o ploše S le Geenovu funkci volit tak ab na ploše S bla nulová ( G ( ) 0 ). Vtah (4) pak á tva S G( ) U() U() ds 4π. n S Úhlové spektu ovinných vln Řešení Helholtov ovnice (3) hledeje ve tvau dvojoěné Fouieov tansfoace kde jsou pavoúhlé souřadnice. [ + q) ] U ( ) (p q ) ep ik(p dpdq (5)
3 Dosaení (5) do (3) dostáváe po nenáou funkci (pq) následující ovnici d ( p q ) (p q ) (p q ) + k. d Toto je občejná difeenciální ovnice s konstantníi koeficient a její patikulání řešení á tva (pq ) ( ik p q ) C(pq) ep kde C(pq) je integační konstanta. ředpokládeje že náe řešení U(0) ovnice (3) v ovině 0. Z předcháejícího vtahu ůžee ted učit integační konstantu platí C(pq) (pq0) (pq). Řešení (5) ovnice (3) ůžee v polopostou 0 psát ve tvau spekta ovinných vln [ + q + ) ] U ( ) (pq) ep ik(p dpdq (6) kde p q po p + q i p + q po p + q > Vtah (6) vjadřuje pole jako supepoici dvou tpů ovinných vln a to:. Hoogenních vln [ q ) ] (pq) ep ik(p + + p q p + q ajících aplitudu (pq) a sěové kosin (pq) noál vlnoploch a šířících se ve všech ožných sěech svíajících s kladný sěe os úhl Θ (-π/ Θ π/).. Nehoogenních (evanescentních) vln [ q) ] (p q) ep( k ) ep ik(p + p + q p + q > šířících se ve všech ožných sěech kolo k ose a eponenciálně tluených s ostoucí.
4 bcho ted učili pole U() v bodě () náe-li pole U(0) v ovině usíe povést následující kok: a) učíe (pq) e vtahu b) pole U() učíe e vtahu (pq) U( 0) ep[ ik(p + q) ] dd (7) λ [ + q + ) ] U ( ) (pq) ep ik(p dpdq. (8) 3 Vektoové vlnové pole V obecné případě vektoových polí je nutno řešit soustavu awellových ovnic spolu s příslušnýi ateiálovýi ovnicei. Oeíe-li se na postředí be nábojů a poudů a na pole haonická v čase dostáváe awelových ovnic následujíc vtah po vekto () intenit elektického pole a vekto H() intenit agnetického pole platí [] () + k () div () H() + k H() div H() (9) kde () je polohový vekto. Úhlové spektu ovinných vln Užijee-li po řešení ovnic (9) analogického postupu jako ve skalání případě dostáváe (pq) ik0 ( 0)ep[ - ik(p + q) ] dd λ ep( ) (0) (pq) ik0 ( 0)ep[ - ik(p + q) ] dd λ ep( ). lektoagnetické pole je ted cela učeno náe-li pole ( 0 ) a ( 0 ) v ovině 0 nebo ekvivalentně poocí (pq) a (pq). Shnee-li dosažené výsledk dostáváe po složk vektou intenit elektického pole [] ( ) (pq)ep ik(p + q + ) dpdq ( ) (pq)ep ik(p + q + ) dpdq () [ p (pq) + q ( ) (pq)]ep ik(p + q + ) dpdq.
5 Složk vektou intenit agnetického pole jsou ε H [ pq (pq)+-p ( ) µ (pq)]ep ik(p + q + ) dpdq H [ -q ε (pq) + pq ( ) (pq)]ep ik(p + q + ) dpdq () µ ε H ( ) - [q (pq) - p (pq)]ep[ ik(p + q + ) ] dpdq. µ Vtah (0) () a () jsou ted epeentací elektoagnetického pole poocí úhlového spekta ovinných vln. etoda Geenov funkce Znáe-li stav elektoagnetického pole v ovině tj. náe vekto () a H() po libovolný bod ovin. Užití analogického postupu jako ve skalání případě dostáváe řešení soustav ovnic (9) následující vtah po jednotlivé složk vektou intenit elektického pole π ( ) S d d ( ) d d (3) π S ( ) d d S ( ). π + o složk vektou intenit agnetického pole H platí H ( ) d d i + ( ) π ωµ + ( )
6 H H ( ) d d i + ( ) (4) π ωµ + ( ) ( ) d d i. π ωµ ) ( ) kde je vdálenost libovolného bodu v ovině od bodu ve kteé učujee vekto elektoagnetického pole tj. platí ( ) + ( ) + ( ). 4 Závě V páci bl uveden dvě etod řešení šíření elektoagnetického pole postoe a to jak po pole skalání tak i po pole vektoové. Naleené obecné vtah ná uožňují efektivně řešit řadu paktických úloh např. v oblasti inteakce vlnového pole s ateiálový objekte pobleatiku difakce elektoagnetických vln a v dalších oblastech. o nueické řešení uvedené pobleatik je veli vhodné výpočetní postředí TLB kteé v sobě obsahuje noho funkcí a pocedu (nueická integace FFT algoit atd.) kteé jsou potřebné při řešení konkétních úloh pae. áce bla vpacována a podpo gantu GČR 0/04/0898. Liteatua [] Staton J..: lectoagnetic theo. cgaw-hill New Yok 94. [] ikš.: plikovaná optika 0 Vdavatelství ČVUT aha 000. [3] Bon. Wolf.: inciples of Optics Cabidge Univesit ess Cabidge 003 [4] Bake B.B. Copson.T.: The atheatical Theo of Hugens' inciple. Chelsea ub.co988 [5] Bouwkap C. J. Diffaction Theo. Rep. og. hs [6] Soefeld.: Lectues on Theoetical hsics: Optics. cadeic pess 954 [7] Tikhonov.N. Saaskii..: quations of atheatical hsics Dove ubl. 990 of.rnd.ntonín ikšcsc. Kateda fik Fakulta stavební ČVUT Thákuova aha 6 tel: fa: e-ail: iks@fsv.cvut.c Ing. Jiří Novák hd. Kateda fik Fakulta stavební ČVUT v ae Thákuova aha 6. tel: fa: e-ail: novakji@fsv.cvut.c Ing. avel Novák Kateda fik Fakulta stavební ČVUT v ae Thákuova aha 6. tel: fa: e-ail: novakp9@fsv.cvut.c
Učební text k přednášce UFY102
Matematický popis vlnění vlna - ozuch šířící se postředím zachovávající svůj tva (pofil) Po jednoduchost začneme s jednodimenzionální vlnou potože ozuch se pohybuje ychlostí v, musí být funkcí jak polohy
do strukturní rentgenografie e I
Úvod do stuktuní entgenogafie e I Difakce tg záření na kystalu Metody chaakteizace nanomateiálů I RND. Věa Vodičková, PhD. Studium kystalové stavby Difakce elektonů, neutonů, tg fotonů Kystal ideální mřížka
Příklad 70 Vypočet konstanty šíření (fázová konstanta, měrný útlum)
Přílad 7 Vypočt onstanty šířní (fáová onstanta, ěný útlu) adání : Rovinná haonicá ltoagnticá vlna o itočtu : a) f 5 b) f 7 M c) f 9 G s šíří v postřdí s těito paaty:.[ S ], ε 8, µ. Vaianta a) Vaianta b)
5. Světlo jako elektromagnetické vlnění
Tivium z optiky 9 5 Světlo jako elektomagnetické vlnění Ve třetí kapitole jsme se dozvěděli že na světlo můžeme nahlížet jako na elektomagnetické vlnění Dříve než tak učiníme si ale musíme alespoň v základech
11. cvičení z Matematiky 2
11. cvičení z Mateatiky. - 6. května 16 11.1 Vypočtěte 1 x + y + z dv, kde : x + y + z 1. Věta o substituci á analogický tva a podínky pouze zanedbatelné nožiny nyní zahnují i plochy, oviny atd.: f dv
MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ
Úloha č. 6 a MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ ÚKOL MĚŘENÍ:. Změřte magnetickou indukci podél osy ovinných cívek po případy, kdy vdálenost mei nimi je ovna poloměu cívky R a dále R a R/..
Dynamika tuhého tělesa. Petr Šidlof
Dnaika tuhého tělesa Pet Šidlof Dnaika tuhého tělesa Pvní věta ipulsová F dp dt a t Zchlení těžiště Výslednice vnějších sil F A F B F C Celková hbnost soustav p p i Hotnost soustav i těžiště soustav se
4. konference o matematice a fyzice na VŠT Brno, Fraktály ve fyzice. Oldřich Zmeškal
4. konfeence o matematice a fyzice na VŠT Bno, 15. 9. 25 Faktály ve fyzice Oldřich Zmeškal Ústav fyzikální a spotřební chemie, Fakulta chemická, Vysoké učení technické, Pukyňova 118, 612 Bno, Česká epublika
rovinná soustava sil (paprsky všech sil soustavy leží v jedné rovině) rovinný svazek sil rovinná soustava rovnoběžných sil
3.3 Obecé soustav sl soustava sl seskupeí sl působících a těleso vláští případ: svaek sl (papsk všech sl soustav se potíaí v edo bodě) soustava ovoběžých sl (papsk všech sl soustav sou aváe ovoběžé) ová
Trivium z optiky Vlnění
Tivium z optiky 7 1 Vlnění V této kapitole shnujeme základní pojmy a poznatky o vlnění na přímce a v postou Odvolávat se na ně budeme často v kapitolách následujících věnujte poto vyložené látce náležitou
k + q. Jestliže takový dipól kmitá s frekvencí ν (odpovídající
Vlastnosti kmitajíího dipólu Podle klasiké teoie je nejefektivnějším zdojem elektomagnetikého záření kmitajíí elektiký dipól. Intenzita jeho záření o několik řádů převyšuje intenzity ostatníh zdojů záření
Diferenciální operátory vektorové analýzy verze 1.1
Úvod Difeenciální opeátoy vektoové analýzy veze. Následující text popisuje difeenciální opeátoy vektoové analýzy. Měl by sloužit především studentům předmětu MATEMAT na Univezitě Hadec Kálové k přípavě
Stavební mechanika 1 (132SM01)
Stavební mechanika 1 (132SM01) Přednáší: Ing. Jiří Němeček, Ph.D. Kateda stavební mechanik K132 místnost 331a e-mail: jii.nemecek@fsv.cvut.c http://mech.fsv.cvut.c/ Liteatua: Kabele a kol., Stavební mechanika
Pohyb tělesa, základní typy pohybů, pohyb posuvný a rotační. Obsah přednášky : typy pohybů tělesa posuvný pohyb rotační pohyb geometrie hmot
Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační Obsah přednášky : typy pohybů tělesa posuvný pohyb otační pohyb geoetie hot Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační posuvný
Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách
Fyzika Studuje objekty neživé příody a vztahy mezi nimi Na základě pozoování a pokusů studuje obecné vlastnosti látek a polí, indukcí dospívá k obecným kvantitativním zákonům a uvádí je v logickou soustavu
Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r
Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory
ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE
ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE 1 ELEKTRICKÝ NÁBOJ Elektický náboj základní vlastnost někteých elementáních částic (pvní elektické jevy pozoovány již ve staověku janta (řecky
teorie elektronických obvodů Jiří Petržela analýza obvodů s regulárními prvky
Jiří Petržela příklad pro příčkový filtr na obrázku napište aditanční atici etodou uzlových napětí zjistěte přenos filtru identifikujte tp a řád filtru Obr. : Příklad na příčkový filtr. aditanční atice
ELEKTROMAGNETICKÉ VLNY VE VOLNÉM PROSTŘEDÍ
ELEKTROMAGNETICKÉ VLNY VE VOLNÉM PROSTŘEDÍ V celé této kapitole budeme předpokládat, že se pohybujeme v neomezeném lineáním homogenním izotopním postředí s pemitivitou = 0, pemeabilitou = 0 a měnou vodivostí.
Pružnost a plasticita II
Pužnost a plasticita II. očník bakalářského stuia oc. Ing. Matin Kejsa, Ph.D. Katea stavební mechanik Rovinný poblém, stěnová ovnice Rovinné úloh Řešené úloh teoie pužnosti se postatně jenouší, poku v
Elektrická vodivost kovů. Pro pohyb částice ve vnějším silovém potenciálním poli platí Schrodingerova rovnice:
Elektická vodivost kovů Vodiče Vodiče Po pohyb částice ve vnější silové potenciální poli platí Schodingeova ovnice: h Ψ x Ψ + y + Ψ + W z p Ψ WΨ Tato ovnice popisuje pohyb elektonu a ářešení pouze po učité
Dynamika tuhého tělesa
Dnaika tuhého tělesa Pet Šidlof ECHNCKÁ UNVERZA V LBERC Fakulta echatonik, infoatik a eioboových studií ento ateiál vnikl v áci pojektu ESF CZ..7/../7.47 Reflexe požadavků půslu na výuku v oblasti autoatického
Vlnovody. Obr. 7.1 Běžné příčné průřezy kovových vlnovodů: obdélníkový, kruhový, vlnovod, vlnovod H.
7 Vlnovody Běžná vedení (koaxiální kabel, dvojlinka) jsou jen omezeně použitelná v mikovlnné části kmitočtového spekta. S ůstem kmitočtu přenášeného signálu totiž významně ostou ztáty v dielektiku těchto
6 Diferenciální operátory
- 84 - Difeenciální opeátoy 6 Difeenciální opeátoy 61 Skalání a vektoové pole (skalání pole) u u x x x Funkci 1 n definovanou v učité oblasti Skalání pole přiřazuje každému bodu oblasti učitou číselnou
3.2.2 Rovnice postupného vlnění
3.. Rovnice postupného vlnění Předpoklady: 310, 301 Chcee najít rovnici, která bude udávat výšku vlny v libovolné okažiku i libovolné bodě (v jedno okažiku je v různých ístech různá výška vlny). Veličiny
Řešení testu 2b. Fyzika I (Mechanika a molekulová fyzika) NOFY ledna 2016
Řešení testu b Fika I (Mecanika a molekulová fika NOFY. ledna 6 Příklad Zadání: Po kouli o poloměu se be pokluovaní valí malá koule o poloměu. Jaká bude úlová clost otáčení malé koule v okamžiku kd se
Přímková a rovinná soustava sil
STAVEBNÍ STATIKA Ing. Lenka Lausová LH 47/1 tel. 59 73 136 římková a ovinná soustava sil lenka.lausova@vsb.c http://fast1.vsb.c/lausova Základní pojmy: Jednotková kužnice 1) Souřadný systém 1 sin potilehlá
MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem
MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU udeme se zabývat výpočtem magnetického pole vytvořeného danou konfiguací elektických poudů (podobně jako učení elektického pole vytvořeného daným ozložením elektických
1. Dvě stejné malé kuličky o hmotnosti m, jež jsou souhlasně nabité nábojem Q, jsou 3
lektostatické pole Dvě stejné malé kuličk o hmotnosti m jež jsou souhlasně nabité nábojem jsou pověšen na tenkých nitích stejné délk v kapalině s hustotou 8 g/cm Vpočtěte jakou hustotu ρ musí mít mateiál
Geometrická optika. Aberace (vady) optických soustav
Geometická optika Abeace (vady) optických soustav abeace (vady) optických soustav jsou odchylky zobazení eálné optické soustavy od zobazení ideální optické soustavy v důsledku abeací není obazem bodu bod,
Gravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r
Newtonův avitační zákon: Gavitační pole ezi dvěa tělesy o hotnostech 1 a, kteé jsou od sebe vzdáleny o, působí stejně velké síly vzájené přitažlivosti, jejichž velikost je přío úěná součinu hotností 1
Dynamika mechanismů. dynamika mechanismů - metoda uvolňování, dynamika mechanismů - metoda redukce. asi 1,5 hodiny
Dynaika echanisů Dynaika I, 0. přednáška Obsah přednášky : dynaika echanisů - etoda uvolňování, dynaika echanisů - etoda edukce Doba studia : asi,5 hodiny Cíl přednášky : seznáit studenty se dvěa základníi
Elektrický náboj [q] - základní vlastnost částic z hlediska EM pole - kladný (nositel proton), záporný (nositel elektron) 19
34 Elektomagnetické pole statické, stacionání, nestacionání zásady řešení v jednoduchých geometických stuktuách, klasifikace postředí (lineaita, homogenita, dispeze, anizotopie). Vypacoval: Onda, otja@seznam.cz
Vnitřní energie Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková
Náze a adesa školy: Střední škola ůysloá a uěleká, Oaa, řísěkoá oganizae, Paskoa 399/8, Oaa, 7460 Náze oeačního ogau: OP zděláání o konkueneshonost, oblast odoy.5 Registační číslo ojektu: CZ..07/.5.00/34.09
Jaroslav Reichl. Střední průmyslová škola sdělovací techniky Panská 3 Praha 1
Střední půslová šola sdělovací techni Pansá Paha 1 Jaoslav Reichl, 017 učená studentů 4 očníu technicého lcea jao doplně e studiu apliované ateati Jaoslav Reichl Sbía úloh z apliované ateati, J Reichl,
Vibrace vícečásticových soustav v harmonické aproximaci. ( r)
Paktikum z počítačového modelování ve fyzice a chemii Úloha č. 5 Vibace vícečásticových soustav v hamonické apoximaci Úkol Po zadané potenciály nalezněte vibační fekvence soustavy několika částic diagonalizací
x 2(A), x y (A) y x (A), 2 f
II.10. Etrém funkcí Věta (nutná podmínka pro lokální etrém). Necht funkce f(, ) je diferencovatelná v bodě A. Má-li funkce f v bodě A lokální etrém, pak gradf(a) = 0. Onačme hlavní minor matice druhých
Základy elektrotechniky
Základy elektotechniky 8. přednáška Elektoagnetisus Elektoagnetisus Elektoagnetisus - agnetické účinky el. poudu Biot - Savatův zákon (zákon celkového poudu) Magnetická indukce Magnetický tok Apéův zákon
Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.
Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech
5. Elektromagnetické kmitání a vlnění
5. Elektomagnetické kmitání a vlnění 5.1 Oscilační obvod Altenáto vyábí střídavý poud o fekvenci 50 Hz. V paxi potřebujeme napětí ůzných fekvencí. Místo fekvence používáme pojem kmitočet. Různé fekvence
2 Šíření elektromagnetických vln
Šíření elektomagnetických vln 2 Šíření elektomagnetických vln V předchozí kapitole jsme si zopakovali základní teminologii elektomagnetismu a připomněli jsme si základní zákonitosti. Nyní si připomeneme
FYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Mechanická enegie Pof. RND. Vilém Mád, CSc. Pof. Ing. Libo Hlaváč, Ph.D. Doc. Ing. Iena Hlaváčová, Ph.D. Mg. At. Dagma Mádová Ostava
Kinematika tuhého tělesa
Kinematika tuhého tělesa Pet Šidlof TECHNICKÁ UNIVERZITA V LIERCI Fakulta mechatoniky, infomatiky a mezioboových studií Tento mateiál vznikl v ámci pojektu ESF CZ.1.07/2.2.00/07.0247 Reflexe požadavků
Vyzařovací(směrová) charakteristika F(θ,ϕ), výkonová směrová charakteristika F 2 (θ,ϕ), hustota vyzářeného výkonu S r
Vyzařovací(sěová chaakteistika F(θ,, výkonová sěová chaakteistika F (θ,, hustota vyzářeného výkonu konst hustota vyzářeného výkonu výkon co poje jenotkou pochy v ané ístě, je to stření honota oyntingova
Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém
Vysoká škola báňskb ská Technická univeita Ostava Stavební statika Cvičení 1 římková a ovinná soustava sil římková soustava sil ovinný svaek sil Statický moment síly k bodu a dvojice sil v ovině Obecná
1. kapitola. Vnitřní síly v průřezu prostorového prutu. Janek Faltýnek SI J (43) Teoretická část: Stavební mechanika 2.
1. kapitola Stavební echanika Janek Faltýnek SI J (43) Vnitřní síl v průřeu prostorového prutu eoretická část: ) erinologie ejdříve bcho si ěli říci co se rouí pod poje prut. Jako prut se onačuje konstrukční
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Radim Kusák. Katedra geofyziky
Univezita Kalova v Paze Mateaticko-fyzikální fakulta BAKALÁŘSKÁ PÁCE adi Kusák Přehled geofyziky: Geoagnetisus a geoelektřina Kateda geofyziky Vedoucí bakalářské páce: ND. Jakub Velíský, Ph.D. Studijní
3.2.2 Rovnice postupného vlnění
3.. Rovnice postupného vlnění Předpoklady: 310, 301 Chcee najít rovnici, která bude udávat výšku vlny v libovolné okažiku i libovolné bodě (v jedno okažiku je v různých ístech různá výška vlny). Veličiny
Řešení: Odmocninu lze vždy vyjádřit jako mocninu se zlomkovým exponentem. A pro práci s mocninami = = = 2 0 = 1.
Varianta A Př.. Zloek 3 3 je roven číslu: a), b) 3, c), d), e) žádná z předchozích odpovědí není Řešení: Odocninu lze vždy vyjádřit jako ocninu se zlokový exponente. A pro práci s ocninai již áe jednoduchá
Vybrané kapitoly z fyziky. Zdeněk Chval
Vybané kapitoly z fyziky Zdeněk Chval Kateda zdavotnické fyziky a biofyziky (KBF) Boeckého 7, č.dv. 49 tel. 389 037 6 e-mail: chval@jcu.cz Konzultační hodiny: čtvtek 5:00-6:30, příp. po dohodě Obsahové
DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ TUHÉ TĚLESO
DOPLŇKOÉ TXTY BB0 PAL SCHAUR INTRNÍ MATRIÁL FAST UT BRNĚ TUHÉ TĚLSO Tuhé těleso je těleso, o teé latí, že libovolná síla ůsobící na těleso nezůsobí jeho defoaci, ale ůže ít ouze ohybový účine. Libovolná
ε ε [ 8, N, 3, N ]
1. Vzdálenost mezi elektonem a potonem v atomu vodíku je přibližně 0,53.10-10 m. Jaká je velikost sil mezi uvedenými částicemi a) elektostatické b) gavitační Je-li gavitační konstanta G = 6,7.10-11 N.m
VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI DIFRAKČNÍCH JEVŮ V OPTICE
VÝUKOVÝ SOFTWRE RO NLÝZU VIZULIZCI DIFRKČNÍCH JEVŮ V OTICE J. Novák,. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v raze bstrakt Difrakcí se rozumí ty odchylky v chování elektromagnetického
B1. Výpočetní geometrie a počítačová grafika 9. Promítání., světlo.
B. Výpočetní geometie a počítačová gafika 9. Pomítání., světlo. Pomítání Převedení 3D objektu do 2D podoby je ealizováno pomítáním, při kteém dochází ke ztátě infomace. Pomítání (nebo též pojekce) je tedy
a polohovými vektory r k
Mechania hmotných soustav Hmotná soustava (HS) je supina objetů, o teých je vhodné uvažovat jao o celu Pvy HS se pohybují účinem sil N a) vnitřních: Σ ( F + F + L+ F ) 0 i 1 i1 b) vnějších: síly od objetů,
I. Statické elektrické pole ve vakuu
I. Statické elektické pole ve vakuu Osnova:. Náboj a jeho vlastnosti 2. Coulombův zákon 3. Intenzita elektostatického pole 4. Gaussova věta elektostatiky 5. Potenciál elektického pole 6. Pole vodiče ve
Příklady elektrostatických jevů - náboj
lektostatika Hlavní body Příklady elektostatických jevů. lektický náboj, elementání a jednotkový náboj Silové působení náboje - Coulombův zákon lektické pole a elektická intenzita, Páce v elektostatickém
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
F8 KEPLEOVY ZÁKONY Evopský sociální fond Paha & EU: Investujeme do vaší udoucnosti F8 KEPLEOVY ZÁKONY Kepleovy zákony po planetání pohy zfomuloval Johannes Keple (1571 1630) na základě měření Tychona Baheho
Praktikum I Mechanika a molekulová fyzika
Oddělení fzikálních praktik při Kabinetu výuk obecné fzik MFF UK Praktiku I Mechanika a olekulová fzika Úloha č. II Název: Studiu haronických kitů echanického oscilátoru Pracoval: Matáš Řehák stud.sk.:
U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Přenos tepla. Přehled základních rovnic
U8 - Ústav pocesní a zpacovatelské techniky FS ČVU v Paze I. Bilance vnitřní enegie Přenos tepla Přehled základních ovnic Fyzikální vlastnost P ρ ue u E vnitřní enegie Hustota toku IP q q - hustota tepelného
2.1 Shrnutí základních poznatků
.1 Shnutí základních poznatků S plnostěnnými otujícími kotouči se setkáváme hlavně u paních a spalovacích tubín a tubokompesoů. Matematický model otujících kotoučů můžeme s úspěchem využít např. i při
F n = F 1 n 1 + F 2 n 2 + F 3 n 3.
Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje
EEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité ozložení náboje Pete Doumashkin MIT 006, překlad: Jan Pacák (007) Obsah. SPOJITÉ OZOŽENÍ NÁBOJE.1 ÚKOY. AGOITMY PO ŘEŠENÍ POBÉMU ÚOHA 1: SPOJITÉ OZOŽENÍ
Kartézská soustava souřadnic
Katézská soustava souřadnic Pavotočivá Levotočivá jednotkové vekto ve směu souřadnicových os Katézská soustava souřadnic otonomální báze z,, z Katézská soustava souřadnic polohový (adius) vekto z,, z velikost
r j Elektrostatické pole Elektrický proud v látkách
Elektrostatiké pole Elektriký proud v látkáh Měděný vodiče o průřezu 6 protéká elektriký proud Vypočtěte střední ryhlost v pohybu volnýh elektronů ve vodiči jestliže předpokládáe že počet volnýh elektronů
MECHANIKA GRAVITA NÍ POLE Implementace ŠVP ivo Výstupy Klí ové pojmy Strategie rozvíjející klí ové kompetence I. Kompetence k u ení:
Pojekt Efektivní Učení Refoou oblastí gynaziálního vzdělávání je spolufinancován Evopský sociální fonde a státní ozpočte České epubliky. MECHANIKA GRAVITAČNÍ POLE Ipleentace ŠVP Učivo - Newtonův gavitační
3.1. Magnetické pole ve vakuu a v látkovém prostředí Elektromagnetická indukce Energie a silové účinky magnetického pole...
Obsah Předmluva... 4. Elektostatika.. Elektostatické pole ve vakuu... 5.. Elektostatické pole v dielektiku... 9.3. Kapacita. Kondenzáto....4. Enegie elektostatického pole... 6. Elektický poud.. Elektický
Měření koaxiálních kabelů a antén
Jihočeská Univezita v Českých Budějovicích Pedagogická fakulta Kateda fyziky Měření koaxiálních kabelů a antén BAKALÁŘSKÁ PRÁCE České Budějovice 2010 Vedoucí páce: Ing. Michal Šeý Auto: Zdeněk Zeman Anotace
Vznik a vlastnosti střídavých proudů
3. Střídavé proudy. Naučit se odvození vztahu pro okažitý a průěrný výkon střídavého proudu, znát fyzikální význa účiníku.. ět použít fázorový diagra na vysvětlení vztahu ezi napětí a proude u jednoduchých
Přijímací zkouška na MFF UK v Praze
Přijímací kouška na MFF UK v Prae Studijní program Matematika, bakalářské studium Studijní program Informatika, bakalářské studium 2013, varianta A U každé deseti úloh je nabíeno pět odpovědí: a, b, c,
#(, #- #(!!$!#$%!! [2], studiu difraktivních. #!$$&$.( &$/#$$ oblasti holografie a difraktivní!# '!% #!!$#!'0!!*#!(#!! #!!! $ % *! $! (!
. Úvod!"!!!#$%!!!&'!!#$%!!!& # vlnovým!!*!!#$*$! #!!&!!!$%!# #!!$ % '!!&!&!!#$!!!$!!!$ s #!!!*! '! $ #, #- #!!$!#$%!! [], studiu difraktivních #!$$&$. &$/#$$ oblasti holografie a difraktivní!# '!% #!!$#!'0!!*#!#!!
PŘÍKLAD VÝPOČTU RÁMU PODLE ČSN EN
PŘÍKLAD VÝPOČTU RÁU PODLE ČS E 99-- Jaub Dolejš*), Zdeně Sool**).Zadání avrhněte sloup plnostěnného dvouloubového rámu, jehož roměr jsou patrné obráu. Horní pásnice příčle je po celé délce ajištěna proti
1.5. Gravitační pole Newtonův gravitační zákon
.5. Gavitační pole Není třeba na úvod této kapitoly uvádět paktický příklad působení avitace na hotná tělesa. Každý jse již upadli, nebo ná něco spadlo na ze. Této pobleatiky jse se již dotkli v dynaice,
Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí
Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Rovinné vlny 1 Při diskusi o řadě jevů je výhodné vycházet z rovinných vln. Vlny musí splňovat Maxwellovy rovnice
X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)
.6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí
Nestacionární elektromagnetické pole
Nstacionání ltoagnticé pol NS-a Obcné vtah V NS-a Nstacionání ltoagnticé pol Obcné vtah Difnciální ovnic, tá popisu obcně chování ltoagnticého pol v libovolné postřdí, vcháí dvou áladních Mawllových ovnic.
Obr. 0.1: Nosník se spojitým zatížením.
Každý test obsahuje jeden příklad podobný níže uvedeným tpovým příkladům a několik otázek vbraných z níže uvedených testových otázek. Za příklad je možno získat maimálně bodů, celkový počet bodů z testu
3.7. Magnetické pole elektrického proudu
3.7. Magnetické pole elektického poudu 1. Znát Biotův-Savatův zákon a umět jej použít k výpočtu magnetické indukce v jednoduchých případech (okolí přímého vodiče, ve středu oblouku apod.).. Pochopit význam
ELEKTŘINA A MAGNETIZMUS
ELEKTŘIN MGNETIZMUS III Elektický potenciál Obsah 3 ELEKTRICKÝ POTENCIÁL 31 POTENCIÁL POTENCIÁLNÍ ENERGIE 3 ELEKTRICKÝ POTENCIÁL V HOMOGENNÍM POLI 4 33 ELEKTRICKÝ POTENCIÁL ZPŮSOENÝ ODOVÝMI NÁOJI 5 331
F5 JEDNODUCHÁ KONZERVATIVNÍ POLE
F5 JEDNODUCHÁ KONZERVATIVNÍ POLE Evopský sociální fond Paha & EU: Investujeme do vaší budoucnosti F5 JEDNODUCHÁ KONZERVATIVNÍ POLE Asi nejznámějším konzevativním polem je gavitační silové pole Ke gavitační
3.3 Soustavy sil a silových momentů. soustava sil a momentů = seskupení sil a momentů sil působících na těleso
3.3 Soustav s a sových oetů soustava s a oetů sesupeí s a oetů s působících a těeso váští případ: svae s (paps všech s soustav se potíají v jedo bodě) soustava ovoběžých s (paps všech s soustav jsou aváje
6.2.1 Zobrazení komplexních čísel v Gaussově rovině
6.. Zobraení komplexních čísel v Gaussově rovině Předpoklad: 605 Pedagogická ponámka: Stihnout obsah hodin je poměrně náročné. Při dostatku času je lepší dojít poue k příkladu 7 a btek hodin spojit s úvodem
Obecný rovinný pohyb. teorie současných pohybů, Coriolisovo zrychlení dynamika obecného rovinného pohybu,
Obecný oinný pohyb ynik, 7. přednášk Obsh přednášky : teoie součsných pohybů, Coiolisoo zychlení dynik obecného oinného pohybu, ob studi : si 1,5 hodiny Cíl přednášky : seznáit studenty se zákldy teoie
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY SNÍMAČ S VNESENOU IMPEDANCÍ EDDY CURRENT SENSOR DIPLOMOVÁ PRÁCE MASTER S THESIS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION
příklad 16 - Draft verze pajcu VUT FAST KDK Pešek 2016
příklad - Drat vere pajcu VUT FAST KDK Pešek 0 VZPĚR SOŽEÉHO PRUTU A KŘÍŽOVÉHO PRUTU ZE DVOU ÚHEÍKŮ Vpočítejte návrhovou vpěrnou únosnost prutu délk 84 milimetrů kloubově uloženého na obou koncí pro všen
1 4( 1) Co je řešením rovnice 2y 1 = 3? Co je řešením, pokud přidáme rovnici x + y = 3? Napište
Řešená cvičení lineární algebr I Karel Král 10. října 2017 Tento tet není určen k šíření. Všechn chb v tomto tetu jsou samořejmě áměrné. Reportujte je prosím na adresu kralka@iuuk.mff.cuni... Obsah 1 Cviceni
VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ
VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro
Kinematika. Hmotný bod. Poloha bodu
Kinematika Pohyb objektů (kámen, automobil, střela) je samozřejmou součástí každodenního života. Pojem pohybu byl poto známý už ve staověku. Modení studium pohybu začalo v 16. století a je spojeno se jmény
KOMPLEXNÍ DVOJBRANY - PŘENOSOVÉ VLASTNOSTI
Koplexní dvobrany http://www.sweb.cz/oryst/elt/stranky/elt7.ht Page o 8 8. 6. 8 KOMPEXNÍ DVOJBNY - PŘENOSOVÉ VSTNOSTI Intergrační a derivační článek patří ezi koplexní dvobrany. Integrační článek á vlastnost
ŘÍZENÍ SOUSTAVY SE DVĚMI VSTUPY A JEDNÍM VÝSTUPEM TWO INPUTS ONE OUTPUT (TISO) PROCESS CONTROL
Ročník 3. Číslo 5. 8 ŘÍENÍ SOUSTAVY SE DVĚMI VSTUPY A EDNÍM VÝSTUPEM TWO INPUTS ONE OUTPUT (TISO) PROCESS CONTROL Daniel Honc Fantišek Dšek Anotace: Článek je věnován pobleatice řízení sostav se dvěi vstp
Hlavní body. Úvod do dynamiky. Dynamika translačních pohybů Dynamika rotačních pohybů
Mechanka dynaka Hlavní body Úvod do dynaky. Dynaka tanslačních pohybů Dynaka otačních pohybů Úvod do dynaky Mechanka by byla neúplná, kdyby se nezabývala, důvody poč se tělesa dávají do pohybu, zychlují,
Gravitační a elektrické pole
Gavitační a elektické pole Newtonův gavitační zákon Aistotelés (384-3 př. n. l.) předpokládal, že na tělesa působí síla směřující svisle dolů. Poto jsou těžké předměty (skály tvořící placatou Zemi) dole
Zobrazení kružnice v pravoúhlé axonometrii. osy, která je normálou roviny dané kružnice; délka hlavní poloosy je rovna poloměru
Geometie Zoazovací metody Zoazení kužnice v pavoúhlé axonometii Zoazení kužnice ležící v souřadnicové ovině Výklad v pavoúhlé axonometii lze poměně snadno sestojit půmět kužnice dané středem a poloměem,
Fyzikální korespondenční seminář UK MFF 22. II. S
Fzikální korespondenční seminář UK MFF http://fkosmffcunicz II S ročník, úloha II S Young a vlnová povaha světla (5 bodů; průměr,50; řešilo 6 studentů) a) Jaký tvar interferenčních proužků na stínítku
REALIZACE BAREVNÉHO KONTRASTU DEFEKTŮ V OPTICKÉ PROSTOVĚ-FREKVENČNÍ OBLASTI SPEKTRA
REALIZACE AREVNÉHO KONTRASTU DEFEKTŮ V OPTICKÉ PROSTOVĚFREKVENČNÍ OLASTI SPEKTRA. Úvod Antonín Mikš Jiří Novák Fakulta stavební ČVUT katedra fyziky Thákurova 7 66 9 Praha 6 V technické praxi se často vyskytuje
Konstrukční a technologické koncentrátory napětí
Obsah: 6 lekce Konstukční a technologické koncentátoy napětí 61 Úvod 6 Účinek lokálních konstukčních koncentací napětí 63 Vliv kuhového otvou na ozložení napjatosti v dlouhém tenkém pásu zatíženém tahem
Obecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast
Obecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast zdrojů pro harmonický časový průběh veličin Laplaceův
ZÁKLADY ROBOTIKY Transformace souřadnic
ÁKLD OOIK ansfomace souřadnic Ing. Josef Čenohoský, h.d. ECHNICKÁ UNIVEI V LIECI Fakulta mechatoniky, infomatiky a mezioboových studií ento mateiál vznikl v ámci pojektu ESF C..7/2.2./7.247, kteý je spolufinancován
SMR 1. Pavel Padevět
SMR Pavel Padevět Oganzace předmětu Přednášející Pavel Padevět, K 3, D 09 e-mal: pavel.padevet@fsv.cvut.cz Infomace k předmětu: https://mech.fsv.cvut.cz/student SMR Heslo: odné číslo bez lomítka (případně