Téma 11 Prostorová soustava sil

Rozměr: px
Začít zobrazení ze stránky:

Download "Téma 11 Prostorová soustava sil"

Transkript

1 Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra stavebí mechaky Fakulta stavebí, VŠB - Techcká uverzta Ostrava

2 Zadáí síly prostorového svazku sl Tř ebo více sl ( obecě ) působí v prostoru o společém působšt, paprsky sl eleží v téže rově. Síla u prostorového svazku sl je určea (působště je dáo): a) prostředctvím složek P x, P y, P z kladépř shodě jejch smyslů s kladým smysly souřadcových os b) kladou velkostí P a třem směrovým úhly α, β, γ (mez kladým polopaprskem síly a odpovídající kladou souřadcovou poloosou) Platí: a) b) c) d) α o 80 α β 90 + o α β 90 β Prostorový svazek sl o o 80 o β + γ 90 β γ o cos α + cos β + cos γ γ o 80 o α + γ 90 α γ o 90 Zadáí síly prostorového svazku, kvádr sl Obr. 3.. / str / 56

3 Pravdlo o kvádru sl V rově axom o rovoběžíku sl, v prostoru obdoba pravdlo o rovoběžostěu sl. Pokud jsou tř skládaé síly kolmé a rovoběžé se souřadcovým osam kvádr sl. Pravdlo o kvádru sl: Výsledce tří osových složek síly o společém působšt je jedozačě určea tělesovou úhlopříčkou kvádru sl. Platí: P P + P + 2 x 2 y P 2 z Px cosα P P cos β P y P Pz cosγ P x P.cosα Py P.cos β z P P.cosγ Prostorový svazek sl Zadáí síly prostorového svazku, kvádr sl Obr. 3.. / str / 56

4 Výsledce prostorového svazku sl Postup určeí výsledce prostorového svazku sl: a) určt (pokud eí zadáo) složky P x, P y, P z každé ze sl P P x P.cosα P y P.cos β z P b) vypočítat výsledce tří přímkových soustav sl v souřadcových osách y P y x P x P.cosγ z P z c) určt velkost výsledce prostorového svazku sl a její směrové kosy (úhly) P P + P + 2 x 2 y P 2 z Px cosα P d) za působště výsledce je považováo většou společé působště a svazku sl, může mít povahu volého vektoru Py cos β P Pz cosγ P Prostorový svazek sl 4 / 56

5 Příklad. Určeí výsledce prostorového svazku čtyř sl Zadáí sl P,P 2,P 3,P 4 : P [kn] α [ o ] β [ o ] γ [ o ] P x [kn] P y [kn] P z [kn] , ,000-6,000-20, , ,000 22,000 26,000 (a) (b) (c) (d) Prostorový svazek sl Zadáí příkladu. Obr / str / 56

6 Příklad. Tabulkový výpočet: cos α cos β cos γ P x [kn] P y [kn] P z [kn] 0,5299 0,3090 0, ,37,743 30, ,000-6,000-20, ,657-0,3090-0, ,705-3,906-32, ,000 22,000 26,000 Σ -2,58 3,837 3, ( 2,58) + ( 3,837) + ( 3,390) 5,556kN cosα 2,58 5,556 0,3884 α o 2,86 3,837 cos β 0,6905 5,556 β o 46,33 3,390 cos γ 0,60 5,556 Prostorový svazek sl γ o 52,40 Výsledek příkladu. Obr / str / 56

7 Podmíky rovováhy prostorového svazku sl ovováha prostorového svazku sl - výsledce je rova ule: 0 Platí v případě: x P x 0 y P y 0 z P z 0 Podmíky rovováhy prostorového svazku sl Prostorový svazek sl 7 / 56

8 Příklad.2 Určeí velkost tří sl P 5, P 6 a P 7, kterým se prostorový svazek sl z příkladu 3. doplí. Požadavek rovovážý stav. Zadáo: α [ o ] β [ o ] γ [ o ] cos α cos β cos γ ,8660 0,0000 0, ,0000 0,5000 0, ,5000-0,8660 0,0000 Prostorový svazek sl Výsledek příkladu. Obr / str. 26 Zadáí příkladu.2 Obr / str / 56

9 Příklad.2 Podmíky rovováhy prostorového svazku sl osa x : P cosα P.cosα + P.cosα x P x osa y : P5. cos β5 + P6.cos β6 + P7.cos β7 + y 0 P y 0 osa z : atcový záps P5. cosγ 5 + P6.cosγ 6 + P7.cosγ 7 + z 0 P z 0 cosα 5 cosα6 cosα P Obecě [ A ]{. x} { b} 7 5 x cos β5 cos β6 cos β7. P6 y cosγ 5 cosγ 6 cosγ 7 P7 z Podmíka: det[ A] 0 Číselé řešeí atce [A] 0,8660 0,0000 0,5000 0,0000 0,5000-0,8660 0,5000 0,8660 0,0000 Vektor {b} 2,58-3,837-3,390 Řešeí -vektor {x} kořey soustavy P 5 [kn],534 P 6 [kn] -4,80 P 7 [kn],659 záporá hodota, uto upravt směrové úhly Prostorový svazek sl 9 / 56

10 Kotrola: Příklad.2 P [kn] α [ o ] β [ o ] γ [ o ] P x [kn] P y [kn] P z [kn] , ,000-6,000-20, , ,000 22,000 26,000 5, , , cos α cos β cos γ P x [kn] P y [kn] P z [kn] 0,5299 0,3090 0, ,37,743 30, ,000-6,000-20, ,657-0,3090-0, ,705-3,906-32, ,000 22,000 26, ,8660 0,0000 0,5000,329 0,000 0, ,0000-0,5000-0,8660 0,000-2,400-4,57 7 0,5000-0,8660 0,0000 0,829 -,437 0,000 Prostorový svazek sl je v rovováze Σ 0,000 0,000 0,000 Prostorový svazek sl 0 / 56

11 Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl / 56

12 Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl 2 / 56

13 Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl 3 / 56

14 Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl 4 / 56

15 Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl 5 / 56

16 Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl 6 / 56

17 Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl 7 / 56

18 Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl 8 / 56

19 Ukázka využtí pozatků o prostorovém svazku sl Kocertí a předášková hala pro 500 ldí Sbelus Hall, Laht, Fsko, osá kostrukce vstupí haly z lepeého lamelového dřeva ve tvaru stromů, foto: Doc. Ig. Atoí Lokaj, Ph.D. Prostorový svazek sl 9 / 56

20 Ukázka využtí pozatků o prostorovém svazku sl Kocertí a předášková hala pro 500 ldí Sbelus Hall, Laht, Fsko, osá kostrukce vstupí haly z lepeého lamelového dřeva ve tvaru stromů, foto: Doc. Ig. Atoí Lokaj, Ph.D. Prostorový svazek sl 20 / 56

21 Ukázka využtí pozatků o prostorovém svazku sl Kocertí a předášková hala pro 500 ldí Sbelus Hall, Laht, Fsko, osá kostrukce vstupí haly z lepeého lamelového dřeva ve tvaru stromů, foto: Doc. Ig. Atoí Lokaj, Ph.D. Prostorový svazek sl 2 / 56

22 Ukázka využtí pozatků o prostorovém svazku sl Kocertí a předášková hala pro 500 ldí Sbelus Hall, Laht, Fsko, osá kostrukce vstupí haly z lepeého lamelového dřeva ve tvaru stromů, foto: Doc. Ig. Atoí Lokaj, Ph.D. Prostorový svazek sl 22 / 56

23 Ukázka využtí pozatků o prostorovém svazku sl Prostorový svazek sl Petříská rozhleda, Praha 23 / 56

24 Ukázka využtí pozatků o prostorovém svazku sl Prostorový svazek sl Petříská rozhleda, Praha 24 / 56

25 Ukázka využtí pozatků o prostorovém svazku sl Prostorový svazek sl Prostorová příhradová ocelová kostrukce plaveckého stadóu v Brě, autor osé kostrukce: Ig. Dr. Ferdad Lederer 25 / 56

26 Ukázka využtí pozatků o prostorovém svazku sl Prostorový svazek sl Prostorová příhradová ocelová kostrukce plaveckého stadóu v Brě, autor osé kostrukce: Ig. Dr. Ferdad Lederer 26 / 56

27 Ukázka využtí pozatků o prostorovém svazku sl Prostorový svazek sl Prostorová příhradová ocelová kostrukce plaveckého stadóu v Brě, autor osé kostrukce: Ig. Dr. Ferdad Lederer 27 / 56

28 Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová ocelová kostrukce zmího stadóu v Brě, deší zdevastovaý stav, autor osé kostrukce: Ig. Dr. Ferdad Lederer Prostorový svazek sl 28 / 56

29 Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová ocelová kostrukce zmího stadóu v Brě, deší zdevastovaý stav, autor osé kostrukce: Ig. Dr. Ferdad Lederer Prostorový svazek sl 29 / 56

30 Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová ocelová kostrukce zmího stadóu v Brě, deší zdevastovaý stav, autor osé kostrukce: Ig. Dr. Ferdad Lederer Prostorový svazek sl 30 / 56

31 Statcký momet síly k bodu v prostoru ova ρ proložea paprskem síly P a mometovým středem s, je lbovolě skloěa vůč souřadcovým osám. Pro statcký momet síly k bodu s v rově ρ platí pravdla pro rovou úlohu (poučky, zázorěí), kromě zamékové kovece (dvduálí pro každou úlohu). Platí: s P. p Začeí pomocí mometového vektoru, jehož paprsek o a paprsek síly tvoří pravoúhlé mmoběžé přímky. atematcký pops obtížý, vhodější pojem statckého mometu síly k ose o. Statcký momet síly a dvojce sl v prostoru Statcký momet síly k bodu v prostoru Obr / str / 56

32 Statcký momet síly k ose Statcký momet o síly P k ose o, kteráje kolmáa přtom mmoběžá vzhledem k paprsku síly, má absolutí hodotu dáu vzorcem: o P. p kde p je ejkratší délka příčky obou mmoběžých přímek. atematcký pops stále obtížý, proto se statcký momet určuje pomocí osových složek sl, vztažeých k souřadcovým osám. Úmluva prot-prot, vzdáleost p dáy souřadcem. Řešeí: P. z + P. y x y x y z z P. z P. x P. y + P. x z (každá složka síly vyvozuje statcký momet pouze ke dvěma osám, emá vlv a statcký momet k ose rovoběžé) Statcký momet síly a dvojce sl v prostoru x y Statcké momety osových složek síly k souřadcovým osám Obr / str / 56

33 Příklad.3 Zadáo: souřadce působště a, složky síly P x a P z Předmět výpočtu: statcké momety x, y a z k souřadcovým osám Řešeí: x Pz ( 30)(.,4 ) 42kNm. y + y 50. Px. z Pz. x (,8 ) ( 30).2,3 2kNm z (,4 ) 70kNm Px. y Statcký momet síly a dvojce sl v prostoru Zadáí příkladu.3 Obr / str / 56

34 Dvojce sl v prostoru Defováa stejě jako u rové úlohy. Působí však v rově ρ, která je k souřadcovým osám lbovolě akloěa. Statcký momet dvojce sl v prostoru: Platí: a) je stejý ke všem bodům vyšetřovaého tuhého tělesa (a) b) se ezměí, pootočí-l se dvojce sl v ρ ebo posue-l se rovoběžě s ρ P. p (b) c) Dvojc sl lze ahradt statckým mometem v působšt mometu dvojce sl d) grafcké zázorěí stejé jako u rové úlohy, volý mometový vektor e) pracuje se se statckým momety v rovách rovoběžým se souřadcovým rovam (uverzálí zaméková kovece) Statcký momet síly a dvojce sl v prostoru Dvojce sl v prostoru Obr / str / 56

35 Skládáí statckých mometů Soustavu dvojc sl (jejch statckých mometů) tvoří ěkolk ( obecě m ) dvojc sl se statckým momety j (j,, m). Působí-l dvojce sl v téže rově ebo rovách rovoběžých lze algebracky sčítat, jak uto skládat s využtím kvádru sl. Působeí v souřadcových rovách Výsledý mometový vektor: + + j 2 jx 2 jy 2 jz Sklo dá směrovým úhly: cos λ j jx jx j j cos μ.cos λ Statcký momet síly a dvojce sl v prostoru j j Opačá úloha rozklad: jy j.cos μ j jy j cosν jz j j jz.cosν j j Skládáí statckých mometů Obr / str / 56

36 Řešeí: ovoběžý posu síly v prostoru Společý úček síly F a statckého mometu lze vyjádřt rovoběžým posuutím síly F v rově ρ o vzdáleost d, aby ke svému původímu působšt vykazovala momet. d F Naopak: Je-l zadáa pouze síla F a v rově ρ se posue o vzdáleost d, uto přdat statcký momet opačého smyslu, ež jaký vyvozuje síla F po svém posuu k původímu působšt. Řešeí: F. d Příklad: Př posuu P x do počátku O (dvojí posuutí o z a y ) P. z Statcký momet síly a dvojce sl v prostoru y x P. y z x Statcké momety osových složek síly k souřadcovým osám Obr / str / 56

37 Příklad.4 Předmět výpočtu: statcké momety x, y a z k souřadcovým osám, vyvolaé rovoběžým posuem sl P x, P y a P z do počátku souřadcové soustavy (Příklad.3). Řešeí: x Pz. y +42kNm y z (a) Px z. z P. x 2kNm Px. y +70kNm (b) Zadáí příkladu.3 Obr / str. 30 Statcký momet síly a dvojce sl v prostoru Výsledek příkladu.4 Obr / str / 56

38 Obecá prostorová soustava sl Působí-l a těleso obecě sl P (,, ), jejchž růzá působště ebo paprsky eleží v téže rově. Součástí mohou být statcké momety dvojc sl (j,, m) v obecě růzých rovách. Zadáí sl: souřadce působště síly x a, y a, z a, velkost, směr a smysl stejě jako u prostorového svazku sl. Zadáí statckých mometů: obdobě jako síla, vz obr.3.8. Zadáí síly prostorového svazku Obr. 3.. / str. 25 Obecá prostorová soustava sl Skládáí statckých mometů Obr / str / 56

39 Postup: Výsledý úček obecé prostorové soustavy sl a) pro každou sílu P určt složky P x, P y, P z b) určt osové složky výsledce x, y, z x P x y P y z P z c) vypočítat velkost výsledce a její směrové úhly, působště v počátku x 2 y 2 z cosα x cos β y cosγ d) všechy složky sl P x, P y, P z přemístt do počátku O, určt statcké momety x, y a z, otáčející kolem souřadcových os (vz příklad 3.4) e) vypočítat algebracké součty pravoúhlých složek mometů, způsobeých přesuy sl x x y y z z z Obecá prostorová soustava sl 39 / 56

40 Postup: Výsledý úček obecé prostorové soustavy sl f) pro každý zadaý momet j vypočítat jeho složky jx, jy a jz v souřadcových rovách jx j.cos λ j jy j.cos μ j jz j.cosν j g) sečíst složky zadaých mometů s momety způsobeým přesuy sl a určt pravoúhlé složky výsledého statckého mometu m x jx + j x m y jy + j y m z jz + j z h) vypočítat (pomocí pravdla o kvádru sl) výsledý statcký momet a směrové úhly jeho vektorové úsečky x 2 y 2 z cos λ x cos μ y cosν z Obecá prostorová soustava sl 40 / 56

41 Výsledý úček obecé prostorové soustavy sl Výsledý úček obecé prostorové soustavy lze vyjádřt: a) šestcí objektů: třem složkam x, y, z slové výsledce a třem složkam x, y, z výsledého statckého mometu, ejčastější způsob b) dvěma objekty: výsledcí a výsledým statckým mometem, tzv. bvektor ebo dyama, používá se zřídkakdy pro obtížost matematckého zápsu c) tzv. šroubem, mometový vektor lze rozložt a složku ležící v paprsku a složku kolmou k, která se může ahradt rovoběžým posuem o vzdáleost d do cetrálí osy prostorové soustavy sl c, evyužívá se pro svou svízelost. Obecá prostorová soustava sl Bvektor Obr / str. 33 Šroub Obr. 3.. / str / 56

42 Příklad.5 Zadáo: síly P a P 2 P [kn] α [ o ] β [ o ] γ [ o ] cos α cos β cos γ P x [kn] P y [kn] P z [kn] ,754 0,4695 0,608 0,646 7,840 22,869 24,55 2 6,000-0,000-8,000 Σ 33,840 2,869 6,55 (a) (b) Obecá prostorová soustava sl Zadáí příkladu.5 Obr / str / 56

43 Příklad.5 Zadáo: statcký momet j j [knm] λ [ o ] μ [ o ] ν [ o ] cos α cos β cos γ jx [knm] jy [knm] jz [knm] ,707 0,707 0, ,426 42,426 0,000 (c) Obecá prostorová soustava sl Zadáí příkladu.5 Obr / str / 56

44 Příklad.5 Předmět výpočtu: výsledý úček obecé prostorové soustavy sl Postup výpočtu: a) Výpočet osových složek výsledce zadaých sl P [kn] α [ o ] β [ o ] γ [ o ] cos α cos β cos γ P x [kn] P y [kn] P z [kn] ,754 0,4695 0,608 0,646 7,840 22,869 24,55 2 6,000-0,000-8,000 Σ 33,840 2,869 6,55 b) Výpočet mometových složek způsobeých přeložeím sl x [m] y [m] z [m] x [knm] y [knm] z [knm] 2,8,4 0,8 6,076-54,470 39, ,6 -, 7,800 8,400 5,600 Σ 33,876-36,070 44,657 c) Výpočet složek zadaého mometu j j [knm] λ [ o ] μ [ o ] ν [ o ] cos α cos β cos γ jx [knm] jy [knm] jz [knm] ,707 0,707 0, ,426 42,426 0,000 Obecá prostorová soustava sl 44 / 56

45 Příklad.5 d) Výpočet složek výsledého mometu a vyjádřeí výsledého účku pomocí šestce objektů x [kn] y [kn] z [kn] x [knm] y [knm] z [knm] 33,840 2,869 6,55-8,55 6,356 44,657 Výsledý úček lze rověž pomocí bvektoru: x 2 y 2 z cosα x cos β y cosγ z x 2 y 2 z cos λ x cos μ Obecá prostorová soustava sl y cosν z Výsledek příkladu.5 Obr / str / 56

46 Podmíky rovováhy obecé prostorové soustavy sl Obecá prostorová soustava sl je v rovováze, je-l splěo 6 podmíek rovováhy, zajšťující ulovou hodotu výsledce (0) a ulovou hodotu výsledého statckého mometu ( 0). 3 slové podmíky x P x 0 y P y 0 z P z 0 3 mometové podmíky m x jx + x 0 y jy + y 0 z jz + z 0 j m j m j Obecá prostorová soustava sl 46 / 56

47 Příklad.6 Předmět výpočtu: Určeí velkost tří sl P, P 2 a P 3, a tří statckých mometů, 2 a 3, kterým se doplí soustava sl z příkladu.5. Požadavek rovovážý stav. Výsledý úček soustavy z příkladu.5 x [kn] y [kn] z [kn] x [knm] y [knm] z [knm] 33,840 2,869 6,55-8,55 6,356 44,657 Výsledek příkladu.5 Obr / str. 34 Obecá prostorová soustava sl Zadáí příkladu.6 Obr / str / 56

48 Příklad.6 Řešeí: uplatt jedotlvé podmíky rovováhy ve vhodém pořadí a) slová podmíka ve směru osy y: y + P 0 2 P 2 b) slová podmíka ve směru osy x: o x + P3.cos 60 0 P 3 c) slová podmíka ve směru osy z: o z + P + P3.cos 30 0 P Obecá prostorová soustava sl Zadáí příkladu.6 Obr / str / 56

49 Příklad.6 o d) mometová podmíka k ose x: x 3 + P3.cos30.3,3 0 3 e) mometová podmíka k ose y: f) mometová podmíka k ose z:. o y 2 P 2,8 P3.cos30.6, o z + P2 2,8 P3.cos60.3,3 0 Pozámka: záporé hodoty výsledků zameají, že skutečé smysly sl a mometů jsou opačé ež předpokládaé Obecá prostorová soustava sl Zadáí příkladu.6 Obr / str / 56

50 Prostorová soustava rovoběžých sl Jsou-l paprsky tří ebo více (obecě ) sl P (,, ) rovoběžé a eleží v téže rově. Pokud jsou síly svslé (rovoběžé se souřadcovou osou z), pak každá síla musí mít zadáo působště a (x a, y a, z a ), velkost a smysl (zamékem). Souřadce x a, y a jsou zároveň ramey svslých sl vůč vodorovým souřadcovým osám. Prostorová soustava rovoběžých sl Zadaá síla a výsledce prostorové soustavy rovoběžých sl Obr / str / 56

51 Výsledce prostorové soustavy rovoběžých sl Postup př určováí výsledého účku prostorové soustavy rovoběžých sl: a) vypočítat velkost výsledce b) určt polohu výsledce d pomocí Vargoovy věty y. x P. x x P y. P. x y x. y x. P. y P. y Výsledý úček lze vyjádřt: a) výsledcí v počátku a x, y b) výsledcí d a paprsku procházejícím bodem x, y (vz obrázek 3.4.) Prostorová soustava rovoběžých sl Zadaá síla a výsledce prostorové soustavy rovoběžých sl Obr / str / 56

52 Příklad.7 Předmět výpočtu: výsledý úček prostorové soustavy rovoběžých sl P až P 4 Tabulkové řešeí: P [kn] x [m] y [m] P. y [knm] - P. x [knm] 30 0,0 0, ,4 0, ,6, ,0, Σ 50 Σ Souřadce paprsku výsledce d : x y 226,507m 50 y x 84,227m 50 Prostorová soustava rovoběžých sl 52 / 56

53 Podmíky rovováhy prostorové soustavy rovoběžých sl Prostorová soustava rovoběžých sl je v rovováze, jsou-l splěy 3 podmíky rovováhy, zajšťující ulovou hodotu výsledce (0) a ulovou hodotu obou složek x, y výsledého statckého mometu k souřadcovým osám x, y. slová podmíka P 0 2 mometové podmíky x m P. y j 0 y m y P. x j 0 Prostorová soustava rovoběžých sl 53 / 56

54 Statcký střed v prostoru Předpoklad vyšetřovaá soustava rovoběžých sl v prostoru má eulovou hodotu výsledce ( 0) a síly P mají svá působště o souřadcích x, y, z. Vyšetřovaá soustava rovoběžých sl v prostoru se otáčí tak, že paprsky zůstávají stále rovoběžé, síly P kolem svých působšť, výsledce d kolem pevého bodu s statckého středu prostorové soustavy rovoběžých sl. Cíl řešeí určeí souřadc x s, y s, z s statckého středu. Velkost výsledce P souřadce s (z Vargoovy věty) x Prostorová soustava rovoběžých sl y z... P. x P. y P. z Statcký střed v prostoru Obr / str / 56

55 Příklad.8 Předmět výpočtu: souřadce statckého středu s prostorové soustavy rovoběžých sl P až P 4 Tabulkové řešeí: P [kn] x [m] y [m] z [m] P. x [knm] P. y [knm] P. z [knm] 20 0,8-0,6 0, ,6,2-0, ,0,8 -, , -,4, Σ 00 Σ Souřadce statckého středu: x y z. P. x. P. y. P. z ,62m 3,32m 2,30m Prostorová soustava rovoběžých sl 55 / 56

56 Okruhy problémů k ústí část zkoušky. Podmíky rovováhy prostorového svazku sl 2. Podmíky rovováhy obecé prostorové soustavy sl 3. Statcký střed prostorové soustavy rovoběžých sl Podklady ke zkoušce 56 / 56

Téma 2 Přímková a rovinná soustava sil

Téma 2 Přímková a rovinná soustava sil Stavebí statka,.ročík bakalářského studa Téma 2 Přímková a rová soustava sl Přímková soustava sl ový svazek sl Statcký momet síly k bodu a dvojce sl v rově Obecá rová soustava sl ová soustava rovoběžých

Více

Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228)

Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228) Stavebí statka - vyučující Dooručeá lteratura Ig. Vladmíra chalcová, h.d. Katedra stavebí mechaky (228) místost: LH 47/ tel.: (59 732) 348 e mal: vladmra.mchalcova@vsb.c www: htt://fast.vsb.c/mchalcova

Více

ZÁKLADY STAVEBNÍ MECHANIKY

ZÁKLADY STAVEBNÍ MECHANIKY VYSOKÉ UČENÍ TECHNICKÉ V BNĚ AKULTA STAVEBNÍ ING. JIŘÍ KYTÝ, CSc. ING. ZBYNĚK KEŠNE, CSc. ING. OSTISLAV ZÍDEK ING. ZBYNĚK VLK ZÁKLADY STAVEBNÍ ECHANIKY ODUL BD0-O SILOVÉ SOUSTAVY STUDIJNÍ OPOY PO STUDIJNÍ

Více

Předmět: SM 01 ROVINNÉ PŘÍHRADOVÉ KONSTRUKCE

Předmět: SM 01 ROVINNÉ PŘÍHRADOVÉ KONSTRUKCE Přdmět: SM 0 ROVIÉ PŘÍHRADOVÉ KOSTRUKCE doc. Ig. Michl POLÁK, CSc. Fkult stvbí, ČVUT v Prz ROVIÉ PŘÍHRADOVÉ KOSTRUKCE: KOSTRUKCE JE VYTVOŘEA Z PŘÍMÝCH PRUTŮ, PRUTY JSOU AVZÁJEM POSPOJOVÁY V BODECH STYČÍCÍCH,

Více

TĚŽIŠTĚ A STABILITA. Těžiště tělesa = bod, kterým stále prochází výslednice tíhových sil všech jeho hmotných bodů, ať těleso natáčíme jakkoli

TĚŽIŠTĚ A STABILITA. Těžiště tělesa = bod, kterým stále prochází výslednice tíhových sil všech jeho hmotných bodů, ať těleso natáčíme jakkoli SAIKA - těžště ĚŽIŠĚ A SABILIA ěžště tělesa bod, kterým stále prochází výsledce tíhových sl všech jeho hmotých bodů, ať těleso atáčíme jakkol bod, ke kterému astává rovováha mometů způsobeých tíhou jedotlvých

Více

Stavební statika. Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228) Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava

Stavební statika. Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228) Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava Stavebí statka,.ročík bakalářského studa Stavebí statka - ředášející Stavebí statka Ig. Vladmíra chalcová, h.d. Katedra stavebí mechaky (8) místost: LH 47/ tel.: (59 73) 348 Úvod do studa ředmětu a Stavebí

Více

7. Analytická geometrie

7. Analytická geometrie 7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp

Více

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC 5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém

Více

rovinná soustava sil (paprsky všech sil soustavy leží v jedné rovině) rovinný svazek sil rovinná soustava rovnoběžných sil

rovinná soustava sil (paprsky všech sil soustavy leží v jedné rovině) rovinný svazek sil rovinná soustava rovnoběžných sil 3.3 Obecé soustav sl soustava sl seskupeí sl působících a těleso vláští případ: svaek sl (papsk všech sl soustav se potíaí v edo bodě) soustava ovoběžých sl (papsk všech sl soustav sou aváe ovoběžé) ová

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

1.3. ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE

1.3. ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE V této kaptole se dozvíte: jak je oecě defováa kolmost (ortogoalta) vektorů; co rozumíme ortogoálí a ortoormálí ází; co jsou to tzv relace ortoormalty a Croeckerovo delta;

Více

Stavební mechanika 1 (K132SM01)

Stavební mechanika 1 (K132SM01) Stavebí mechaka (K32S) Předáší: doc. Ig. atěj Lepš, Ph.D. Kateda mechak K32 místost D234 koutace Čt 9:3-: e-ma: matej.eps@fsv.cvut.c http://mech.fsv.cvut.c/~eps/teachg/de.htm 4. Soustav s a statckých mometů

Více

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13). 37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým

Více

IV. MKP vynucené kmitání

IV. MKP vynucené kmitání Jří Máca - katedra mechaky - B35 - tel. 435 4500 maca@fsv.cvut.cz IV. MKP vyuceé kmtáí. Rovce vyuceého kmtáí. Modálí aalýza rozklad do vlastích tvarů 3. Přímá tegrace pohybových rovc 3. Metoda cetrálích

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Obecná soustava sil a momentů v prostoru

Obecná soustava sil a momentů v prostoru becá soustava sil a mometů v prostoru Zcela obecé atížeí silami a momet a těleso v prostoru (vede a 6 rovic) Saha o převráceí (akce) Specifické případ Vikla u obce Kadov, ~30 t Svaek sil paprsk všech sil

Více

Stabilita svahu Mechanika hornin a zemin - cvičení 05

Stabilita svahu Mechanika hornin a zemin - cvičení 05 Iovace studjího oboru eotechka reg. č. CZ..07/2.2.00/28.0009 Stablta svahu Mechaka hor a zem - cvčeí 05 Iovace studjího oboru eotechka reg. č. CZ..07/2.2.00/28.0009 Slové metody (metody mezí rovováhy)

Více

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v

Více

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě.

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě. 3. Hodoceí přesost měřeí a vytyčováí. Odchylky a tolerace ve výstavbě. 3.1 Úvod o měřeí obecě 3.2 Chyby měřeí a jejch děleí 3.2.1 Omyly a hrubé chyby 3.2.2 Systematcké chyby 3.2.3 Náhodé chyby 3.3 Výpočet

Více

Základní pojmy Přímková a rovinná soustava sil

Základní pojmy Přímková a rovinná soustava sil Stavební statka, 1.ročník bakalářského studa Základní pojmy římková a rovnná soustava sl Základní pojmy římková soustava sl ovnný svaek sl Statcký moment síly k bodu a dvojce sl v rovně Obecná rovnná soustava

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

1.7.4 Těžiště, rovnovážná poloha

1.7.4 Těžiště, rovnovážná poloha 74 ěžiště, rovovážá poloha Předpoklady: 00703 Př : Polož si sešit a jede prst tak, aby espadl Záleží a místě, pod kterým sešit podložíš? Proč? Musíme sešit podložit prstem přesě uprostřed, jiak spade Sešit

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

Generování dvojrozměrných rozdělení pomocí copulí

Generování dvojrozměrných rozdělení pomocí copulí Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta

Více

S k l á d á n í s i l

S k l á d á n í s i l S l á d á í s i l Ú o l : Všetřovat rovováhu tří sil, působících a tuhé těleso v jedom bodě. P o t ř e b : Viz sezam v desách u úloh a pracovím stole. Obecá část: Při sládáí soustav ěolia sil působících

Více

6. PŘEDNÁŠKA LETNÍ 2010

6. PŘEDNÁŠKA LETNÍ 2010 6. PŘEDNÁŠKA LETNÍ 00 Vsoká škola báňskb ská Techcká uverzta Ostrava Horcko-geologck geologcká fakulta Isttut geodéze a důld lího ěř ěřctví II Ig. Haa Staňková, Ph.D. 6. Určov ováí plošých obsahů Určov

Více

Střední průmyslová škola, Uherské Hradiště, Kollárova 617 MECHANIKA I M.H. 2003 MECHANIKA I STATIKA, PRUŽNOST A PEVNOST - 1 -

Střední průmyslová škola, Uherské Hradiště, Kollárova 617 MECHANIKA I M.H. 2003 MECHANIKA I STATIKA, PRUŽNOST A PEVNOST - 1 - Středí průmyslová škola, Uherské Hradště, Kollárova 67 MECHANIKA I M.H. 00 MECHANIKA I STATIKA, PRUŽNOST A PEVNOST Studjí obor (kód a ázev): -4-M/00 Strojíreství - - Středí průmyslová škola, Uherské Hradště,

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

Ing. Lenka Lausová Ing. Vladimíra Michalcová, Ph.D.

Ing. Lenka Lausová Ing. Vladimíra Michalcová, Ph.D. Stavebí statka,.oík bakaláského studa Stavebí statka - vyuující Ig. Leka Lausová Ig. Vladmía chalcová, h.d. Kateda stavebí mechaky (8) LH 45 Úvod do studa edmtu a Stavebí fakult VŠB-TU Ostava www: htt://fast.vsb.c/lausova

Více

Analytická geometrie

Analytická geometrie MATEMATICKÝ ÚSTAV Slezská uverzta Na Rybíčku, 746 0 Opava DENNÍ STUDIUM Aalytcká geometre Téma 3.: Aí zobrazeí Dece 3.. Zobrazeí aího prostoru A do aího prostoru A se azývá aí zobrazeí, estlže má ásleduící

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

6. FUNKCE A POSLOUPNOSTI

6. FUNKCE A POSLOUPNOSTI 6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

P1: Úvod do experimentálních metod

P1: Úvod do experimentálních metod P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu

Více

Analytická geometrie

Analytická geometrie MATEMATICKÝ ÚSTAV Slezská uverzt N Rybíčku, 746 0 Opv DENNÍ STUDIUM Alytcká geoetre Té 5.: Shodá zobrzeí Defce 5.. Zobrzeí f eukldovského prostoru E do eukldovského prostoru E se zývá shodé (zoetrcké),

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T BŘEZNA 08 :. břez 08 D : 0 P P P : 0 M. M. M. :,8 % S : 0 : 7,5 : -7,5 M. P : -,0 : 0,6 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90

Více

VY_52_INOVACE_J 05 01

VY_52_INOVACE_J 05 01 Název a adresa školy: Středí škola průmyslová a umělecká, Opava, příspěvková orgazace, Praskova 399/8, Opava, 74601 Název operačího programu: OP Vzděláváí pro kokureceschopost, oblast podpory 1.5 Regstračí

Více

3.3.3 Rovinná soustava sil a momentů sil

3.3.3 Rovinná soustava sil a momentů sil 3.3.3 Rová soustava s a oetů s Předpoady Všechy síy soustavy eží v edé rově. Všechy oety sou oé a tuto rovu. *) Souřadý systé voíe ta, že rova - e totožá s rovou s. y O *) Po.: Sový oet ůžee ahradt dvocí

Více

Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2

Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2 Iterpolace pomocí sple křvky dáo: bodů v rově úkol: alézt takovou křvku, která daým body prochází y f f 2 f 0 f x0 x... x 2 x x Iterpolace pomocí sple křvky evýhodou polyomálí terpolace změa ěkterého z

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realoaý a SPŠ Noé Město ad Metují s fačí podporou Operačím programu Vdělááí pro kokureceschopost Králoéhradeckého kraje Modul - Techcké předměty Ig. Ja Jemelík - fukčí soustay součástí, které slouží

Více

Doc. Ing. Dagmar Blatná, CSc.

Doc. Ing. Dagmar Blatná, CSc. PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj

Více

1.2. NORMA A SKALÁRNÍ SOUČIN

1.2. NORMA A SKALÁRNÍ SOUČIN 2 NORMA A SKALÁRNÍ SOUČIN V této kapitole se dozvíte: axiomatickou defiici ormy vektoru; co je to ormováí vektoru a jak vypadá Euklidovská orma; axiomatickou defiici skalárího (také vitřího) součiu vektorů;

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

Náhodné jevy, jevové pole, pravděpodobnost

Náhodné jevy, jevové pole, pravděpodobnost S Náhodé jevy pravděpodobost Náhodé jevy jevové pole pravděpodobost Lbor Žák S Náhodé jevy pravděpodobost Lbor Žák Základí pojmy Expermet česky též vědecký pokus je soubor jedáí a pozorováí jehož účelem

Více

FYZIKA I. Newtonovy pohybové zákony

FYZIKA I. Newtonovy pohybové zákony VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA AKULTA STROJNÍ YZIKA I Newtoovy pohybové zákoy Prof. RNDr. Vlé Mádr, CSc. Prof. Ig. Lbor Hlváč, Ph.D. Doc. Ig. Ire Hlváčová, Ph.D. Mgr. Art. Dgr Mádrová

Více

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika Přijímací řízeí akademický rok 0/0 c. studium Kompletí zěí testových otázek matematika Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá. Které číslo doplíte místo 8? 6 6 8 C. Které číslo

Více

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =

Více

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013. Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

3.3 Soustavy sil a silových momentů. soustava sil a momentů = seskupení sil a momentů sil působících na těleso

3.3 Soustavy sil a silových momentů. soustava sil a momentů = seskupení sil a momentů sil působících na těleso 3.3 Soustav s a sových oetů soustava s a oetů sesupeí s a oetů s působících a těeso váští případ: svae s (paps všech s soustav se potíají v jedo bodě) soustava ovoběžých s (paps všech s soustav jsou aváje

Více

obsah obsah... 5 Přehled veličin... 7

obsah obsah... 5 Přehled veličin... 7 Obsah 5 obsah obsah... 5 Přehled veliči... 7 Úvodem... 9 Předmluva... 10 1 Úvod do mechaiky... 11 1.1 ozděleí mechaiky... 11 1.2 Základí pojmy... 11 1.2.1 O pohybu a prostoru v mechaice... 11 1.2.2 Hmota...

Více

Pravděpodobnostní modely

Pravděpodobnostní modely Pravděpodobostí modely Meu: QCEpert Pravděpodobostí modely Modul hledá metodou maimálí věrohodosti (MLE Maimum Likelihood Estimate) statistický model (rozděleí) který ejlépe popisuje data. Je přitom k

Více

SMR 1. Pavel Padevět

SMR 1. Pavel Padevět SMR Pavel Padevět Oganzace předmětu Přednášející Pavel Padevět, K 3, D 09 e-mal: pavel.padevet@fsv.cvut.cz Infomace k předmětu: https://mech.fsv.cvut.cz/student SMR Heslo: odné číslo bez lomítka (případně

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

Lineární regrese ( ) 2

Lineární regrese ( ) 2 Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

Chyby měření: 1. hrubé chyby - nepozornost, omyl, únava pozorovatele... - významně převyšuje rozptyl náhodné chyby 2. systematické chyby - chybné

Chyby měření: 1. hrubé chyby - nepozornost, omyl, únava pozorovatele... - významně převyšuje rozptyl náhodné chyby 2. systematické chyby - chybné CHYBY MĚŘENÍ Opakovaé měřeí téže fyzkáí večy evede vždy k přesě stejým výsedkům. Této skutečost bychom se evyhu, kdybychom měřeí provádě s ejvětší důkadostí a precsostí aopak, čím ctvější a přesější jsou

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

Podmínky k získání zápočtu

Podmínky k získání zápočtu Podmínky k získání zápočtu 18 až 35 bodů 7 % aktivní účast, omluvená neúčast Odevzdání programů Testy: 8 nepovinných testů (-2 body nebo -3 body) 3 povinné testy s ohodnocením 5 bodů (povoleny 2 opravné

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzt Krlov v Prze Pedgogcká kult SEMINÁRNÍ PRÁCE Z POLYNOMICKÉ ALGEBRY POLYNOM / CIFRIK Zdáí: Vyšetřete všem probrým prostředky polyom Vyprcováí: Rcoálí kořey Podle věty: Nechť p Q je koře polyomu q

Více

Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení

Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení Přijímací řízeí akademický rok 0/0 Kompletí zěí testových otázek matematické myšleí Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá odpověď. Které číslo doplíte místo otazíku? 6 8 8 6?.

Více

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt

Více

[ jednotky ] Chyby měření

[ jednotky ] Chyby měření Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY LABORATORNÍ CVIČENÍ Z FYZIKY Jméo: Petr Česák Datum měřeí:.3.000 Studjí rok: 999-000, Ročík: Datum odevzdáí: 6.3.000 Studjí skupa: 5 Laboratorí skupa:

Více

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DA prof. Ig. Jří Holčík, CSc. INVESICE Isttut DO bostatstky ROZVOJE VZDĚLÁVÁNÍ a aalýz IV. LINEÁRNÍ KLASIFIKACE pokračováí Isttut bostatstky a aalýz (SUPPOR VECOR MACHINE SVM) SEPARABILNÍ

Více

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a) Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního. Ing. Michal Dorda, Ph.D. Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme

Více

Plochy počítačové grafiky

Plochy počítačové grafiky II Iterpolačí plochy Bezierovy pláty ad obdélíkovou a trojúhelíkovou sítí Recioálí Bezierovy pláty B-splie NURBS Kostrukce a zadáí plochy hraičí křivky sítí bodů Kiematicky vytvořeé křivky rotačí plochy

Více

Analytická geometrie

Analytická geometrie Alytická geometrie Vektory Prmetrické vyjádřeí přímky roviy Obecá rovice droviy Vektorový prostor Nechť jsou dáy ásledující mtemtické objekty: ) ) ) 4) Číselé těleso T. Neprázdá moži V. Zobrzeí Zobrzeí

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3 ročník bakalářského studa doc Ing Martn Kresa PhD Katedra stavební mechank Řešení pravoúhlých nosných stěn metodou sítí Statcké schéma nosné stěn q G υ (μ) h l d 3 wwwfastvsbcz

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 5

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 5 Fakula srojího ižeýrsví VUT v Brě Úsav kosruováí KONSTRUOVÁNÍ STROJŮ převody Předáška 5 Čelí soukolí se šikmými zuby hp://www.audiforum.l/ Moderaio is bes, ad o avoid all exremes. PLUTARCHOS Čelí soukolí

Více

Přednáška č. 2 náhodné veličiny

Přednáška č. 2 náhodné veličiny Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvaltěí výuky prostředctvím IC éma III..3 echcká měřeí v MS Excel Pracoví lst 5 Měřeí teploty. Ig. Jří Chobot VY_3_INOVACE_33_5 Aotace Iovace a zkvaltěí

Více

Matematika I A ukázkový test 1 pro 2018/2019

Matematika I A ukázkový test 1 pro 2018/2019 Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

Nosné stavební konstrukce Výpočet reakcí Výpočet vnitřních sil přímého nosníku

Nosné stavební konstrukce Výpočet reakcí Výpočet vnitřních sil přímého nosníku Stveí sttik.ročík klářského studi osá stveí kostruke osé stveí kostruke ýpočet rekí ýpočet vitříh sil přímého osíku osá stveí kostruke slouží k přeosu ztížeí ojektu do horiového msívu ěmž je ojekt zlože.

Více

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i : ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru

Více

2.4. INVERZNÍ MATICE

2.4. INVERZNÍ MATICE 24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:

Více

1. Číselné obory, dělitelnost, výrazy

1. Číselné obory, dělitelnost, výrazy 1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3]

Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3] 1 Parametricke vyjadreni primky Priklad 16 Priklad 17 Priklad 18 jestlize Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3] Urci,

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 8

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 8 akulta strojího ižeýrství VUT v Brě Ústav kostruováí KONSTRUOVÁNÍ STROJŮ převody Předáška 8 Šeková soukolí http://www.survivigworldsteam.com/ Kdo sleduje dějiy filosofie a přírodích věd, zjistí, že ejvětší

Více

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich

Více

Spolehlivost a diagnostika

Spolehlivost a diagnostika Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore

Více

14. B o d o v é o d h a d y p a r a m e t r ů

14. B o d o v é o d h a d y p a r a m e t r ů 4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž

Více

Cvičení 7 (Matematická teorie pružnosti)

Cvičení 7 (Matematická teorie pružnosti) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:

Více

USTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH

USTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH USTÁLENÉ POUDĚNÍ V OTEVŘENÝCH KOYTECH ovoměré prouděí Charakterstka:. Hloubka vod v kortě, průtočá plocha a průřezová rchlost jsou v každém příčém řezu kostatí.. Čára eerge, vodí hlada a do korta jsou

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava ENERGETIKA U ŘÍZENÝCH ELEKTRICKÝCH POHONŮ. 1.

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava ENERGETIKA U ŘÍZENÝCH ELEKTRICKÝCH POHONŮ. 1. Katedra obecé eletrotechiy Faulta eletrotechiy a iformatiy, VŠB - TU Ostrava EERGETIKA U ŘÍZEÝCH EEKTRICKÝCH POHOŮ Předmět : Rozvody eletricé eergie v dolech a lomech. Úvod: Světový tred z hledisa eletricé

Více

OVMT Přesnost měření a teorie chyb

OVMT Přesnost měření a teorie chyb Přesost měřeí a teorie chyb Základí pojmy Naměřeé údaje ejsou ikdy absolutě přesé, protože skutečé podmíky pro měřeí se odlišují od ideálích. Při každém měřeí vzikají odchylky od správých hodot chyby.

Více

Cílem kapitoly je zvládnutí řešení determinantů čtvercových matic.

Cílem kapitoly je zvládnutí řešení determinantů čtvercových matic. temtk I část I Determty mtc řádu Determty mtc řádu Cíle Cílem ktoly je zvládutí řešeí ermtů čtvercových mtc Defce Determtem (řádu ) čtvercové mtce řádu jejímž rvky j jsou reálá (oř komlexí) čísl zýváme

Více