Plochy počítačové grafiky
|
|
- Ondřej Bárta
- před 6 lety
- Počet zobrazení:
Transkript
1 II Iterpolačí plochy Bezierovy pláty ad obdélíkovou a trojúhelíkovou sítí Recioálí Bezierovy pláty B-splie NURBS Kostrukce a zadáí plochy hraičí křivky sítí bodů Kiematicky vytvořeé křivky rotačí plochy (vike rotací křivky okolo přímky) plochy vziklé skládáím pohybů posu, rotace Aalytický předpis ploch - parametrické, explicití, implicití vyjádřeí 1
2 Tezorový souči Jestliže B < b (u),b 1 (u), b m (u), > je báze vektorového prostoru polyomů proměé u st. ejvýše m, (oz. P m (u)) C < c (v),c 1 (v), c (v), > je báze vektorového prostoru polyomů proměé v st. ejvýše (oz. P (v)), pak { i ( ) j ( ); ; } B C b u c v i m j je báze vekt. prostoru polyomů dvou proměých u,v, stupě ejvýše m a,. oz: P m u, v P m u P v ( ) ( ) ( ) m m, P ( u, v) αijbi ( u) c j ( v) ; αij R j i Př: Taylorova báze {u i vj; i m, j } Bersteiovy polyomy {B im (u).b j (v); i m, j } B-splie baze {N im (u).n j (v); i m, j }
3 3
4 Příčé tečé vektory Směrové vektory teče v- křivky sestrojeé podél okrajové u-křivky. P ( u, v) P ( u, v) P ( v) ( u, v ) ; P1 ( v ) ( u 1, v ) ; u u Směrové vektory teče v- křivky sestrojeé podél okrajové u-křivky P ( u, v) P ( u, v) P ( u) ( u, v ) ; P1 ( u ) ( u, v 1 ) ; v v Bezierovy pláty ( ) ( ) ( ) ( ) (, 1,, ) (, m ( ) 1, m ( ), m ( )) X u, v B u, B u,, B u U B v, B v,, B v U.mapa plochy P P1 P m 1 11 P P P1 m U... P P 1 Pm B i,.bersteiovy polyomy Bi, u u 1 u i i ( ) ( ) i 4
5 BÉZIERŮV BIKUBICKÝ PLÁT B B m (, ) i, j (, ) i, j, [,1 ], [,1] X u v B u v P u v B B B B B u * v,3 1,3,3 i j u v B [ B ( u) B ( u) B ( u) B ( u) ] B B ( v) B ( v) B ( v) B ( v),3 1,3 U m,3 P P1 P m P P P... P P 1 Pm ( u) B,3( v) B,3( u) B1,3 ( v) B,3( u) B,3( v) B,3( u) B ( v) ( u) B ( ) ( ) ( ) ( ) ( ) ( ) ( ),3 v B1,3 u B1,3 v B1,3 u v B1,3 u B v ( u) B,3( v) B,3( u) B1,3 ( v) B,3( u) B,3( v) B,3( u) B ( v) ( u) B ( v) B ( u) B ( v) B ( u) B ( v) B ( u) B ( v),3 1,3,3,3 1,3,3 BÉZIERŮV BIKUBICKÝ PLÁT B B B u * v B B B B,3 1,3,3 ( u) B,3( v) B,3( u) B1,3 ( v) B,3( u) B,3( v) B,3 ( u) B ( v) ( u) B ( ) ( ) ( ) ( ) ( ) ( ) ( ),3 v B1,3 u B1,3 v B1,3 u v B1,3 u B v ( B,3( v) B,3( u) B1,3 ( v) B,3( u) B,3( v) B,3( u) B ( v) ( u) B ( v) B ( u) B ( v) B ( u) B ( v) B ( u) B ( v),3 1,3,3 u 5
6 BÉZIERŮV BIKUBICKÝ PLÁT BÉZIERŮV BIKUBICKÝ PLÁT Poloha vitřích vrcholů B. plátu emá vliv a tvar okrajových křivekk Okrajové křivky Bézierovy kubiky 6
7 Algoritmus de Casteljau po křivkk ivkách (, ) ( ) ( ) ( ) ( ) ( ) ( ) ij i jm jm ij i jm j j i j i j ( v ) m m m X u v P B u B v B v P B u B v u X u, je bod a Bezierově ploše ( ) ( ) ( ) je to bod a Bezierově křivce s řídícími body u, v, u, v, u, v 1 Plátováí C - pláty mají společý okraj, ale růzé příčé tečé vektory U P P1 P m P P P... P P 1 Pm m V P m 1 m P... Pm 1 m 1m 11 1m 7
8 Plátováí C 1 - pláty mají společý okraj i příčé tečé vektory podél společého okraje U P P m 1 P m P P P... P P1 m 1 Pm 1 1m 1 1m U P P... P m 1 m 1m 11 1m m 1 m P +, 1,1 i m i im P Plátováí C - pláty mají společý okraj, příčé tečé vektory podél společého okraje a společou křivost parametrických křivek U P P m 1 P m P P P... P P1 m 1 Pm 1 1m 1 1m U P P... P m 1 m 1m 11 1m m 1 m Pi, m 1 + i,1 Pim P + P ( ) i i, m i,1 i, m 1 8
9 Subdivisio Převod Bezierovy plochy a síťs Algoritmus de Casteljau opakováím subdivisio pro řádky i pro sloupce zadáme plochu pomocí 4 řídících polygoů 9
10 Převod Bezierovy plochy a trojúhel helíkovou síťs Naiví algoritmus vypočítáme body pro kostatí přírůstky parametrů plochy Zvýše eí stupě Bezierovy křivky ( α ) P P i αi i i i i αi i Př: Kvadratická Bezierova křivka je dáa body P, P 1, P. Zadejte tutéž parabolu pomocí 4 řídících bodů. 1 1 P ; 1 P + P1 ; P1 + P ; 3 P X( t ) ( 1 t) t ( 1 t) 1+ 3 t ( 1 t) + t 3 3 X( t ) P Pt + Pt + t P1 t P1+ t P X( t ) ( 1 t + t ) P + ( t + t) P1+ t P 1
11 Zvýše eí stupě Bezierova plátu Dáo (m+1)x(+1) bodů P ij (stupeň plochy (m,)) Zvýšeí a (m+1)x(+) bodů ij (stupeň plochy (m,+1)) ( 1 α ) α P + P i, j i, j i, j 1 i, j i, j j αi, j j U P P1 P P P P... Pm Pm 1 Pm U m m1 m+ 1 Trojúhelíková síť 11
12 Bezierův obdél líkový plát z Plocha st..m je dáa obdélíkovou sítí (+1)(m+1) bodů P ij y Bezierův trojúhel helíkový plát Plocha stupě i+j+k je dáa trojúhelíkovou sítí ½(+1)(+) bodů P ijk Ω [u,v ] x z Barycetrické souřadice u + v + w 1 u, v, w, Ω [u,v, w ] x y Bezierův trojúhelíkový plát Plocha je dáa trojúhelíkovou sítí ½(+1)(+) bodů stupeň plochy i+j+k P ijk Plát stupě 1 trojúhelík P 1, P 1, P 1 X ( u, v) P1 u ( P1 P1 ) v ( P1 P1 ) vp1 + ( 1 u v) P1 + up1 (,, ) + + ; X u v w up vp wp u v w
13 Bezierův trojúhel helíkový plát t st. X ( u, v, w) ( up + vp11 + wp11 ) u + ( ) ( ) up + vp + wp v + up + vp + wp w P u + P uv + P v + P uw + P vw + P w (,, ) (,, ) X u v w P B u v w i, j, k> i+ j+ k ijk ijk! B ijk ( u, v, w) u v w i! j! k! i j k P P P P P P 11 Bezierův trojúhelíkový plát 13
14 Bezierův trojúhelík-subdivisio 14
15 Racioálí Bezierova plocha Řídící body jsou zadáy v afiím prostoru vořeém do projektivího prostoru P 3. (,,,1) (,,, ) 3 X ( u v) ( x 1 x x3 x4 ) P x y z w x w y w z w ij ij ij ij ij ij ij ij ij ij ij Bezierova plocha v P,,,, x w x B ( u) B ( v) 1 j i x w y B ( u) B ( v) j i x w z B ( u) B ( v) 3 j i x w B ( u) B ( v) 4 m m m m j i ij ij i jm ij ij i jm ij ij i jm ij i jm (, ) P u v m j i m j i ( ) ( ) w P B u B v ij ij i jm ( ) ( ) w B u B v ij i jm 15
16 Kiematicky vytvořeé plochy Kružice jako kvadratický NURBS Oblouk - Bezierova kvadrika 1. Délka úseků a tečách musí být shodá. Vektor uzlových bodů [,,,1,1,1] w 1 w 1 w 3 Kružice kvadratický NURBS 1. Řídící vrcholy jsou tvořey vrcholy opsaého čtverce a středy stra w 4 1. Vektor uzlových bodů ,,,,,,,,,1,1, w 5 w 1 w 6 1 w w 1 w8 1 w 7 16
17 Válec jako Racioálí Bezierova plocha ¼ Rotačí válcové plochy. (, ) P u v m j i ( ) ( ) w P B u B v ij ij i jm j i m ( ) ( ) w B u B v ij i jm V r,, w 1 V1 [ r, r,] w1 V, r, w 1 V r,, v w V11 [ r, r, v] w11 V, r, v w r 1, v X ( u, v ) ( v 4 v ) ( 1 + v ) ( 4 v + 3 v ) v,, 4 v + 6 v + 4 v 6 v 4 v + 6 v + 4 v 6 v u Rotačí plocha Je dá meridiá plochy jako (Neracioálí) Bezierova křivka v roviě (x,z). Řídící body P i [x i,,z i ] w 1 w 1 w.77 w.77 w.77 V x,, z w 1 i i i i V1 i [ xi, xi, zi ] w1 i V, x, z w 1 i i i i w 1 w.77 17
18 Auloid jako Racioálí Bezierova plocha 1/16 Auloidu. w 1 w.77 w.77 w.5 V, R, r w 1 V1 [, R + r, r] w1 V, R + r, w 1 V1 [ R, R, r] w1 V R + r, R + r, r w w 1 w.77 w 1 w.77 [,,] V R + r R + r w 1 1 V R,, r w 1 V1 [ R + r,, r] w1 V R + r,, w 1 Racioálí Bezierův trojúhelík Je dáa trojúhelíková siť P ijk. Každý řídící bod má svou váhu w ijk (,, ) P u v w i+ j+ k wijk Pijk B ijk i, j, k i+ j+ k wijk B ijk i, j, k ( u, v, w) ( u, v, w) 18
19 BSplie BSplie Plocha je určea: řídící sítí (m+1)x(+1) bodů Stupěm k pro bázové polyomy parametru u Stupěm l pro bázové polyomy parametru v m i j Uzlovými vektory parametrizace pro parametry u a v. N i1 1 t ti, ti+ pro jide ( ) ( ) X ( u, v) P N u N v t t ij i, k j, l 1 i i+ k Nik ( t) Nik 1( t) + Ni+ 1, k 1( t) ti+ k 1 ti ti+ k ti+ 1 t t 19
20 Vlastosti BSplie Lokalita změ Podmíka kovexího obalu Afií ivariace Iterpolace okrajem hraičí křivky jsou B-splie křivky pro uzlové hodoty parametrů U (u... u k, u k+1,..., u m, u m+1... u m+k+1 ), V (v... v l, v l+1,..., v, v v +l+1 ) NURBS
21 Vlastosti NURBS Lokalita změ Změa polohy libovolého bodu Pij ebo jeho váhy změí tvar plochy pouze pro iterval (u i,u i+m+1 ) x (v j,v j++1 ) Podmíka kovexího obalu - Plocha leží v kovexím obalu sítěřídících bodů Projektiví ivariatost eí uté zobrazovat všechy body plochy, ale při projektivích trasformacích stačí zobrzit pouze řídící body Spojitost parametrická křivka X(u,v ) má C m-k spojité parciálí derivace v bodě odpovídajícím parametru u, je-li ásobost uzlu u rova k. NURBS De Boorův algoritmus 1
22 Vytažeí křivky jako NURBS Profilová NURBS křivka stupě k je dáa řídícími body P i, i. Je dá vektor posuutí a. PN i i, k ( u) i C( u) w N u Dva sloupce matice řídících bodů jsou dáy původími řídícími body a body posuutými ve směru vektoru a. i i i, k ( ) Pi Pi P P + a i1 i X ( u, v) 1 i j 1 i j ( ) ( ) w P N u N v i ij i, k j,1 ( ) ( ) w N u N v i i, k j,1 Přímkové plochy jako NURBS Jsou dáy dvě NURBS křivky Sjedotíme stupeň a uzlové vektory obou křivek. Křivky se osadí ovým uzlovým vektorem a sjedotí se tak, aby měly stejý počet řídicích bodů. Povrch se vytvoří za pomocířídicích bodů a uzlových vektorů obou křivek. Každá křivka se stává řádkem hodot v matici řídicích bodů.
Plochy počítačové grafiky II. Interpolační plochy Bezierovy pláty nad obdélníkovou a trojúhelníkovou sítí Recionální Bezierovy pláty B-spline NURBS
II Interpolační plochy Bezierovy pláty nad obdélníkovou a trojúhelníkovou sítí Recionální Bezierovy pláty B-spline NURBS Konstrukce a zadání plochy hraniční křivky sítí bodů Kinematicky vytvořené křivky
základním prvkem teorie křivek v počítačové grafice křivky polynomiální n
Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky
Matematika přehled vzorců pro maturanty (zpracoval T. Jánský) Úpravy výrazů. Binomická věta
Matematika přehled vzorců pro maturaty (zpracoval T. Jáský) Úpravy výrazů a r. a s = a r+s a r = ar s as a r s = a r.s a. b r = a r b r a b r = ar b r a. b a b = a b = a. b ( a) m = a m m a m. = a a k.
Plochy zadané okrajovými křivkami
Plochy zadané okrajovými křivkami Lineární plát plocha je určena dvěma okrajovými křivkami, pokud by pro tyto křivky byly intervaly, v nichž leží hodnoty parametru, různé, provedeme lineární transformaci
7. Analytická geometrie
7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp
1. Číselné obory, dělitelnost, výrazy
1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá
FERGUSONOVA KUBIKA. ( u) ( ) ( ) X s X s. Kubický spline C 2 má dva stupně volnosti Q 1 Q 2
FERGUSONOVA KUBIKA C F F F ( u) = Q F ( u) + Q F ( u) + Q F ( u) + Q F ( u), u F ( u) = u ( u) = u + ( u) = u u ( u) = u u u + u + u Q Q Q Q C napojení Fergusonových kubk Kubcký splne C má dva stupně volnost
DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce
DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem ukce, gra ukce De: Fukcí reálé proměé azýváme pravidlo, které každému reálému číslu D přiřazuje právě jedo reálé číslo y H Toto pravidlo začíme ejčastěji
Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).
37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým
I. TAYLORŮV POLYNOM. Taylorovy řady některých funkcí: Pro x R platí: sin(x) =
Taylorovy řady ěkterých fukcí: I. TAYLORŮV POLYNOM Pro R platí: si) = 2+ = ), cos) = 2 2+)! = ), 2)! e = =.! Pro, : log + ) = = ) Pro, ) a a R: + ) a = a ) =, kde ) a = a a ) a 2) a +).!. Nalezěte Taylorův
= + nazýváme tečnou ke grafu funkce f
D E R I V A C E F U N KCE Deiice. (derivace Buď ukce,!. Eistuje-li limitu derivací ukce v bodě a začíme ji (. lim ( + lim Deiice. (teča a ormála Přímku o rovici y ( v bodě, přímku o rovici y ( (, kde (
Bézierovy křivky Bohumír Bastl KMA/GPM Geometrické a počítačové modelování Bézierovy křivky GPM 1 / 26
Bézierovy křivky Bohumír Bastl (bastl@kma.zcu.cz) KMA/GPM Geometrické a počítačové modelování Bézierovy křivky GPM 1 / 26 Opakování Spline křivky opakování Bézierovy křivky GPM 2 / 26 Opakování Interpolace
Kristýna Bémová. 13. prosince 2007
Křivky v počítačové grafice Kristýna Bémová Univerzita Karlova v Praze 13. prosince 2007 Kristýna Bémová (MFF UK) Křivky v počítačové grafice 13. prosince 2007 1 / 36 Pojmy - křivky a jejich parametrické
Aproximační křivky. Trocha historie. geometrické modelování veliký pokrok v oblasti letectví 1944 Roy Liming
Trocha historie geometrické modelování veliký pokrok v oblasti letectví 944 Roy Liming analytik, North American Aviation (výrobce letadel) společně s konstruktérem a designérem Edgardem Schmuedem matematizace
Aproximační křivky. Trocha historie. geometrické modelování veliký pokrok v oblasti letectví 1944 Roy Liming
Trocha historie geometrické modelování veliký pokrok v oblasti letectví 944 Roy Liming analytik, North American Aviation (výrobce letadel) společně s konstruktérem a designérem Edgardem Schmuedem matematizace
POČÍTAČOVÁ GRAFIKA - PGR 2012037 2014 2015 PROGRAM PŘEDNÁŠEK. Po 9:00-10:30, KN:A-214
PROGRAM PŘEDNÁŠEK Po 9:00-10:30, KN:A-214 1P 16. 2. Křivky definice, analytické vyjádření. Bézierova křivka definice, vlastnosti, odvození Bernsteinových polynomů, de Castejlau algoritmus. 2P 23. 2. Spojitost
MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.
MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...
Komplexní čísla. Definice komplexních čísel
Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují
Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2
Iterpolace pomocí sple křvky dáo: bodů v rově úkol: alézt takovou křvku, která daým body prochází y f f 2 f 0 f x0 x... x 2 x x Iterpolace pomocí sple křvky evýhodou polyomálí terpolace změa ěkterého z
KMA/GPM Barycentrické souřadnice a
KMA/GPM Barycentrické souřadnice a trojúhelníkové pláty František Ježek jezek@kma.zcu.cz Katedra matematiky Západočeské univerzity v Plzni, 2008 19. dubna 2009 1 Trojúhelníkové pláty obecně 2 Barycentrické
OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN
Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,
Křivky a plochy technické praxe
Kapitola 7 Křivky a plochy technické praxe V technické praxi se setkáváme s tím, že potřebujeme křivky a plochy, které se dají libovolně upravovat a zároveň je jejich matematické vyjádření jednoduché.
Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1
Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky
Diferenciáln. lní geometrie ploch
Diferenciáln lní geometrie ploch Vjádřen ení ploch Eplicitní: z = f(,) ; [,] Ω z Implicitní: F(,,z)=0 + + z = r z = sin 0, π ; 0,1 Implicitní ploch bloob objects,, meta balls Izoploch: F(,,z)=konst. Implicitní
Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
MASARYKOVA UNIVERZITA FAKULTA INFORMATIKY MB202. Diferenciální a integrální počet B
MASARYKOVA UNIVERZITA FAKULTA INFORMATIKY Sbírka příkladů do cvičeí MB0 Difereciálí a itegrálí počet B jaro 08 Mgr. Jakub Juráek Obsah Polyomy, racioálí lomeé fukce, iterpolace Limity a spojitost fukce
5. Plochy v počítačové grafice. (Bézier, Coons)
5. PLOCHY V POČÍAČOVÉ GRAFICE Cíl Po prostudování této kapitoly budete umět popsat plochy používané v počítačové grafice řešit příklady z praxe, kdy jsou použity plochy Výklad Interpolační plochy - plochy,
12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson
STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,
5. Lineární diferenciální rovnice n-tého řádu
5 3.3.8 8:44 Josef Herdla lieárí difereciálí rovice -tého řádu 5. Lieárí difereciálí rovice -tého řádu (rovice s ostatími oeficiety) ( ), a,, a (5.) ( ) ( ) y a y a y ay q L[ y] y a y a y a y, q je spojitá
3. SB 3. SC. Kružnice nemá s úběžnicí žádný společný bod. Obraz nemá žádný nevlastní bod. Tímto obrazem je křivka zvaná elipsa.
Kružnice ve středové kolineaci v rovině. I AB o. IA ' 3. SB 4. B' SB IA'. II AC o. IIA ' 3. SC 4. C' SC IIA' Kružnice ve středové kolineaci v rovině Kružnice nemá s úběžnicí žádný společný bod. Obraz nemá
USTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH
USTÁLENÉ POUDĚNÍ V OTEVŘENÝCH KOYTECH ovoměré prouděí Charakterstka:. Hloubka vod v kortě, průtočá plocha a průřezová rchlost jsou v každém příčém řezu kostatí.. Čára eerge, vodí hlada a do korta jsou
Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika
Přijímací řízeí akademický rok 0/0 c. studium Kompletí zěí testových otázek matematika Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá. Které číslo doplíte místo 8? 6 6 8 C. Které číslo
Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení
Přijímací řízeí akademický rok 0/0 Kompletí zěí testových otázek matematické myšleí Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá odpověď. Které číslo doplíte místo otazíku? 6 8 8 6?.
Pracovní listy PRAVOÚHLÁ AXONOMETRIE
Techická uiverita v Liberci Fakulta řírodovědě-huaití a edagogická Katedra ateatik a didaktik ateatik PRVOÚHLÁ XONOMETRIE Petra Pirklová Liberec, lede 208 2. V ravoúhlé aooetrii obrate růět bodů [2; 5;
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2018
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T ÚNORA 08 :. úor 08 D : 96 P P P : 0 M. M. : 0 : 0 M. :,4 % S : -7,5 M. P : -,8 : 4,5 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90 miut
O Jensenově nerovnosti
O Jeseově erovosti Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikovaé matematiky, Fakulta elektrotechiky a iformatiky, Vysoká škola báňská Techická uiverzita Ostrava Ostrava, 28.1. 2019 (ŠKOMAM 2019)
Geometrické modelování. Diferenciáln
Geomerické modelováí Difereciál lí geomerie křivekk Křivky v očía ačové grafice Geomerická ierreace Každý krok algorimu má svůj geomerický výzam Flexibilia korola ad růběhem křivky, možos iuiiví ediace
Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice
Matematika I Název studijího programu RNDr. Jaroslav Krieg 2014 České Budějovice 1 Teto učebí materiál vzikl v rámci projektu "Itegrace a podpora studetů se specifickými vzdělávacími potřebami a Vysoké
IAJCE Přednáška č. 12
Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích
11. přednáška 16. prosince Úvod do komplexní analýzy.
11. předáška 16. prosice 009 Úvod do komplexí aalýzy. Tři závěrečé předášky předmětu Matematická aalýza III (NMAI056) jsou věováy úvodu do komplexí aalýzy. Což je adeseá formulace eboť časový rozsah ám
1.7.4 Těžiště, rovnovážná poloha
74 ěžiště, rovovážá poloha Předpoklady: 00703 Př : Polož si sešit a jede prst tak, aby espadl Záleží a místě, pod kterým sešit podložíš? Proč? Musíme sešit podložit prstem přesě uprostřed, jiak spade Sešit
I. TAYLORŮV POLYNOM ( 1
I. TAYLORŮV POLYNOM Připomeňme si defiice elemetárích fukcí: a si( = 2+ = ( (2+! b cos( = 2 = ( (2! c e = =!. Dokažte, že Taylorův polyom k-tého řádu v bodě pro fukce f je rove polyomu P : (tyto výsledky
Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus
Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T BŘEZNA 08 :. břez 08 D : 0 P P P : 0 M. M. M. :,8 % S : 0 : 7,5 : -7,5 M. P : -,0 : 0,6 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90
OBRAZOVÁ ANALÝZA POVRCHU POTISKOVANÝCH MATERIÁLŮ A POTIŠTĚNÝCH PLOCH
OBRAZOVÁ ANALÝZA POVRCU POTISKOVANÝC MATERIÁLŮ A POTIŠTĚNÝC PLOC Zmeškal Oldřich, Marti Julíe Tomáš Bžatek Ústav fyzikálí a spotřebí chemie, Fakulta chemická, Vysoké učeí techické v Brě, Purkyňova 8, 62
Pravděpodobnostní modely
Pravděpodobostí modely Meu: QCEpert Pravděpodobostí modely Modul hledá metodou maimálí věrohodosti (MLE Maimum Likelihood Estimate) statistický model (rozděleí) který ejlépe popisuje data. Je přitom k
Základní vlastnosti ploch
plocha zpravidla se definuje jako výsledek spojitého pohybu jisté tvořící křivky podél zadané trajektorie lze obohatit o možnost spojitých změn tvaru tvořící křivky x v průběhu pohybu podél trajektorie
6. FUNKCE A POSLOUPNOSTI
6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat
n-rozměrné normální rozdělení pravděpodobnosti
-rozměré ormálí rozděleí pravděpodobosti. Ortogoálí a pozitivě defiití symetrické matice. Reálá čtvercová matice =Ha i j L řádu se azývá ortogoálí, je-li regulárí a iverzí matice - je rova traspoovaé matici
Pružnost a pevnost. 9. přednáška, 11. prosince 2018
Pružost a pevost 9. předáška, 11. prosice 2018 1) Krouceí prutu s kruhovým průřezem 2) Volé krouceí prutu s průřezem a) masivím b) otevřeým tekostěým c) uzavřeým tekostěým 3) Ohybové (vázaé) krouceí Rovoměré
Kapitola 5 - Matice (nad tělesem)
Kapitola 5 - Matice (ad tělesem) 5.. Defiice matice 5... DEFINICE Nechť T je těleso, m, N. Maticí typu m, ad tělesem T rozumíme zobrazeí možiy {, 2,, m} {, 2,, } do T. 5..2. OZNAČENÍ Možiu všech matic
15. listopadu Matematický ústav UK Matematicko-fyzikální fakulta. Hermitovská interpolace
Geometrické modelování Zbyněk Šír Matematický ústav UK Matematicko-fyzikální fakulta Hermitovská interpolace 15. listopadu 2017 Zbyněk Šír (MÚ UK) - Geometrické modelování 15. listopadu 2017 1 / 23 Hermiteovská
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;
S polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické
5 Itegrace racioálích fukcí 5 Itegrace racioálích fukcí Průvodce studiem V předcházejících kapitolách jsme se aučili počítat eurčité itegrály úpravou a základí itegrály, metodou per partes a substitučí
Předmět: SM 01 ROVINNÉ PŘÍHRADOVÉ KONSTRUKCE
Přdmět: SM 0 ROVIÉ PŘÍHRADOVÉ KOSTRUKCE doc. Ig. Michl POLÁK, CSc. Fkult stvbí, ČVUT v Prz ROVIÉ PŘÍHRADOVÉ KOSTRUKCE: KOSTRUKCE JE VYTVOŘEA Z PŘÍMÝCH PRUTŮ, PRUTY JSOU AVZÁJEM POSPOJOVÁY V BODECH STYČÍCÍCH,
Příklady k přednášce 12 - Frekvenční metody
Příklady k předášce 1 - Frekvečí metody Michael Šebek Automatické řízeí 018 8-3-18 Frekvečí charakteristika OL a mez stability CL Pro esoudělý OL přeos Ls () platí: 1) Je-li s C pól CL, pak 1 + Ls () =
Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti
Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti
p = 6. k k se nazývá inverze v permutaci [ ] MATA P7 Determinanty Motivační příklad: Řešte soustavu rovnic o dvou neznámých: Permutace z n prvků:
ATA P Determity otivčí příkld: Řešte soustvu rovic o dvou ezámých: x + x = b x + x = b Permutce z prvků: Je dá moži = {,,, }, kde N Kždá uspořádá -tice [ k, k, k ] vytvořeá z všech prvků možiy se zývá
Rekonstrukce ploch: Polygonální a analytická reprezentace Vybrané metody aproximace ploch
Rekonstrukce ploch: Polygonální a analytická reprezentace Vybrané metody aproximace ploch Petra Surynková Matematicko-fyzikální fakulta Univerzita Karlova v Praze petra.surynkova@mff.cuni.cz Přehled (1)
Přednáška 7: Soustavy lineárních rovnic
Předáška 7: Soustavy lieárích rovic 7.1. Příklad (geometrie v roviě) Rozhoděte o vzájemé poloze přímky p : x y 1 a přímky a) a : x y 3, b) b : 2x 2y 3, c) c :3x 3y 3. Jak víme ze středí školy, lze o vzájemé
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která
u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,
Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou
MATICOVÉ HRY MATICOVÝCH HER
MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem
Téma 2 Přímková a rovinná soustava sil
Stavebí statka,.ročík bakalářského studa Téma 2 Přímková a rová soustava sl Přímková soustava sl ový svazek sl Statcký momet síly k bodu a dvojce sl v rově Obecá rová soustava sl ová soustava rovoběžých
Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
3. Lineární diferenciální rovnice úvod do teorie
3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se
Důkazy Ackermannova vzorce
Důkazy Akermaova vzore Rady studetům: Důkaz je trohu zdlouhavý, ale přirozeý. Tak byste při odvozeí postupovali, kdybyste vzore předem ezali. Důkaz je krátký, ale je založe a triku, a který byste předem
Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková
Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují
23. Mechanické vlnění
3. Mechaické vlěí Mechaické vlěí je děj, při kterém částice pružého prostředí kmitají kolem svých rovovážých poloh a teto kmitavý pohyb se přeáší (postupuje) od jedé částice k druhé vlěí může vzikout pouze
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2019
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 09 T á D P č P č ů ú P ů ě S á :. úor 09 : 004 : 0 M. M. M. á : 9, % ě č M.. P ů ě ž ó : 0 ž ž ó : 0 ó : -7,5 ž ó : -,8 ó : 4,4 Zopkujte si zákldí iformce ke zkoušce: Test
Iterační metody řešení soustav lineárních rovnic
Iteračí metody řešeí soustav lieárích rovic Matice je: diagoálě domiatí právě tehdy, když pozitivě defiití (symetrická matice) právě tehdy, když pro x platí x, Ax a ij Tyto vlastosti budou důležité pro
Sekvenční logické obvody(lso)
Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách
Jana Dannhoferová Ústav informatiky, PEF MZLU
Počítačová grafika Křivky Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU Základní vlastnosti křivek křivka soustava parametrů nějaké rovnice, která je posléze generativně
NMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) =
NAF61, ZS 17 18 Zápočtová písemá práce VZOR 5. leda 18 Jedotlivé kroky při výpočtech stručě, ale co ejpřesěji odůvoděte. Pokud používáte ějaké tvrzeí, ezapomeňte ověřit splěí předpokladů. Jméo a příjmeí:
Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...
Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1
GEOMETRIE I. Pavel Burda
GEOMETRIE I Pavel Burda Obsah Úvod... 4 1. Vektorové prostory... 5. Vektorové prostory se skalárím ásobeím... 9. Afií prostory... 19 4. Afií přímka ( A 1 )... 5 5. Afií rovia (A )... 6 6. Afií prostor
( + ) ( ) ( ) ( ) ( ) Derivace elementárních funkcí II. Předpoklady: Př. 1: Urči derivaci funkce y = x ; n N.
.. Derivace elemetárích fukcí II Předpoklady: Př. : Urči derivaci fukce y ; N. Budeme postupovat stejě jako předtím dosazeím do vzorce: f ( + ) f ( ) f f ( + ) + + + +... + (biomická věta) + + +... + f
4.5.9 Vznik střídavého proudu
4.5.9 Vzik střídavého proudu Předpoklady: 4508 Miulá hodia: Pokud se v uzavřeém závitu měí magetický idukčí tok, idukuje se v ěm elektrické apětí =. Př. 1: Vodorově orietovaá smyčka se pohybuje rovoměrě
6. Posloupnosti a jejich limity, řady
Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme
Interpolace pomocí splajnu
Interpolace pomocí splajnu Interpolace pomocí splajnu Připomenutí U interpolace požadujeme, aby graf aproximující funkce procházel všemi uzlovými body. Interpolační polynom aproximující funkce je polynom
1.3. POLYNOMY. V této kapitole se dozvíte:
1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí
KŘIVKY A PLOCHY. Obrázky (popř. slajdy) převzaty od
KŘIVKY A PLOCHY JANA ŠTANCLOVÁ jana.stanclova@ruk.cuni.cz Obrázky (popř. slajdy) převzaty od RNDr. Josef Pelikán, CSc., KSVI MFF UK Obsah matematický popis křivek a ploch křivky v rovině implicitní tvar
Základní vlastnosti křivek
křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky
5 Křivkové a plošné integrály
- 7 - Křivkové a plošé itegrály 5 Křivkové a plošé itegrály 51 Křivky Pozámka V této kapitole se budeme zabývat obecými křivkami v Vždy však můžeme položit = 2 či = a přejít tak k speciálím případům roviy
1 Základy Z-transformace. pro aplikace v oblasti
Základy Z-trasformace pro aplikace v oblasti číslicového zpracováí sigálů Petr Pollák 9. říja 29 Základy Z-trasformace Teto stručý text slouží k připomeutí základích vlastostí Z-trasformace s jejími aplikacemi
Téma 11 Prostorová soustava sil
Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra
Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.
2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se
Vzorový příklad na rozhodování BPH_ZMAN
Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha
1 Uzavřená Gaussova rovina a její topologie
1 Uzavřeá Gaussova rovia a její topologie Podobě jako reálá čísla rozšiřujeme o dva body a, rozšiřujeme také možiu komplexích čísel. Nepřidáváme však dva body ýbrž je jede. Te budeme začit a budeme ho
Subdivision křivky a plochy
Subdivision křivky a plochy KMA/ITG Informační technologie ve vyučování geometrie + KMA/GM1 Geometrické modelování 1 Subdivision křivky a plochy ITG 1 / 46 Plochy volného tvaru opakování Plochy volného
9.1 Definice a rovnice kuželoseček
9. Kuželosečky a kvadriky 9.1 Definice a rovnice kuželoseček Kuželosečka - řez na kruhovém kuželi, množina bodů splňujících kvadratickou rovnici ve dvou proměnných. Elipsa parametricky: X(t) = (a cos t,
VŠB-TU OSTRAVA 2016/2017 KONSTRUKČNÍ CVIČENÍ. Teplovodní čerpadlo. Tomáš Blejchař
VŠB-TU OTRAVA 0607 KONTRUKČNÍ CVIČENÍ Teplovodí čerpadlo Tomáš Blejhař .Zadáí: Navrhěte a propočtěte jedostupňové odstředivé radiálí čerpadlo.tehiká data: Průtok Q = 600 dm 3 mi - = 0.0 m 3 s - Výtlačá
TĚŽIŠTĚ A STABILITA. Těžiště tělesa = bod, kterým stále prochází výslednice tíhových sil všech jeho hmotných bodů, ať těleso natáčíme jakkoli
SAIKA - těžště ĚŽIŠĚ A SABILIA ěžště tělesa bod, kterým stále prochází výsledce tíhových sl všech jeho hmotých bodů, ať těleso atáčíme jakkol bod, ke kterému astává rovováha mometů způsobeých tíhou jedotlvých
Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 8
akulta strojího ižeýrství VUT v Brě Ústav kostruováí KONSTRUOVÁNÍ STROJŮ převody Předáška 8 Šeková soukolí http://www.survivigworldsteam.com/ Kdo sleduje dějiy filosofie a přírodích věd, zjistí, že ejvětší
3. DIFERENCIÁLNÍ ROVNICE
3 DIFERENCIÁLNÍ ROVNICE Difereciálí rovice (dále je DR) jsou veli důležitou částí ateatické aalýz, protože uožňují řešit celou řadu úloh z fzik a techické prae Občejé difereciálí rovice: rovice, v íž se
17. Statistické hypotézy parametrické testy
7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé
Analýza a zpracování signálů. 3. Číselné řady, jejich vlastnosti a základní operace, náhodné signály
Aalýza a zpracováí sigálů 3. Číselé řady, jejich vlastosti a základí operace, áhodé sigály Diskrétí sigál fukce ezávislé proměé.!!! Pozor!!!! : sigáleí defiová mezi dvěma ásledujícími vzorky ( a eí tam
1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,
DSM2 Cv 7 Kostry grafů Defiice kostry grafu: Nechť G = V, E je souvislý graf. Kostrou grafu G azýváme každý jeho podgraf, který má stejou možiu vrcholů a je zároveň stromem. 1. Nakreslete všechy kostry
2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.
0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace