ANALÝZA VLIVU NUMERICKÉ APERTURY A ZVĚTŠENÍ NA HODNOTU ROZPTYLOVÉ FUNKCE BODU
|
|
- Zbyněk Vopička
- před 6 lety
- Počet zobrazení:
Transkript
1 ANALÝZA VLIVU NUMERICKÉ APERTURY A ZVĚTŠENÍ NA HODNOTU ROZPTYLOVÉ FUNKCE BODU A.Mikš, J.Novák, P. Novák katedra fyziky, Fakulta stavebí ČVUT v Praze Abstrakt Práce se zabývá aalýzou vlivu velikosti umerické apertury a příčého zvětšeí optické fyzikálě dokoalé soustavy a hodotu rozptylové fukce bodu. Je uvedea skalárí teorie určeí rozptylové fukce bodu pro zobrazeí osového bodu optickou soustavou s koečou umerickou aperturou. Úvod Rozptylová fukce bodu je základí charakteristikou zobrazovacích vlastostí optické soustavy. S í přímo souvisí problematika rozlišovací schoposti optické soustavy a problematika optické fukce přeosu. V optické literatuře [,,3,4] je problematika rozptylové fukce bodu uváděa je pro případy optických soustav s velmi malou umerickou aperturou. Tyto vztahy velmi dobře vyhovují pro velkou řadu optických soustav s kterými se v praxi setkáváme, eboť se právě jedá o optické soustavy (dalekohledy, fotografické objektivy apod.), jejichž umerická apertura bývá malá. Např. fotografický objektiv o cloovém čísle c=,4 má umerickou aperturu A=/c=0,36. Typickým reprezetatem optických soustav s velkou umerickou aperturou jsou mikroskopové objektivy. V čláku jsou uvedey aalytické vztahy umožňující provést výpočet rozptylové fukce bodu pro osový bod fyzikálě dokoalé optické soustavy s umerickou aperturou koečé hodoty a určitým příčým zvětšeím. Tyto vztahy přecházejí v limitím případě ekoečě malé umerické apertury v klasický vztah uváděý v optické literatuře a jsou tedy jeho zobecěím. Úkolem této práce je ukázat vliv umerické apertury a zvětšeí optické soustavy a její rozptylovou fukci bodu a to z hlediska skalárí teorie vlěí. Difrakčí itegrál Uvažujme skalárí vlové pole. Jak je zámo z teorie elektromagetického pole [-6], můžeme určit stav pole U(P) v libovolém bodě P oblasti omezeé plochou S, je-li zámo pole U(M) a této ploše ik r i e U ( P) = U ( M ) cos(, r) ds λ, () r S kde M je bod plochy S, r je vzdáleost bodu P(u,v,R) od bodu M(x,y,z), cos(,r) je kosius úhlu, který svírá ormála k ploše S se směrem r, k = π/λ je vlové číslo a λ je vlová délka zářeí v daém prostředí. Vypočítejme si yí itegrál () pro případ optické soustavy zatížeé aberacemi. Plocha S echť je vloplochou vystupující z optické soustavy. Bod M(x,y,z) echť je libovolý bod a vloploše S, dále pak echť P(x P,y P,z P ), ležící v obrazové roviě optické soustavy, je bod v kterém chceme určit stav pole a bod P o (x o,y o,z o ), také ležící v obrazové roviě optické soustavy, echť je středem kulové plochy (referečí plochy) o poloměru R. Jestliže bod P leží blízko středu plochy S, platí pro vzdáleost r bodu P od bodu M ásledující vztah xu + yv u + v r R +. R R Je-li plocha S dáa rovicí z = z(x,y), potom pro elemet ds této plochy platí [8]
2 Ozačíme-li ds z z = + dxdy = Ddxdy x + y. dostáváme Ozačíme-li dále p = x /R, q = y/r, D =. p q F( p, = U ( p, D exp( ik W ), o u s =, λ o v t =, λ o kde k o = π/λ o a λ o je vlová délka světla ve vakuu, potom uvedeý vztah () můžeme psát ve tvaru (cos(,r) ) U ( s, t) = C S F( p, e πi( ps+ qt) dpdq, () kde C je kostata. Vztah () ám tedy umožňuje určit stav pole (amplitudu pole) v obrazové roviě optické soustavy s koečou umerickou aperturou. Z tohoto vztahu je patro, že pole U(s,t) je úměré Fourierově trasformaci fukce F(p,. π π B B u P P u A A OS S S p p Obr.: Schéma pro výpočet rozptylové fukce bodu fyzikálě dokoalé optické soustavy
3 3 Rozptylová fukce bodu fyzikálě dokoalé optické soustavy Fyzikálě dokoalou optickou soustavou azýváme optickou soustavu, jejíž vlastosti jsou omezey pouze difrakcí světla. Takováto soustava je prosta aberací a vloplocha z í vystupující je tedy plocha kulová. Zkoumejme yí zobrazeí osového bodu. Vyšetřovaá situace je zázorěa a obr.. Osový bod A je optickou soustavou OS zobraze do bodu A, π a π jsou roviy vstupí a výstupí pupily optické soustavy. Body P a P jsou středy vstupí a výstupí pupily. S je vloplocha do optické soustavy vstupující a S je vloplocha z optické soustavy vystupující. Výzam ostatích symbolů je patrý z obrázku. Abychom určili amplitudu v obrazové roviě optické soustavy, musíme zát fukci F(p, utou pro výpočet itegrálu (). Je-li soustava fyzikálě dokoalá je vlová aberace W optické soustavy rova ule (W = 0) a fukce F(p, je dáa vztahem F ( p, = U ( p, D. Dále musíme určit fukci U(p, = U(x,y), což je amplituda a vloploše vystupující z optické soustavy. Ze zákoa zachováí eergie [3, 4] plye U ds U d = S, kde U je amplituda a vloploše S do optické soustavy vstupující a U = U(x,y) je ámi hledaá amplituda a vloploše S vystupující z optické soustavy, ds je elemet vloplochy S vstupující do optické soustavy a ds elemet vloplochy S vystupující z optické soustavy, a jsou idexy lomu předmětového a obrazového prostředí. Dosazeím do předcházejícího vztahu dostáváme, užitím Abbeho siové podmíky, pro výraz U D U D = U m P 4 ( si u ) / ( M si u ) / 4 kde m P je příčé zvětšeí optické soustavy v pupilách, m je příčé zvětšeí optické soustavy a M = m. Ozačíme-li T amplitudovou propustost optické soustavy, potom platí F T = T U D = U. (3) 4 ( ) / ( ) / 4 m P si u M si u Pomocí tohoto vztahu můžeme určit fukci F, potřebou pro výpočet amplitudy pole podle vztahu (3) a to pro případ zobrazeí osového bodu předmětu. Zavedeme-li ve výstupí pupile polárí souřadice r a ϕ a v obrazové roviě polárí souřadice ρ a ψ, potom můžeme vztah () psát ve tvaru π [ iτrcos( ϕ ψ) ] U ( r, ϕ)exp U ( ρ, ψ) = K r dr dϕ, (4) ( r si u ) / ( Mr si u ) max kde u max je aperturí úhel paprsku procházejícího okrajem výstupí pupily, K je kostata a τ je dáo vztahem τ = ρ si u = πρ λ c, k o max / 0 max / 4
4 kde c = / si u max je cloové číslo optické soustavy. Předpokládejme yí, že příčé zvětšeí v pupilách mp = a předmětové a obrazové prostředí je vzduch. Dále předpokládejme, že amplitudová propustost optické soustavy je rova jedé (ebo je kostatí). Za těchto předpokladů můžeme ve vztahu (4) položit U(r,ϕ) =. Pro malé aperturí úhly tj. pro u max 0 přechází vztah (4) v klasický vztah [,,3] uváděý v optické literatuře a sice J ( τ) U ( τ) =. (5) τ Vidíme tedy, že pro dostatečě přesý výpočet rozptylové fukce bodu optické soustavy mající velkou umerickou aperturu je uté použít vztah (4) a e klasický vztah (5) uváděý v literatuře. Rozptylovou fukci bodu poté lze vypočítat ze vztahu I = UU. (6) 4 Aalýza vlivu umerické apertury a zvětšeí a hodotu rozptylové fukce Na základě uvedeých vztahů (4) a (6) pro aalytický výpočet amplitudy a rozptylové fukce pro případ fyzikálě dokoalé optické soustavy s kruhovou vstupí pupilou a umerickou aperturou koečé hodoty je provedea počítačová simulace daého problému s užitím MATLABu. Je ukázáa závislost hodot rozptylové fukce bodu pro růzé velikosti umerické apertury a příčého zvětšeí fyzikálě dokoalé optické soustavy. Na obr. jsou zázorěy ormalizovaé rozptylové fukce bodu fyzikálě dokoalé optické soustavy pro 4 růzé hodoty umerické apertury. Prví křivka je pro případ ulové hodoty umerické apertury tj. křivka shodá s klasickou rozptylovou fukcí podle vztahu (5), další pak jsou pro růzé hodoty umerické apertury. Obr.: Rozptylová fukce bodu fyzikálě dokoalé optické soustavy Na obr.3 je poté ukázáa závislost prvího miima rozptylové fukce (poloměr Airyho disku) a hodotě umerické apertury NA optické soustavy. Z obrázku je patrý vliv hodoty umerické apertury optické soustavy a hodotu prvího miima rozptylové fukce bodu. Jak je vidět z obou
5 obrázků, klasický vztah (5) je dostatečě přesý pro optické soustavy s velikostí umerické apertury NA 0,5 tj. pro optické soustavy s cloovým číslem větším ež (tj. pro všechy fotografické objektivy). Pro optické systémy s hodotou umerické apertury větší ež 0,5 je vhodější použít obecý vztah (4) amísto klasického vztahu (5). Z obou obrázků je patré, že s rostoucí umerickou aperturou dochází ke zužováí prvího miima rozptylové fukce. Obr.3: Závislost hodoty prvího miima rozptylové fukce bodu a umerické apertuře Nyí budeme zkoumat závislost tvaru rozptylové fukce bodu a hodotě příčého zvětšeí optické soustavy. Na obr.4 je zobrazea tato závislost pro tři růzé hodoty zvětšeí a je porováa se vztahem pro malé umerické apertury. Obr.4: Rozptylová fukce bodu fyzikálě dokoalé optické soustavy (růzá zvětšeí)
6 Obr.5: Závislost hodoty prvího miima rozptylové fukce bodu a zvětšeí Na obr.5 je poté ukázáa závislost prvího miima rozptylové fukce (poloměr Airyho disku) a hodotě příčého zvětšeí m optické soustavy. Z obrázku je patrý vliv hodoty příčého zvětšeí optické soustavy a hodotu prvího miima rozptylové fukce bodu. Z obrázku je patré, že v závislosti a příčém zvětšeí dochází k zužováí i rozšiřováí prvího miima rozptylové fukce oproti klasickému vztahu (5). 5 Závěr V čláku bylo pojedáo o výpočtu rozptylové fukce bodu a základě skalárí teorie vlového pole. Byl odvoze vztah pro výpočet amplitudy vlového pole v obrazové roviě optické soustavy. Teto vztah platí i pro soustavy s velkou umerickou aperturou. Dále byl odvoze aalytický vztah pro výpočet amplitudy vlového pole při zobrazeí osového bodu fyzikálě dokoalou optickou soustavou s umerickou aperturou koečé hodoty a kostatí amplitudovou propustostí. Na základě tohoto vztahu bylo ukázáo že amplituda pole prvě abývá ulové hodoty v jiém bodě ež jak plye z klasické teorie. S problematikou rozptylové fukce bodu je úzce spjata problematika rozlišovací schoposti optických soustav. Z odvozeých vztahů je patro, že rozptylová fukce optické soustavy závisí a příčém zvětšeí a umerické apertuře optické soustavy. Na základě odvozeého vztahu pro výpočet rozptylové fukce bodu optických soustav s umerickou aperturou koečé hodoty byla provedea aalýza vlivu umerické apertury a příčého zvětšeí a hodotu ormalizovaé rozptylové fukce bodu. Oba zkoumaé parametry (umerická apertura a příčé zvětšeí) způsobují změy tvaru rozptylové fukce. Prví miimum difrakčího obrazce (tzv.airyho disk) se měí se změou hodoty umerické apertury a příčého zvětšeí. Zvyšováím umerické apertury dochází k zužováí Airyho disku. Práce byla podpořea v rámci projektu MSM Miisterstva školství ČR a gratu IGS CTU0500.
7 Literatura [] J.W.Goodma: Itroductio to Fourier Optics. McGraw-Hill, New York, 968. [] B.Havelka: Geometrická optika I. NČSAV, Praha, 955. [3] M.Bor, E.Wolf, Priciples of Optics. Oxford Uiversity Press, New York, 964. [4] M.V.Klei: Optics. Joh Wiley & Sos, Ic., New York, 970. [5] A.Mikš: Aplikovaá optika 0. Vydavatelství ČVUT, Praha 000. [6] L.Haňka: Teorie elektromagetického pole. SNTL, Praha, 975. [7] V.J.Arsei: Matematičeskaja fizika. Nauka, Moskva, 966. [8] K.Rektorys: Přehled užité matematiky. SNTL, Praha, 968. Prof.RNDr.Atoí Mikš,CSc., katedra fyziky, FSv ČVUT, Thákurova 7, 66 9 Praha 6. tel: , fax: , miks@fsv.cvut.cz Ig.Jiří Novák,PhD., katedra fyziky, FSv ČVUT, Thákurova 7, 66 9 Praha 6. tel: , fax: , ovakji@fsv.cvut.cz Ig.Pavel Novák, katedra fyziky, FSv ČVUT, Thákurova 7, 66 9 Praha 6. tel: , fax: , xovakp9@fsv.cvut.cz
UŽITÍ MATLABU V KOLORIMETRII. J.Novák, A.Mikš. Katedra fyziky, FSv ČVUT, Praha
UŽITÍ MATLABU V KOLORIMETRII J.Novák A.Mikš Katedra fyziky FSv ČVUT Praha Kolorimetrické metody jsou velmi často používáy jako diagostické metody v řadě oblastí vědy a techiky. V čláku jsou ukázáy příklady
23. Mechanické vlnění
3. Mechaické vlěí Mechaické vlěí je děj, při kterém částice pružého prostředí kmitají kolem svých rovovážých poloh a teto kmitavý pohyb se přeáší (postupuje) od jedé částice k druhé vlěí může vzikout pouze
Vliv komy na přesnost měření optických přístrojů. Antonín Mikš Katedra fyziky, FSv ČVUT, Praha
Vliv komy na přesnost měření optických přístrojů Antonín Mikš Katedra fyziky, FSv ČVUT, Praha V práci je vyšetřován vliv meridionální komy na přesnost měření optickými přístroji a to na základě difrakční
GRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components
Nové metody a postupy v oblasti přístrojové techiky, automatického řízeí a iformatiky Ústav přístrojové a řídicí techiky ČVUT v Praze, odbor přesé mechaiky a optiky Techická 4, 66 7 Praha 6 GRADIENTNÍ
Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).
37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým
Interference. 15. prosince 2014
Iterferece 15. prosice 014 1 Úvod 1.1 Jev iterferece Mějme dvě postupé vly ψ 1 z,t) = A 1 cosωt kz +ϕ 1 ) a ψ z,t) = A cosωt kz +ϕ ). Uvažujme yí jejich superpozici ψ = ψ 1 +ψ a podívejme se, jaká bude
STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6
Středoškolská techika 00 Setkáí a prezetace prací středoškolských studetů a ČVUT STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6 Pavel Husa Gymázium Jiřího z Poděbrad Studetská 66/II
VLIV ZMĚNY FÁZE VLNOVÉHO POLE NA ZMĚNU BARVY INTERFERENČNÍHO POLE V METODĚ POLARIZAČNÍ INTERFEROMETRIE
VLIV ZMĚNY FÁZE VLNOVÉHO POLE NA ZMĚNU BARVY INTERFERENČNÍHO POLE V METODĚ POLARIZAČNÍ INTERFEROMETRIE A.Mikš J.Novák katedra fyziky Fakulta stavebí ČVUT v Praze 1 Úvod Abstrakt Měřeí malých dráhových
3. Lineární diferenciální rovnice úvod do teorie
3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se
POČÍTAČOVÁ SIMULACE VLIVU CHYB PENTAGONÁLNÍHO HRANOLU NA PŘESNOST MĚŘENÍ V GEODÉZII. A.Mikš 1, V.Obr 2
POČÍTAČOVÁ SIMULACE VLIVU CHYB PENTAGONÁLNÍHO HRANOLU NA PŘESNOST MĚŘENÍ V GEODÉZII A.Mikš 1, V.Obr 1 Katedra fyziky, Fakulta stavební ČVUT, Praha Katedra vyšší geodézie, Fakulta stavební ČVUT, Praha Abstrakt:
Geometrická optika. Zákon odrazu a lomu světla
Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost
Geometrická optika. Vznikají tak dva paprsky odražený a lomený - které spolu s kolmicí v místě dopadu leží v jedné rovině a platí:
Geometrická optika Je auka o optickém zobrazováí. Byla vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým ejsou potřeba zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost
REALIZACE BAREVNÉHO KONTRASTU DEFEKTŮ V OPTICKÉ PROSTOVĚ-FREKVENČNÍ OBLASTI SPEKTRA
REALIZACE AREVNÉHO KONTRASTU DEFEKTŮ V OPTICKÉ PROSTOVĚFREKVENČNÍ OLASTI SPEKTRA. Úvod Antonín Mikš Jiří Novák Fakulta stavební ČVUT katedra fyziky Thákurova 7 66 9 Praha 6 V technické praxi se často vyskytuje
L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.
1 Základy Z-transformace. pro aplikace v oblasti
Základy Z-trasformace pro aplikace v oblasti číslicového zpracováí sigálů Petr Pollák 9. říja 29 Základy Z-trasformace Teto stručý text slouží k připomeutí základích vlastostí Z-trasformace s jejími aplikacemi
12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
6. Posloupnosti a jejich limity, řady
Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme
Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti
Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti
jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých
9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie
Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:
ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy
Matematika I, část II
1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího
Interakce světla s prostředím
Iterakce světla s prostředím světlo dopadající rozptyl absorpce světlo odražeé světlo prošlé prostředím ODRAZ A LOM The Light Fatastic, kap. 2 Light rays ad Huyges pricip, str. 31 Roviá vla E = E 0 cos
stručná osnova jarní semestr podzimní semestr
Brýlová optika stručá osova jarí semestr základy geometrické optiky pro brýlovou optiku Gullstradovo schématické oko, další modely, otoreceptory oka, vizus, optotypy myopie, hypermetropie, aakie a jejich
stručná osnova jarní semestr podzimní semestr
Brýlová optika stručá osova jarí semestr základy geometrické optiky pro brýlovou optiku Gullstradovo schématické oko, další modely, otoreceptory oka, vizus, optotypy myopie, hypermetropie, aakie a jejich
Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b
Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je + + + + ) + = = 0 + + Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a
4. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
#(, #- #(!!$!#$%!! [2], studiu difraktivních. #!$$&$.( &$/#$$ oblasti holografie a difraktivní!# '!% #!!$#!'0!!*#!(#!! #!!! $ % *! $! (!
. Úvod!"!!!#$%!!!&'!!#$%!!!& # vlnovým!!*!!#$*$! #!!&!!!$%!# #!!$ % '!!&!&!!#$!!!$!!!$ s #!!!*! '! $ #, #- #!!$!#$%!! [], studiu difraktivních #!$$&$. &$/#$$ oblasti holografie a difraktivní!# '!% #!!$#!'0!!*#!#!!
7. Analytická geometrie
7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp
Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací
3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací
P. Girg. 23. listopadu 2012
Řešeé úlohy z MS - díl prví P. Girg 2. listopadu 202 Výpočet ity poslouposti reálých čísel Věta. O algebře it kovergetích posloupostí.) Necht {a } a {b } jsou kovergetí poslouposti reálých čísel a echt
MATEMATICKÁ INDUKCE. 1. Princip matematické indukce
MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost
SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU
SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU Matematické modelováí (KMA/MM Téma: Model pohybu mraveců Zdeěk Hazal (A8N18P, zhazal@sezam.cz 8/9 Obor: FAV-AVIN-FIS 1. ÚVOD Model byl převzat z kihy Spojité modely v biologii
Středoškolská technika 2015 ŘEŠENÍ DOKONALÉHO TVARU MOSTNÍHO NOSNÍKU Z HLEDISKA POTENCIÁLNÍ ENERGIE - ŘETĚZOVKA
Středoškolská techika 05 Setkáí a prezetace prací středoškolských studetů a ČVUT ŘEŠENÍ DOKONALÉHO TVARU MOSTNÍHO NOSNÍKU Z HLEDISKA POTENCIÁLNÍ ENERGIE - ŘETĚZOVKA Duša Köig Středí průmyslová škola strojická
Komplexní čísla. Definice komplexních čísel
Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují
1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V
Předáška 1: Vektorové prostory Vektorový prostor Pro abstraktí defiici vektorového prostoru jsou podstaté vlastosti dvou operací, sčítáí vektorů a ásobeí vektoru (reálým číslem) Tyto dvě operace musí být
FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL
Difereciálí počet fukcí jedé reálé proměé - 6. - PRVNÍ DIFERENCIÁL TAYLORŮV ROZVOJ FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL PŘÍKLAD Pomocí věty o prvím difereciálu ukažte že platí přibližá rovost
je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že
2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT
2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic
Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat
Komplexí čísla Hoza Krejčí Abstrakt. Co jsou to komplexí čísla? K čemu se používají? Dá se s imi dělat ěco cool? Na tyto a další otázky se a předášce/v příspěvku pokusíme odpovědět. Proč vzikla komplexí
n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1
[M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti
n-rozměrné normální rozdělení pravděpodobnosti
-rozměré ormálí rozděleí pravděpodobosti. Ortogoálí a pozitivě defiití symetrické matice. Reálá čtvercová matice =Ha i j L řádu se azývá ortogoálí, je-li regulárí a iverzí matice - je rova traspoovaé matici
6. FUNKCE A POSLOUPNOSTI
6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat
ANALÝZA MĚŘENÍ TVARU VLNOPLOCHY V OPTICE POMOCÍ MATLABU
ANALÝZA MĚŘENÍ TVARU VLNOPLOCHY V OPTICE POMOCÍ MATLABU J. Novák, P. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán software pro počítačovou simulaci
6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.
6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola
NMAF063 Matematika pro fyziky III Zkoušková písemná práce 17. ledna 2019
Jméo: Příklad 2 3 Celkem bodů Bodů 0 8 2 30 Získáo 0 Uvažujte posloupost distribucí {f } + = D (R defiovaou jako f (x = ( δ x m, kde δ ( x m začí Diracovu distribuci v bodě m Najděte limitu f = lim + f
n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0
Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada
veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou
1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i
Pravděpodobnostní modely
Pravděpodobostí modely Meu: QCEpert Pravděpodobostí modely Modul hledá metodou maimálí věrohodosti (MLE Maimum Likelihood Estimate) statistický model (rozděleí) který ejlépe popisuje data. Je přitom k
DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce
DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem ukce, gra ukce De: Fukcí reálé proměé azýváme pravidlo, které každému reálému číslu D přiřazuje právě jedo reálé číslo y H Toto pravidlo začíme ejčastěji
je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost
Číselé řady Defiice (Posloupost částečých součtů číselé řady). Nechť (a ) =1 je číselá posloupost. Pro všecha položme s = ak. Posloupost ( s ) azýváme posloupost částečých součtů řady. Defiice (Součet
je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí
12 VZORKOVACÍ TEORÉM 1
2 VZORKOVACÍ TEORÉM 2 Vzorkovací teorém Půvab vzorkovacího teorému spočívá v tom že umožňu vyjádřit spojité fukce jistého typu hodotami těchto fukcí vzorky v určitých izolovaých bodech. Přitom ejde o ějakou
Odhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
GEOMETRIE I. Pavel Burda
GEOMETRIE I Pavel Burda Obsah Úvod... 4 1. Vektorové prostory... 5. Vektorové prostory se skalárím ásobeím... 9. Afií prostory... 19 4. Afií přímka ( A 1 )... 5 5. Afií rovia (A )... 6 6. Afií prostor
NMAF063 Matematika pro fyziky III Zkoušková písemná práce 25. ledna x 1 n
Jméo: Příklad 3 Celkem bodů Bodů 8 0 30 Získáo [8 Uvažujte posloupost distribucí f } D R defiovaou jako f [δ kde δ a začí Diracovu distribuci v bodě a Najděte itu δ 0 + δ + této poslouposti aeb spočtěte
EXPERIMENTÁLNÍ METODA URČENÍ ZÁKLADNÍCH PARAMETRŮ OBJEKTIVU ANALAKTICKÉHO DALEKOHLEDU. A.Mikš 1, V.Obr 2
EXPERIMENTÁLNÍ METODA URČENÍ ZÁKLADNÍCH PARAMETRŮ OBJEKTIVU ANALAKTICKÉHO DALEKOHLEDU A.Mikš, V.Obr Katedra fyziky, Fakulta stavební ČVUT, Praha Katedra vyšší geodézie, Fakulta stavební ČVUT, Praha Abstrakt:
SIMULACE METODY FÁZOVÉHO KONTRASTU V MATLABU. A.Mikš, J.Novák
SIMULACE METODY FÁZOVÉHO KONTRASTU V MATLABU A.Mikš, J.Novák Katedra fyziky, FSv ČVUT, Praha Je uvedena teorie metody fázového kontrastu, která našla široké uplatnění zejména v oblasti světelné mikroskopii
Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti
Úvod Opakováí Poslouposti Příklady Matematika 1 Ivaa Pultarová Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti
Spolehlivost a diagnostika
Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore
ŘADY Jiří Bouchala a Petr Vodstrčil
ŘADY Jiří Bouchala a Petr Vodstrčil Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 2. století (reg. č. CZ..07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská Techická
11. přednáška 16. prosince Úvod do komplexní analýzy.
11. předáška 16. prosice 009 Úvod do komplexí aalýzy. Tři závěrečé předášky předmětu Matematická aalýza III (NMAI056) jsou věováy úvodu do komplexí aalýzy. Což je adeseá formulace eboť časový rozsah ám
Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...
Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1
základním prvkem teorie křivek v počítačové grafice křivky polynomiální n
Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky
FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla
Disperze světla. Spektrálí barvy v = = f T v = F(f) růzé f růzá barva rychlost světla v prostředí závisí a f = disperze světla c = = F ( f ) idex lomu daého optického prostředí závisí a frekveci světla
Spojitost a limita funkcí jedné reálné proměnné
Spojitost a limita fukcí jedé reálé proměé Pozámka Vyšetřeí spojitosti fukce je možo podle defiice převést a výpočet limity V dalším se proto soustředíme je problém výpočtu limit Pozámka Limitu fukce v
odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.
10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé
Modelování jednostupňové extrakce. Grygar Vojtěch
Modelováí jedostupňové extrakce Grygar Vojtěch Soutěží práce 009 UTB ve Zlíě, Fakulta aplikovaé iformatiky, 009 OBSAH ÚVOD...3 1 MODELOVÁNÍ PRACÍCH PROCESŮ...4 1.1 TERMODYNAMIKA PRACÍHO PROCESU...4 1.
NMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) =
NAF61, ZS 17 18 Zápočtová písemá práce VZOR 5. leda 18 Jedotlivé kroky při výpočtech stručě, ale co ejpřesěji odůvoděte. Pokud používáte ějaké tvrzeí, ezapomeňte ověřit splěí předpokladů. Jméo a příjmeí:
Základní požadavky a pravidla měření
Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu
IAJCE Přednáška č. 12
Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích
5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC
5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém
8.2.1 Aritmetická posloupnost
8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž
OBRAZOVÁ ANALÝZA POVRCHU POTISKOVANÝCH MATERIÁLŮ A POTIŠTĚNÝCH PLOCH
OBRAZOVÁ ANALÝZA POVRCU POTISKOVANÝC MATERIÁLŮ A POTIŠTĚNÝC PLOC Zmeškal Oldřich, Marti Julíe Tomáš Bžatek Ústav fyzikálí a spotřebí chemie, Fakulta chemická, Vysoké učeí techické v Brě, Purkyňova 8, 62
Deskriptivní statistika 1
Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky
Užitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové:
Užitečé zdroje příkladů jsou: Materiály ke cvičeím z Kalkulu 3 od Kristýy Kucové: http://www.karli.mff.cui.cz/~kucova/historie8. php K posloupostem řad a fukcí Ilja Čerý: Iteligetí kalkulus. Olie zde:
= + nazýváme tečnou ke grafu funkce f
D E R I V A C E F U N KCE Deiice. (derivace Buď ukce,!. Eistuje-li limitu derivací ukce v bodě a začíme ji (. lim ( + lim Deiice. (teča a ormála Přímku o rovici y ( v bodě, přímku o rovici y ( (, kde (
Sekvenční logické obvody(lso)
Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách
procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze
limití Náhodé limití Katedra pravděpodobosti a matematické statistiky Uiverzita Karlova v Praze email: praskova@karli.mff.cui.cz 9.4.-22.4. 200 limití Outlie limití limití efiice: Řekeme, že stacioárí
Těžiště a moment setrvačnosti Nalezení práce polohy těžiště a momentu setrvačnosti vůči zadané ose u homogenních těles v třírozměrném prostoru.
Těžiště a momet setrvačosti Naleeí práce polohy těžiště a mometu setrvačosti vůči adaé ose u homogeích těles v tříroměrém prostoru. Př. 1 Najděte těžiště a momet setrvačosti kulové vrstvy vůči rotačí ose
11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel
KAPITOLA : Číselé řdy MA-8:P.] Ozčeí: R {, +} R R C {} C rozšířeá komplexí rovi evlstí hodot, číslo, bod U ε {x C x < ε } pro C, ε > 0 U K {x C x > K } pro K 0 defiujeme pro C: ±, je pro 0, edefiujeme:
14. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
8. Analýza rozptylu.
8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,
Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.
ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém
a logaritmickou funkci a goniometrické funkce. 6.1 Násobení řad. Podívejme se neprve na násobení mnohočlenů x = x x n a y = y y n.
Matematická aalýza II předášky M. Málka cvičeí A. Hakové a R. Otáhalové Semestr letí 2005 6. Nekoečé řady fukcí V šesté kapitole pokračujeme ve studiu ekoečých řad. Nejprve odvozujeme základí tvrzeí o
1 Uzavřená Gaussova rovina a její topologie
1 Uzavřeá Gaussova rovia a její topologie Podobě jako reálá čísla rozšiřujeme o dva body a, rozšiřujeme také možiu komplexích čísel. Nepřidáváme však dva body ýbrž je jede. Te budeme začit a budeme ho
Metodický postup pro určení úspor primární energie
Metodický postup pro určeí úspor primárí eergie Parí protitlaká turbía ORGRZ, a.s., DIVIZ PLNÉ CHNIKY A CHMI HUDCOVA 76, 657 97 BRNO, POŠ. PŘIHR. 97, BRNO 2 z.č. Obsah abulka hodot vstupujících do výpočtu...3
Diskrétní Fourierova transformace
Disrétí Fourierova trasformace Záladí idea trasformace x Trasformace Zpracováí v časové oblasti Zpracováí v trasform. oblasti x Iverzí Trasformace Spojitá Fourierova trasformace f j πft x t e dt Disrétí
Definice obecné mocniny
Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma
1. Číselné obory, dělitelnost, výrazy
1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;
Přednáška 7, 14. listopadu 2014
Předáška 7, 4. listopadu 204 Uvedeme bez důkazu klasické zobecěí Leibizova kritéria (v ěmž b = ( ) + ). Tvrzeí (Dirichletovo a Abelovo kritérium). Nechť (a ), (b ) R, přičemž a a 2 a 3 0. Pak platí, že.
WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 1. října 2019
Matematika II - Sbírka příkladů WikiSkriptum Ig. Radek Fučík, Ph.D. verze:. říja 9 Obsah Pokročilé techiky itegrace a zobecěý Riemaův itegrál. Racioálí fukce.................................... Pokročilé
Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.
Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího
Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Fukce RNDr. Yvetta Bartáková Gymázium, SOŠ a VOŠ Ledeč ad Sázavou Limita poslouposti a fukce VY INOVACE_0 9_M Gymázium, SOŠ a VOŠ Ledeč ad Sázavou A) Limita poslouposti Říkáme, že posloupost a je kovergetí,
1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu
1. Defiice elektrického pohou Pod pojmem elektrický poho rozumíme soubor elektromechaických vazeb a vztahů mezi pracovím mechaismem a elektromechaickou soustavou. Mezi základí tři části elektrického pohou
MATICOVÉ HRY MATICOVÝCH HER
MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem
Jednotkou tepla je jednotka energie, tj. 1 Joule (J). Z definice dále plyne, že jednotkou tepelného toku je 1 J/s ( neboli 1 W )
5. Sdíleí tepla. pomy: Pomem tepelá eergie ozačueme eergii mikroskopického pohybu částic (traslačího, rotačího, vibračího). Měřitelou mírou této eergie e teplota. Teplo e část vitří eergie, která samovolě
8.2.1 Aritmetická posloupnost I
8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu
1.2. NORMA A SKALÁRNÍ SOUČIN
2 NORMA A SKALÁRNÍ SOUČIN V této kapitole se dozvíte: axiomatickou defiici ormy vektoru; co je to ormováí vektoru a jak vypadá Euklidovská orma; axiomatickou defiici skalárího (také vitřího) součiu vektorů;