ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika BA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

Rozměr: px
Začít zobrazení ze stránky:

Download "ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika BA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík"

Transkript

1 Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika BA0 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 005

2 () Určete rovnici kručnice o poloměru r, procházející počátkem, jestliže S[3; ]. [ ( 3) + (y ) = 3 ] () Znázorněte parabolu 0 9y + 6 = 0. [ ( 5) = 9(y 4) ] (3) Znázorněte množinu 4 + 4y 0, 4 + y 0. [ ( ) 4(y ), ( ) + y ] (4) Zjednodušte výraz sin +sin +cos +cos. [ tg, cos, π + kπ ] (5) Jsou dány matice A =, B = 3 AB BA [ AB BA = ] (6) Určete hodnost matice A = [ h(a) = 4 ] (7) Gaussovou eliminační metodou řešte soustavu lineárních rovnic: [ (; ; ; 3) ] = = = = 4. Vypočtěte matici

3 (8) Gaussovou eliminační metodou řešte soustavu lineárních rovnic: = = = = = 5 [ (t + 5; /3; t ; t /3), t R ] sin cos (9) Vypočtěte determinant A = sin y cos y sin z cos z. [ sin( z) + sin(z y) + sin(y ) ] NP Vypočtěte Vandermondův determinant A = [ 88 ] NP Pomocí Cramerova pravidla řešte soustavu lineárních rovnic: [ (3; 4; 5) ] (0) Jsou dány matice A = = = = a B = NP: B, B A, (A B), A B, (B A)... Spočtěte A, [ A = B A = , B = = (AB), ,

4 A B = = (BA) ] () Řešte( maticovou ) rovnici ( A X + ) B = C( pro neznámou ) X, jestliže A =, B =, C = [ X = 9 A X + B = C / B zprava A X = C B / A zleva X = (A ) (C B) ( ) ] NP Řešte maticovou rovnici A X A = B pro neznámou X, jestliže A = 0, B = [ X = A X A = B / A zleva X A = A B / A zprava X = A B A ] () Zjistěte zda jsou dané vektory lineárně závislé: a = (; ; 5), b = ( 3; 3; ), c = (0; ; ), d = (5; 6; 7). [ jsou lineárně závislé] (3) Vektor c = (3; ; ) vyjádřete jako lineární kombinaci vektorů u = (; ; 3), u = (; ; ), u 3 = (4; ; ). [ v = u + u ] NP Určete vlastní čísla (spektrum) a vlastní vektory matice A =

5 4 [ λ,,3,4 =, (u v; u v; v; u) T ] (4) Určete vlastní čísla (spektrum) a vlastní vektory matice 0 3 A = [ λ, = 0, (0; s; 0; s) T ; λ 3,4 =, (t; 0; 0; t) T ] NP Určete zda následující matice z vektorového prostoru V = Mat 3,3 (R) jsou lineárně závislé nebo lineárně nezávislé: A = 0 3, A = , A 3 = 0, A 4 = [ jsou lineárně závislé ] (5) Určete objem rovnoběžnostěnu s vrcholy dolní podstavy A = [3; 4; 0], B = [9; 5; ], C = [; 7; ], jestliže krajní bod hrany AE je E = [3; ; 5]. [ V = [ a b c] = 08 ] NP Jsou dány body A = [; ; 4], B = [4; ; ], C = [; ; 6]. Určete jednotkový vektor v 0 kolmý k vektorům AB, AC. [ v 0, = ± 6 (4 i + 6 j + 3 k) ] (6) Vypočtěte objem čtyřstěnu s vrcholy A = [; 5; 4], B = [0; 3; ], C = [ ; 4; 3], D = [ 4; 4; ; ] a vzdálenost v vrcholu A od stěny BCD. [ V = 4 6, v = ] (7) Napište obecnou rovnici roviny procházející bodem A = [3; 3; 4] a přímkou p. = 8 t p = y = 5t z = 3 4t [ 7 6y 8z 99 = 0 ]

6 (8) Je dána rovina σ : 43y 7z = 0, rovina ω : + 3y + z + 5 = 0 a rovina α určená body A = [; 3; 0], B = [; ; ], C = [4; ; ]. Vypočítejte úhel společných přímek rovin σ, ω a rovin σ, α. [ 90 ] (9) Určete sudost, lichost funkce f. a) y = [ funkce je sudá ] b) y = [ funkce je lichá ] y = [ funkce není sudá, ani lichá ] (0) Nakreslete graf funkce y = f(), jestliže ( ; ) a) f() = ; 3 (.5; b) y = 3 sin y = sin d) y = 3 sin( + 3π) e) y = sin( + 5π) 3 6 f) y = sin( + 3π) () Pomocí Hornerova schematu určete funkční hodnotu polynomu f v bodě 0. a) f : y = , 0 = [ 5 ] b) f : y = , 0 = [ 4 ] () Ukažte, že číslo 0 = je dvojnásobným kořenem polynomu f : y = (3) Najděte všechny reálné kořeny polynomu f. a) f : y = [,,,, ] b) f : y = [,, 3, 3± 5 ] f : y = [,, 3, 3 ] 3 (4) Vyjádřete racionální funkci jako součet polynomu a ryzí racionální funkce. 5 a) f : y = NP) f : y = [ = ] [ = ]

7 6 + 3, [ = + ] (5) Napište tvar rozkladu funkce f v součet parciálních zlomků. NP) f : y = ( ) 3 8 ( + ) [ f : y = A + A ( ) + A 3 ( ) + B 3 + B + B 3 + B B B B B 8 + C + D + C + D 8 + ( + ) + C 3 + D 3 ( + ) = ( ) 3 8 ( + ) ] b) f : y = ( + ) (3 + ) 3 [ f : y = A + B + + A + B 3 ( + ) + C C (3 + ) + D + D + D 3 3 ] (6) Rozložte racionální funkci v součet polynomu a parciálních zlomků. a) f : y = b) f : y = (7) Vypočtěte limity funkcí: [ = A + B + + C + = ] [ = ] a) lim sin 3 b) lim 0 sin 4 lim 4 4 (8) Vypočtěte limity složených funkcí: [ neeistuje, lim [ 0 ] [ 3 ] =, lim = ] a) lim ln sin 3 [ ln 8 ] π/ b) lim arctg [ π 0 ] ( ) + lim [ 4 ]

8 7 (9) Vypočtěte limity typu k 0 : a) lim b) lim 0 sin cos lim 0 sin [ neeistuje, lim 0 cos sin [ ] [ ] =, lim 0 + cos sin = ] (30) Vypočtěte limity v nevlastním bodě: a) lim b) lim 4 3 b) lim arctg + 4 [ 0 ] [ ] [ ] NP S použitím definice derivace určete derivaci f () funkcí: a) f() = 3 [ D(f) = R, f () = 3 3, D(f ) = R {0} ] b) f() = 3 [ D(f) = R {0}, f () = 4 3 3, D(f ) = D(f) ] (3) Určete derivaci f () a definiční obory D(f), D(f ) funkcí: a) f() = [ D(f) = R {0}, f () = , D(f ) = D(f) ] b) f() = ( 3 + 8)( ) [ D(f) = R, f () = , D(f ) = D(f) ] f() = e e + d) f() = log(3 + + ) [ D(f) = R {0, 3 }, f () = [ D(f) = R, f () = e (e + ), D(f ) = D(f) ] 6 + (3 + + ) ln 0 log (3 + + ), D(f ) = D(f) ]

9 8 (3) Určete první a druhou derivaci f (), f () a příslušné definiční obory funkcí: a) f() = + 3 [ f () = , f () = ( + 9) ( + 3) 3, D(f) = D(f ) = D(f ) = R ] b) f() = ln sin + sin [ f () = cos, f () = sin cos, D(f) = D(f ) = D(f ) = R { π + kπ, k Z} ] (33) Určete druhou derivaci f () a příslušné definiční obory funkcí: a) f() = (ln ) [ f () =, D(f) = D(f ) = D(f ) = (0, ) ] b) f() = arctg( + ) [ f () = ( + ), D(f) = D(f ) = D(f ) = R ] (34) Najděte rovnici tečny t a normály n ke grafu funkce y = f(): a) f() = e cos v bodě A = [0,?] [ t : + y = 0, n : y + = 0 ] b) f() = e +, je-li t rovnoběžná s přímkou y + = 0 [ t : y + 3 = 0, n : 4 + y 3 = 0 ] (35) Najděte přírůstek funkce f a diferenciál df v čísle 0 pro přírůstek : f() = arccotg, 0 =, = 0. [ f = 0.09; df( 0 ) = 0. ] (36) Vypočítejte diferenciál funkce df v bodě pro přírůstek h: [ df(, h) = h ] (37) Napište následující funkce užitím MacLaurinova polynomu n-tého stupně: a) f() = ln(cos ), n = 6 [ T 6 () = ] b) f() = +, n = 4 [ T 4 () = ]

10 (38) Napište následující funkce užitím Taylorova polynomu n-tého stupně v okolí bodu 0 : a) f() =, 0 =, n = 3 [ T 3 () = ( ) ( )3 + ] b) f() = 3 ( ) ( ) 4( )3, 0 =, n = 3 [ T 3 () = + + ] (39) Vypočítejte přibližně následující funkční hodnotu pomocí Taylorova polynomu n-tého stupně T n v okolí 0 : ln, 0 =, n = 0 [ f() = ln, T 0 () = 0 k= (40) Vypočtěte s pomocí L Hospitalova pravidla: ( ) k ( ) k, ln =. T 0 () = ] k 9 a) lim 3 + e b) lim 3 ln( + ) lim 3 d) lim ln [ ] [ ] [ 0 ] [ ] (4) Vypočtěte limity typu 0 : a) lim 0 + ln b) lim e [ 0 ] [ 0 ] (4) Najděte všechny asymptoty ke grafu funkce. y = ( )3 ( + ) [ =, y = 5 ] (43) Vyšetřete průběh funkce. a) f() =

11 0 b) f() = 3 f() = + arccotg (44) Integrace užitím základních vzorců. ( a) ) d [ + ln C ] ( 4 b) ) d [ C ] (0 + 5 ) 0 d [ ln 0 ln + 5 ln 5 + C ] 3 + d) d [ C ] ( ) e) d [ + ln + C ] f) d [ arctg + C ] + 5 sin + 3 cos g) sin d [ 5 cos tg 3 cotg + C ] (NP) Integrace užitím základních vzorců. a) (3 + ) d [ C ] b) ( + ) d [ C ] d [ ln + C ] 3 ( ) 3 d) d [ C ] ( + ) 3 e) d [ ln + C ] (45) Integrace substituční metodou. a) (4 3) 4 d [ 0 (4 3)5 + C ] b) ( 7) d [ 5 8 ( 7) + C ] 4 5 d [ 5 7 arcsin + C ] 49 7

12 d) e) f) g) cos d sin + [ ln sin + + C ] e e + d [ ln e + + C ] sin cos 3 d [ 4 cos4 + C ] e sin cos d [ e sin + C ] (NP) Integrace substituční metodou. e arctg e a) d [ arctg 3 e + e 3 + C ] d b) [ arccos + C ] sin 6 cos d [ 7 sin7 + C ] e d) d [ e + C ] cos(ln ) e) d [ sin(ln ) + C ] (46) Integrace metodou per partes. a) e d [ e e + C ] b) sin d [ cos + sin + C ] 4 3 e d [ e ( ) + C ] d) ln d [ ln + C ] e) ln 3 d [ (ln3 3 ln + 3 ln 3 4 ) + C ] f) ln( + ) d [ ln( + )( ) C ] (NP) Integrace metodou per partes. cos a) sin 3 d [ sin cotg + C ] b) sinh d [ cosh sinh + C ]

13 d) e) 5e 4 d [ 5 4 e e 4 + C ] e cos d [ e (cos + sin ) + C ] 5 ( + 5)e 4 d [ e ( + 5) + C ] (47) Integrace racionální lomené funkce. 3 + a) d [ 3 ln( + + 5) arctg + + C ] b) d [ ( ln 3 ) arctg 3 + C ] d [ ln ( ) 4 ( 4) 5 ( )( ) ( + 3) 7 + C ] e + d) e d [ ln e + ln e + C ] e) ( + )( ) d [ 3 ( ) + ln ( )( + ) + C ] (NP) Integrace racionální lomené funkce a) d [ ln ( ) 4 ( 4) 5 ( )( + 3)( 4) ( + 3) 7 + C ] d b) 3 + d [ ( + ) ln arctg + C ] 3 3 ( ) d [ 5 ln( ) + 9 arctg C ] 7 7 (48) Integrace goniometrických funkcí. a) sin cos d [ sin + C ] b) tg d [ ln cos + C ] sin d [ sin + C ] cos cos d) cos 3 d [ 3 sin cos + 3 sin + C ] e) cos 3 d [ 3 sin 3 + C ]

14 f) cos d 3 tg [ ln + C ] (NP) Integrace goniometrických funkcí. a) sin 3 cos d [ 4 sin4 + C ] b) cos 5 sin d [ cos6 + C ] sin cos d [ ln sin + cos C ] sin + cos (49) Integrace iracionálních funkcí. a) d [ ( ln + ) + C ] b) ( + )( ) d [ C ] ( 3 6 d [ ) ln ln + + C ] + + d) d [ + + ln + + C ] e) + d [ + ln + + C ] (NP) Integrace iracionálních funkcí. ( ) 3 d a) + 3 d [ ln C ] b) 3 d [ ln C ] + (50) Výpočet určitého integrálu úpravou. a) b) d [ ln 5 3 ] 3 d [ 65 6 ] 5 d [ 0 ]

15 4 (5) Výpočet určitého integrálu metoda per partes. a) b) d) π 0 0 sin d [ π ] ln( + ) d [ 3 ln 3 ] arccos d [ π ] e 3 d [ 9 e3 + 9 ] (5) Výpočet určitého integrálu substituční metoda. a) b) d) 4 π 3 π 4 5 π 0 ( + ) d [ ln 3 3 ] sin sin 3 cos d [ 3 ] ln d [ ln 5 ] sin cos d [ 3 ] (NP) Výpočet určitého integrálu. a) b) d) π π 4 + d [ 36 ] cosh d [ e e ] d ( + ) 3 d [ 9 ] cos sin d [ ] (53) Vypočtěte obsah křivočarého lichoběžníka ohraničeného křivkami + y =, y =, 0, y > 0. [ π 4 ]

16 5 (54) Vypočtěte délku oblouku rovinné křivky y = 4 ln,, 3. [ + ln 3 ] (55) Vypočtěte objem tělesa, které vznikne rotací plochy P kolem osy. P : y = +, y = +. [ 6 5 π ] (56) Vypočtěte povrch tělesa, které vznikne rotací křivky kolem osy. P : = a cos 3 t, y = a sin 3 t, t 0, π, a > 0. [ 6πa ] (57) Najděte těžiště homogenní hmotné oblasti omezené křivkami y =, y = +. ( ) 4 + 5π [ T 0; ] 30π 0 NP Stanovte definiční obor dané funkce a načrtněte jej. a) z = ( + y) b) z = y + 5 y z = + y y d) z = arcsin( y ) + arcsin y [ a) Dz = {(; y) E : y + }; b) Dz = {(; y) E : y y }; Dz = E {(; y) E : y = y = }; d) Dz = {(; y) E : + y } ({(; y) E : y > 0} {(; y) E : y < 0}) {(; y) E : y > 0} {(; y) E : y < 0}] NP Vypočtěte parciální derivace prvního řádu daných funkcí. a) z = 3y b) z = (sin ) cos y y z = ye sin πy + y d) y = ln + y +

17 6 [ a) z = 3y ( y), z y = 3 ; ( y) b) z = cos cos y(sin ) cos y, z y = sin y ln sin (sin ) cos y ; z = y( + πy cos πy)z, z y = ( + πy cos πy)z; d) z = + y, z y = y + y ] NP Vypočtěte parciální derivace prvního řádu daných funkcí. ( ) + y a) z = + arcsin + y b) y y z = ( + y) +y [ a) z = y y y + + y, z y = y y y y + + y ; b) z = [ + ln( + y)]z, z y = [ + ln( + y)]z] NP Vypočtěte všechny parciální derivace druhého řádu daných funkcí. a) z = cos y b) z = y + y 3 [ a) = sin + 4 cos, z yy = y z yy = 4 y, 3 z y = y ] cos y 3, z y = NP Vypočtěte všechny parciální derivace druhého řádu daných funkcí. a) z = + y b) z = ln( + y ) sin y ; b) z = 4y 9 7 3, [ a) z = y ( + y ), z y = 3y ( + y ), 5 z y = y( y ) ( + y ), 5 z yy = ( + y ) ; b) ( + y z ) 5 y ( + y ), z yy = y ( + y ) ] NP Vypočtěte všechny požadované derivace daných funkcí. a) z = e ln y + sin y ln, yy =?, yyy =? b) z = y + e y, z y =? =

18 7 [ a) z yy = e y sin y, z yyy = e y 3 NP Určete d z v bodě A funkce z = f(, y). cos y ln ; b) z y = + e y y 3 (4 + y ) ] a) z = sin sin y, A = [ π 4, π ] b) z = y ln, A = (, ) 4 [ a) d ddy dy ; b) d + ddy ] NP Určete d z v bodě A funkce z = f(, y). a) z = e y, A = [, ] [ a) 4e d + 6e ddy + e dy ] Taylorova věta pro funkci f(), X = [,,..., n ]: f(x) = f(x o ) +! df(x o) +! d f(x o ) + + n! dn f(x o ) + R n+ (X), kde zbytek R n+ (X) = (n + )! dn+ f( + δh,..., n + δh n ), δ (0, ). NP Napište Taylorův polynom stupně n pro funkci y = f(, y) v bodě A. a) z = e sin y, A = [0, 0], n = 3 b) z = sin(y), A = [0, π ], n = [ a) y + y + y 6 y3 ; b) π + (y π ) ] NP Napište Taylorův polynom stupně n pro funkci y = f(, y) v bodě A. a) z = ln( ) ln( y), A = [0, 0], n = 3 [ a) y + y + y ] Pravidla pro počítání složených funkcí: z = f(, y), = (t) a y = y(t) dz dt = ( ) f d dt + ( ) f dy y dt

19 8 w = f(, y, z), = (u, v), y = y(u, v) a z = z(u, v) ( ) w w u = ( ) w u + y ( ) w y u + y ( ) w w v = ( ) w v + y ( ) w y v + y z u, z v, Obecně: w = f(,..., m ), k = k (t,..., t n ), pro k =,..., m ( ) w w = ( ) w + ( ) w + + m, t i t i t i m t i kde i =,,..., n. NP Vypočtěte parciální derivace prvního řádu složených funkcí. a) z = u + v, u = + sin y, v = ln( + y) b) z = u v v u, u = cos y, v = sin y [ a) z = + + y ln(+y), z y = cos y+ ln(+y); b) +y z = 3 sin y cos y(cos y sin y), z y = 3 (sin y + cos y)( 3 sin y cos y) ] NP Vypočtěte parciální derivace prvního řádu složených funkcí. a) z = u v, u = ln( + y), v = e y [ a) z = vu v y + uv ln v e y y, z y = vuv y + uv ln u e y y ] y NP Určete první parciální derivace funkce z = f(, y), která je dána implicitně danou rovnicí. a) cos(a + by cz) = k(a + by cz) b) + y + z = e z [ a) z = a c, z y = b c ; b) z = ( + y + z ) = z y ] NP Vypočtěte první parciální derivace v bodě A funkce z = f(, y), která je dána implicitně danou rovnicí. a) e z + y + z + 5 = 0, A = [, 6, 0] [ π NP) cos + cos y + cos z = 0, A = 3, π, π ] 6

20 9 [ a) z (A) = 6, z y(a) =, NP) z (A) =, z y(a) = 0 ] Tečná rovina a normála plochy: Tečná rovina τ a normála n plochy z = f(, y) v bodě B 0 = [ 0 ; y 0 ; z 0 ] jsou dány rovnicemi tvaru: τ : ( 0 ) f (B 0 ) + (y y 0 ) f y (B 0 ) (z z 0 ) = 0 n : 0 f (B 0 ) = y y 0 f y (B 0 ) = z z 0 Je-li plocha dána implicitně F (; y; z) = 0, pak τ : ( 0 ) F (B 0 ) + (y y 0 ) F y (B 0 ) + (z z 0 ) F z (B 0 ) = 0 n : 0 F (B 0 ) = y y 0 F y (B 0 ) = z z 0 F z (B 0 ) Pro normálový vektor n tečné roviny platí n = (F (B 0 ); F y (B 0 ); F z (B 0 )). Normálu si můžeme vyjádřit parametricky ve tvaru: = 0 + tf (B 0 ), y = y 0 + tf y (B 0 ), z = z 0 + tf z (B 0 ); t R. NP Nalezněte tečnou rovinu a normálu v bodě A plochy z = f(, y) zadané implicitně danou rovnicí. a) + y + z 49 = 0, A = [, 6,?] b) (z )yz y 5 = 5, A = [,, ] [ a) τ : 6y + 3z 49 = 0, n : = + 4t, y = 6 t, z = 3 + 6t, τ : 6y 3z 49 = 0, n : = + 4t, y = 6 t, z = 3 6t ] NP Nalezněte lokální etrémy daných funkcí. a) z = y y b) z = 3 + y y z = ln + ln y + ln( y) 6 [ a) [4; 4] - lok.ma.; b) [ ; ] - není, [0; 0] - lok.min., [ ; ] a [ 5 ; 0] - lok.ma., [3; 6] - lok.ma. ]

21 0 NP Nalezněte lokální etrémy daných funkcí. a) z = y y b) z = y y + 6y [ a) [5; ] - lok.min.; b) [4; 4] - lok.ma. ] NP Nalezněte vázané etrémy dané funkce při daných podmínkách. a) z = + y; podm. + y = 5 b) z = + y ; podm. + y = [ a) [; ] - lok.ma., [ ; ] - lok.nim.; b) [; ] - lok.min. ] NP Nalezněte vázané etrémy dané funkce při daných podmínkách. a) z = + y; podm. y = b) z = + y ; podm. + y = [ a) [; ] - lok.ma., [ ; ] - lok.nim.; b) [ ; ] - lok.min., [ ; ] - lok.ma. ] NP Najděte absolutní etrémy daných funkcí. a) z = + y 4 + 8y; na obdélníku 0, 0 y b) z = y + y ; Mje určena nerovnicí + y z = + y + 6y; na oblasti dané nerovnicí + y 5 [ a) [; ] - abs.ma., [; 0] - abs.nim.; b) [0; ], [0; ], [; 0], [ ; 0] - abs.ma., [0; 0] - abs.min.; [3; 4] - abs.min., [ 3; 4] - abs.ma.] NP Určete derivaci ve směru s v bodě A a gradient v bodě A funkce z = f(, y). z = + y y, A = [3; 4], s = (3; 4). [ z (A) = 9, grad z = 7 s 5 5 i 5 j ] NP Určete derivaci funkce z = ln( + y ) v bodě A = [; ]. a) ve směru tečného vektoru v bodě A ke křivce y =, b) ve směru, v němž je derivace maimální.

22 [ a) z s (A) = 3 z ; b) 5 s (A) = ] 5 NP Určete tečnou rovinu a normálu v bodě T plochy z = f(, y). z = y y, T = [; ;?]. [ τ : 3 + z 4 = o; n : = + 3t, y =, z = + t ] NP Určete tečnou rovinu a normálu v bodě T plochy z = f(, y). z = y, T = [ ; ;?]. [ τ : 8 + 4y z44 = o; n : = + 8t, y = + 4t, z = 4 t ] NP Nalezněte obecné řešení daných diferenciálních rovnic. a) y = 0 +y [ y = C ] y b) y = [ arcsin y + arcsin = C ] NP Nalezněte partikulární řešení dané diferenciální rovnice. ( + y )d y( + )dy = 0, y( ) = [ y = ]

23 Reference [] Novotný J.: Matematika I - Základy lineární algebry, CERM, FAST VUT Brno 004. [] Dlouhý, O. - Tryhuk, V.: Matematika I - Diferenciální počet funkce jedné reálné promenné, CERM, FAST VUT Brno 004. [3] Tryhuk, V.: Matematika I - Úvod do matematické logiky a teorie množin, CERM, FAST VUT Brno 994. [4] Tryhuk, V.: Matematika I - Reálná funkce jedné reálné promenné, CERM, FAST VUT Brno 994. [5] Veverka, J. - Slatinský E.: Matematika I3 - Diferenciální pocet funkce jedné reálné promenné, CERM, FAST VUT Brno 995. [6] Novotný J.: Matematika I4 - Lineární algebra, CERM, FAST VUT Brno 995. [7] Horňáková, D.: Matematika I5 - Vektorová algebra, CERM, FAST VUT Brno 995. [8] Horňáková, D.: Matematika I6 - Analytická geometrie, CERM, FAST VUT Brno 995. [9] Voráček, J.: Matematika I7 - Neurčitý integrál, CERM, FAST VUT Brno 995. [0] Voráček, J.: Matematika II - Určitý integrál a jeho užití, CERM, FAST VUT Brno 995. [] Daněček, J. - Dlouhý, O.: Integrální počet I, CERM, FAST VUT Brno 003. [] Daněček, J. - Dlouhý, O. - Koutková, H. - Prudilová, K. - Sekaninová, J. - Slatinský, E.: Sbírka příkladů z matematiky I., CERM, FAST VUT Brno 994. [3] Čermáková, H. - Hřebíčková, J. - Slaběňáková, J. - Šafářová, H.: Sbírka příkladů z matematiky II., CERM, FAST VUT Brno 994. [4] Prudilová, K. - Sekaninová, J. - Slatinský, E.: Sbírka příkladů z matematiky III., CERM, FAST VUT Brno 995. [5] Hřebíčková, J. - Ráček, J. - Slaběňáková, J.: Diferenciální počet v Maple 7, FAST VUT Brno, 00, pocet/. [6] Hřebíčková, J. - Ráček, J. - Slaběňáková, J.: Integrální počet v Maple 7, FAST VUT Brno, 00, pocet/. [7] Veverka, J.: Diferenciální počet II, Fakulta stavební, Brno 98. [8] Eliaš, J. - Horvát, J. - Kajan, J.: Zbierka úloh z vyššej matematiky,. časť, SVTL, Bratislava 965. [9] Černá, B.: Cvičení z lineární algebry, MZLU v Brně, Brno 998. [0] Jelínek, Z. - Samotná O.: Matematika - Integrální počet, Skriptum VŠ zemědělské v Brně, SPN, Praha 985. [] Jirásek, F. - Kriegelstein, E. - Tichý, Z.: Sbírka řešených příkladů z matematiky I, SNTL/ALFA, Praha 987. [] Karásek, J. - Maroš, B.: Integrální počet, Matematika - Metodické pokyny pro cvičení, CERM, FAST VUT Brno 994. [3] Kříž, J. - Křížová, H.: Diferenciální počet, metodické pokyny, Fakulta strojní VUT, Brno 978. [4] Vosmanská, G.: Matematika, MZLU v Brně, Brno 997. [5] Online verze tetů: Riešené úlohy z matematiky, Katedra Matematiky a Deskriptivnej geometrie, Stavebna fakulta, STU, Bratislava, [6] Online verze tetů: Riešené úlohy z matematiky, Katedra Matematiky a Deskriptivnej geometrie, Stavebna fakulta, STU, Bratislava,

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/ BA07 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 0 () Integrace užitím základních vzorců.

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika AA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika AA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika AA0 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2005 () Jsou dány matice A = AB BA. [ AB BA

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A2. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A2. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vsoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A2 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2004 Obsah 1. Cvičení č.1 2 2. Cvičení č.2

Více

Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.)

Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.) Vybrané příklady ze skript J. Neustupa, S. Kračmar: Sbírka příkladů z Matematiky I I. LINEÁRNÍ ALGEBRA I.. Vektory, vektorové prostory Jsou zadány vektory u, v, w a reálná čísla α, β, γ. Vypočítejte vektor

Více

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0.

. 1 x. Najděte rovnice tečen k hyperbole 7x 2 2y 2 = 14, které jsou kolmé k přímce 2x+4y 3 = 0. 2x y 1 = 0 nebo 2x y + 1 = 0. Diferenciální počet příklad s výsledky ( Najděte definiční obor funkce f() = ln arcsin + ) D f = (, 0 Najděte rovnici tečny ke grafu funkce f() = 3 +, která je rovnoběžná s přímkou y = 4 4 y 4 = 0 nebo

Více

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné . Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x

Více

METODICKÝ NÁVOD MODULU

METODICKÝ NÁVOD MODULU Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název Základy matematiky modulu: Zkratka: ZM Počet kreditů: 4 Semestr: Z/L Mentor: Petr Dolanský Tutor: Petr Dolanský I OBSAH BALÍČKU STUDIJNÍCH

Více

VIDEOSBÍRKA DERIVACE

VIDEOSBÍRKA DERIVACE VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x. Zderivuj funkci y = e sin2 (x 2 ). Zderivuj funkci y = x +2x 2 +sin x x 5. Zderivuj funkci y = cos2

Více

Katedra aplikované matematiky, VŠB TU Ostrava.

Katedra aplikované matematiky, VŠB TU Ostrava. SBÍRKA PŘÍKLADŮ Z MATEMATICKÉ ANALÝZY JIŘÍ BOUCHALA Katedra aplikované matematiky, VŠB TU Ostrava jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala 3 Předmluva Cílem této sbírky je poskytnout studentům vhodné

Více

Diferenciální počet funkcí více proměnných

Diferenciální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet

Více

Matematika vzorce. Ing. Petr Šídlo. verze

Matematika vzorce. Ing. Petr Šídlo. verze Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx. Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál

Více

VIDEOSBÍRKA DERIVACE

VIDEOSBÍRKA DERIVACE VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos 3x 3. Zderivuj funkci y = 3 e sin2 (x 2 ). Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y

Více

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, )

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, ) Matematická analýza, příklady na procvičení (Josef Tkadlec, 6.. 7) Reálná čísla. Určete maximum, minimum, supremum a infimum následujících množin: Z; b) M = (, ), 5 ; c) M =, Q; d) M = { + n : n N}; e)

Více

MATEMATIKA I - vybrané úlohy ze zkoušek v letech

MATEMATIKA I - vybrané úlohy ze zkoušek v letech MATEMATIKA I - vybrané úlohy ze zkoušek v letech 008 0 doplněné o další úlohy. část DIFERENCIÁLNÍ POČET funkcí jedné proměnné Další část ( integrální počet) bude vydána na konci listopadu 9. 9. 0 Případné

Více

DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a

DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a DERIVACE 1. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x 3. Zderivuj funkci y = 3 e sin2 (x 2 ) 4. Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y = cos2 x

Více

Soubor příkladů z Matematické analýzy 1 (M1100) 1

Soubor příkladů z Matematické analýzy 1 (M1100) 1 Soubor příkladů z Matematické analýzy (M00). Opakování. Upravte následující výrazy: 3 3 +3 3 3 6+ (+) 3 [ a+b a b ] ( b ) (a a b a+b b a b a b ) (a b) 3 [(a b) 4 (a+b) 5 ] 6 3 a 4 a 3 a 3 aa 3 (f) 3 +

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Příklady z matematiky(pro ITS)

Příklady z matematiky(pro ITS) Příklady z matematikypro ITS) František Mošna Definiční obor: Zjistěte maimální definiční obor funkce:. f)=ln 2 8 9 ) + +2 Df= 2, ) 9, ).2 f)=ln 2 4 5 ) 36 2 Df= 6, ) 5,6.3 f)=ln 2 7 8 ) 00 2 Df= 0, 9)

Více

1. Písemka skupina A...

1. Písemka skupina A... . Písemka skupina A.... jméno a příjmení Načrtněte grafy funkcí (v grafu označte všechny průsečíky funkce s osami a asymptoty). y y sin 4 y y arccos ) Určete, jestli je funkce y ln prostá? ) Je funkce

Více

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017 Matematika I - Sbírka příkladů WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 7 Obsah Limity a spojitost. l Hôpitalovo pravidlo zakázáno............................ 4. l Hôpitalovo pravidlo povoleno............................

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

Základy matematiky pracovní listy

Základy matematiky pracovní listy Dagmar Dlouhá, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny pro předmět Základy matematiky vyučovaný Katedrou matematiky

Více

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0. Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Požadavky ke zkoušce. Ukázková písemka

Požadavky ke zkoušce. Ukázková písemka Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 1 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Matematika I: Pracovní listy do cvičení

Matematika I: Pracovní listy do cvičení Matematika I: Pracovní listy do cvičení Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Pro FAST upravil Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita

Více

MATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie

MATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie MATEMATIKA I Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Základy, lineární algebra a analytická geometrie 1. Základní pojmy (a) Základy teorie množin: množina a její prvky, podmnožina, průnik,

Více

f(x) = ln arcsin 1 + x 1 x. f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech f(x) = (sin x) x2 + 3 cos x

f(x) = ln arcsin 1 + x 1 x. f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech f(x) = (sin x) x2 + 3 cos x Příkad Nalezněte definiční obor funkce f(x) = ln arcsin + x x Určete definiční obor funkce f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech [;?] a Určete definiční obor

Více

RNDr. Jiří Dočkal, CSc. MATEMATIKA I. Řešené příklady

RNDr. Jiří Dočkal, CSc. MATEMATIKA I. Řešené příklady RNDr. Jiří Dočkal, CSc. MATEMATIKA I Řešené příklady Uváděné řešené příklady jsou vybrány a řazeny v návaznosti na orientační učební pomůcku Doc.RNDr.Ing. Josef Nedoma, CSc.: MATEMATIKA I. Tato sbírka

Více

1. Cvičení: Opakování derivace a integrály

1. Cvičení: Opakování derivace a integrály . Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021 Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

MATEMATIKA II - vybrané úlohy ze zkoušek (2015)

MATEMATIKA II - vybrané úlohy ze zkoušek (2015) MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz

Více

13. DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET

13. DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET . DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET Dovednosti: Chápat pojem limita funkce v bodě a ovládat výpočet jednoduchých limit.. Na základě daného grafu funkce umět odhadnout limity v nevlastních bodech a nevlastní

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 7. prosince 2014 Předmluva

Více

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.

Více

Ukázka závěrečného testu

Ukázka závěrečného testu Okruhy otázek pro závěrečný test ) Vlastnosti funkce ) Graf funkce ) Definiční obor funkce ) imita funkce ) Derivace funkce 6) Užití derivace 7) Matice 8) Řešení soustavy lineárních rovnic 9) Určitý integrál

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

MATEMATIKA I Požadavky ke zkoušce pro 1. ročník, skupina A 2017/18

MATEMATIKA I Požadavky ke zkoušce pro 1. ročník, skupina A 2017/18 MATEMATIKA I Požadavky ke zkoušce pro 1. ročník, skupina A 2017/18 I. Základy, lineární algebra a analytická geometrie 1. Základní pojmy (a) Základy teorie množin: množina a její prvky, podmnožina, průnik,

Více

Matematika 1 Jiˇr ı Fiˇser 19. z aˇr ı 2016 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 19. z aˇr ı / 19

Matematika 1 Jiˇr ı Fiˇser 19. z aˇr ı 2016 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 19. z aˇr ı / 19 Matematika 1 Jiří Fišer 19. září 2016 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 19. září 2016 1 / 19 Zimní semestr KMA MAT1 1 Úprava algebraických výrazů. Číselné obory. 2 Kombinatorika, základy teorie

Více

Opakovací kurs středoškolské matematiky podzim

Opakovací kurs středoškolské matematiky podzim . Opakovací kurs středoškolské matematiky podzim František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou

Více

Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16

Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16 Matematika 1 3. přednáška 1 Derivace 2 Vlastnosti a použití 3. přednáška 6.10.2009) Matematika 1 1 / 16 1. zápočtový test již během 2 týdnů. Je nutné se něj registrovat přes webové rozhraní na https://amos.fsv.cvut.cz.

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus Zkoušková písemná práce č. 1 z předmětu 01MAB4 pondělí 25. května 2015, 9:00 11:00 Vypočítejte integrál y d(, y), kde Ω Objekt Ω načrtněte do obrázku! Ω = { (, y) R 2 :, y 0 4 + y 4 1 ( 4 + y 4 ) 3 16

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 24/25 2. prosince 24 Předmluva iii

Více

dx se nazývá diferenciál funkce f ( x )

dx se nazývá diferenciál funkce f ( x ) 6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,

Více

Integrální počet - II. část (další integrační postupy pro některé typy funkcí)

Integrální počet - II. část (další integrační postupy pro některé typy funkcí) Integrální počet - II. část (další integrační postupy pro některé typy funkcí) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz) 1 /

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F

+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F Příkad 1 ( y ) Dokažte, že funkce F (x, y) = x n f x 2, kde f je spojitě diferencovatelná funkce, vyhovuje vztahu x F x + 2y F y = nf ; x 0 Ukažte, že každá funkce F (x, y), která má spojité parciální

Více

Matematika 1 pro PEF PaE

Matematika 1 pro PEF PaE Derivace funkcí jedné proměnné / 9 Matematika pro PEF PaE 4. Derivace funkcí jedné proměnné Přemysl Jedlička Katedra matematiky, TF ČZU Derivace funkcí jedné proměnné Nejjednodušší derivace 2 / 9 Derivace

Více

Maturitní okruhy z matematiky - školní rok 2007/2008

Maturitní okruhy z matematiky - školní rok 2007/2008 Maturitní okruhy z matematiky - školní rok 2007/2008 1. Některé základní poznatky z elementární matematiky: Číselné obory, dělitelnost přirozených čísel, prvočísla a čísla složená, největší společný dělitel,

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

Integrální počet - I. část (neurčitý integrál a základní integrační metody)

Integrální počet - I. část (neurčitý integrál a základní integrační metody) Integrální počet - I. část (neurčitý integrál a základní integrační metody) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 6. přednáška z AMA Michal Fusek (fusekmi@feec.vutbr.cz) / 23 Obsah

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Elementární funkce. Polynomy

Elementární funkce. Polynomy Elementární funkce 1 Elementární funkce Elementární funkce jsou níže uvedené funkce a jejich složenin : 1. Polnom.. Racionální funkce. 3. Mocninné funkce. 4. Eponenciální funkce. 5. Logaritmické funkce.

Více

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1, MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=

Více

FAKULTA STAVEBNÍ MATEMATIKA I MODUL 7 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA I MODUL 7 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL 7 NEURČITÝ INTEGRÁL STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Daněček, Oldřich Dlouhý,

Více

1 ) 3, a 5 6 b ( 4. x+2 x, b) f(x)= sin 3x = 3 sin x 4 sin 3 x ] (užijte vzorce: sin(α + β), sin 2x a cos 2x) f 1 : y = x 1. f 1 : y = 3 + ln x 1

1 ) 3, a 5 6 b ( 4. x+2 x, b) f(x)= sin 3x = 3 sin x 4 sin 3 x ] (užijte vzorce: sin(α + β), sin 2x a cos 2x) f 1 : y = x 1. f 1 : y = 3 + ln x 1 DOMÁCÍ ÚLOHY z MATEMATIKY VT) Opakování SŠ matmatiky Pomocí intrvalů zapišt nrovnosti: a), b) + >, c), d) > a),, b), 5), + ), c),, d), + ) Zjdnodušt výraz: a) 5 a a a ), b) a 5 6 b b 5 ) a b a a) a, a

Více

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné

Více

Matematika 1 sbírka příkladů

Matematika 1 sbírka příkladů Matematika 1 sbírka příkladů RNDr. Rudolf SCHWARZ, CSc. Brno 2012 1. Poznámka Výsledky jednotlivých příkladů mají tuto barvu. 2. Poznámka Pokud je v hranatých závorkách uvedeno písmeno, označuje, ze které

Více

Funkce. b) D =N a H je množina všech kladných celých čísel,

Funkce. b) D =N a H je množina všech kladných celých čísel, Funkce ) Napište funkční předpisy a najděte definiční obory funkcí f pro které platí: f ( ) je povrch krychle o straně b) f ( ) je objem kvádru s čtvercovou podstavou o straně a povrchem rovným c) f (

Více

1. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny 1., 2. a 3. parciální derivace funkce f a funkce g.

1. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny 1., 2. a 3. parciální derivace funkce f a funkce g. . Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny.,. a 3. parciální derivace funkce f a funkce g.. Spočtěte všechny první parciální derivace funkcí: a) f(x, y) = x 4 + y 4 4x y, b) f(x,

Více

Wolfram Alpha. v podobě html stránky, samotný výsledek je často doplněn o další informace (např. graf, jiné možné zobrazení výsledku a

Wolfram Alpha. v podobě html stránky, samotný výsledek je často doplněn o další informace (např. graf, jiné možné zobrazení výsledku a Wolfram Alpha jde o výpočetní prostředí z nejrůznějších oborů (matematika, fyzika, chemie, inženýrství... ) přístupné online: http://www.wolframalpha.com/ Jaké matematické výpočty Wolfram Alpha zvládá?

Více

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2, Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se

Více

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 = Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu

Více

Úvod, základní pojmy, funkce

Úvod, základní pojmy, funkce Úvod, základní pojmy, funkce Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 1. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 69 Obsah 1 Matematická logika 2 Množiny 3 Funkce,

Více

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k), Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako

Více

5. cvičení z Matematiky 2

5. cvičení z Matematiky 2 5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými

Více

2. Vlastnosti elementárních funkcí, složené, inverzní a cyklometrické funkce,

2. Vlastnosti elementárních funkcí, složené, inverzní a cyklometrické funkce, . Určete vlastnosti funkcí: (i) f : y = x (ii) f : y = x 4 (iii) f : y = cotgx (iv) f 4 : y = arccosx (v) f 5 : y = 4 x (vi) f 6 : y = ( 4 )x (vii) f 7 : y = lnx (viii) f 8 : y = x. Uveďte příklad: (i)

Více

MATEMATIKA A Metodický list č. 1

MATEMATIKA A Metodický list č. 1 Metodický list č. 1 Název tématického celku: Lineární algebra I Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a poukázat na jejich vzájemnou souvislost. Posluchači

Více

Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Sbírka příkladů z matematické analýzy II. Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................

Více

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace

Více

Matematika II: Pracovní listy do cvičení

Matematika II: Pracovní listy do cvičení Matematika II: Pracovní listy do cvičení Radomír Paláček, Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Příklady Integrální počet funkcí

Více

Maturitní nácvik 2008/09

Maturitní nácvik 2008/09 Maturitní nácvik 008/09 1. Parabola a) Načrtněte graf funkce y + 4 - ² a z grafu vypište všechny její vlastnosti. b) Určete čísla a,b,c tak, aby parabola s rovnicí y a + b + c procházela body K[1,-], L[0,-1],

Více

Výsledky úloh. 1. Úpravy výrazů + x 0, 2x 1 2 2, x Funkce. = f) a 2.8. ( ) ( ) 1.6. , klesající pro a ( 0, ) ), rostoucí pro s (, 1)

Výsledky úloh. 1. Úpravy výrazů + x 0, 2x 1 2 2, x Funkce. = f) a 2.8. ( ) ( ) 1.6. , klesající pro a ( 0, ) ), rostoucí pro s (, 1) Výsledky úloh. Úpravy výrazů.. +, + R.., a 0, a b.., a ± b, a b a b a +.. + a +, 0, a.., a 0; ± ; n + a.. a + b 9, > 0.7., a ± b a b m n.8., m 0, n 0, m n.9. a, a > 0 m + n.0., ;0; ;;.., k.. tg, k sin.

Více

MATEMATIKA I. Marcela Rabasová

MATEMATIKA I. Marcela Rabasová MATEMATIKA I Marcela Rabasová Obsah: 1. Úvod 1.1. Osnovy předmětu 1.2. Literatura 1.3. Podmínky absolvování předmětu 1.4. Použité označení a symbolika 2. Funkce jedné reálné proměnné 2.1. Definice 2.2.

Více

MATEMATIKA 1B ÚSTAV MATEMATIKY

MATEMATIKA 1B ÚSTAV MATEMATIKY MATEMATIKA B Sbírka úloh Edita Kolářová ÚSTAV MATEMATIKY MATEMATIKA B Sbírka úloh Úvod Dostali jste do rukou sbírku příkladů k přednášce Matematika B - Sbírka úloh. Tato sbírka je doplněním tetu Fuchs,

Více

Kapitola 7: Integrál. 1/17

Kapitola 7: Integrál. 1/17 Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený

Více

Otázky k ústní zkoušce, přehled témat A. Číselné řady

Otázky k ústní zkoušce, přehled témat A. Číselné řady Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte

Více

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl: KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální

Více

Matematická analýza I

Matematická analýza I Matematická analýza I Cvičení 1 (4. 10. 2016) Definice absolutní hodnoty. Řešení nerovnic s absolutními hodnotami. Geometrická interpretace řešení nerovnice x + 1 < 3. Komplexní čísla a operace s nimi,

Více

Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292

Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Modernizace výuky na Fakultě stavební VUT v Brně v rámci bakalářských a magisterských studijních programů CZ.04.1.03/3.2.15.2/0292 Název předmětu: Vyrovnávací kurz z matematiky Zabezpečující ústav: Ústav

Více