Učební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008



Podobné dokumenty
Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

5. Maticová algebra, typy matic, inverzní matice, determinant.

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel

Soustavy lineárních rovnic

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku

Jazyk matematiky Matematická logika Množinové operace Zobrazení Rozšířená číslená osa

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím.

Lineární algebra II. Adam Liška. 9. února Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak. rok 2007/2008

Maticový a tenzorový počet

Lineární algebra I. látka z. I. semestru informatiky MFF UK. Obsah. Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina

Operace s maticemi

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

Operace s maticemi. 19. února 2018

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.

Lineární algebra Operace s vektory a maticemi

Kapitola 1. Tenzorový součin matic

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

DEFINICE Z LINEÁRNÍ ALGEBRY

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly

Poznámky z matematiky

Operace s maticemi Sčítání matic: u matic stejného typu sečteme prvky na stejných pozicích: A+B=(a ij ) m n +(b ij ) m n =(a ij +b ij ) m n.

Optimalizace. Elektronická skripta předmětu A4B33OPT. Toto je verze ze dne 28. ledna Katedra kybernetiky Fakulta elektrotechnická

Úvod do lineární algebry

3. Matice a determinanty

Euklidovský prostor Stručnější verze

1 Determinanty a inverzní matice

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

Matematika I Lineární závislost a nezávislost

Matematika pro studenty ekonomie

Úvod do lineární algebry

Vektory a matice. Matice a operace s nimi. Hodnost matice. Determinanty. . p.1/12

předmětu MATEMATIKA B 1

Kapitola 11: Vektory a matice:

8 Matice a determinanty

Lineární algebra a analytická geometrie sbírka úloh a ř ešených př íkladů

Matice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami.

Kapitola 11: Vektory a matice 1/19

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11

Lineární algebra. Matice, operace s maticemi

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

(Cramerovo pravidlo, determinanty, inverzní matice)

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

Matematika B101MA1, B101MA2

0.1 Úvod do lineární algebry

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.

1 Báze a dimenze vektorového prostoru 1

Y36BEZ Bezpečnost přenosu a zpracování dat. Úvod. Róbert Lórencz. lorencz@fel.cvut.cz

0.1 Úvod do lineární algebry

α 1 α 2 + α 3 = 0 2α 1 + α 2 + α 3 = 0

1 Vektorové prostory.

Lineární algebra - I. část (vektory, matice a jejich využití)

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

6. Matice. Algebraické vlastnosti

Číselné vektory, matice, determinanty

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

7. Lineární vektorové prostory

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Několik poznámek na téma lineární algebry pro studenty fyzikální chemie

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Doba řešení: 3 hodiny

a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a

VĚTY Z LINEÁRNÍ ALGEBRY

Základy matematiky pro FEK

ALGEBRA. Téma 4: Grupy, okruhy a pole

TEORIE MATIC. Tomáš Vondra

Základy maticového počtu Matice, determinant, definitnost

Matice. a m1 a m2... a mn

Vybrané problémy lineární algebry v programu Maple

Lineární algebra : Násobení matic a inverzní matice

AVDAT Vektory a matice

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:

Množinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ).

2. Matice, soustavy lineárních rovnic

Lineární algebra : Násobení matic a inverzní matice

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Symetrické a kvadratické formy

Základy matematiky pro FEK

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

ALGEBRA. Téma 5: Vektorové prostory

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo

Vlastní čísla a vlastní vektory

Čtvercové matice. Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců

Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi

Lineární Algebra I. Adam Liška 8. prosince Zápisky z přednášek Jiřího Fialy na MFF UK, zimní semestr, ak. rok 2007/2008

Soustavy lineárních rovnic

Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty.

Úvod. Lineární rovnice a jejich soustavy. Matice. Vektor. Lineární rovnice a jejich soustavy (pokračování) #2: 06/10/9.

1 Soustavy lineárních rovnic

12. Determinanty. 12. Determinanty p. 1/25

Matice lineárních zobrazení

4. Trojúhelníkový rozklad p. 1/20

Transkript:

Učební texty k státní bakalářské zkoušce Matematika Matice študenti MFF 15. augusta 2008 1

12 Matice Požadavky Matice a jejich hodnost Operace s maticemi a jejich vlastnosti Inversní matice Regulární matice, různé charakteristiky Matice a lineární zobrazení, resp. změny souřadných soustav 12.1 Matice a jejich hodnost Definice Obdélníkové schéma sestavené z reálných čísel a 11 a 12... a 1n a 21 a 22... a 2n A =...... a m1 a m2... a mn nazýváme (reálnou) maticí typu m n. Prvek a ij se nazývá ij-tý koeficient matice A. Množinu všech reálných matic typu m n značíme R m n. Je-li m = n, říkáme, že matice je čtvercová řádu n. Podobně definujeme množinu komplexních matic typu m n a značíme ji C m n, lze takto definovat množinu matic nad libovolným tělesem. Definice (Jednotková matice) Čtvercová matice řádu n tvaru se nazývá jednotková matice. I = 1 0... 0 0 1... 0...... 0 0... 1 Definice (Nulová matice) Čtvercovou matici A typu m n, pro kterou a i,j {1,..., n} nazveme nulová matice a označíme 0. = 0 i {1,..., m}, j Definice (Prostory související s maticí) Buď A matice typu m n nad tělesem K. Potom jsou s ní spojené tyto vektorové prostory: sloupcový prostor, též sloupcový modul podprostor K m generovaný sloupci A řádkový prostor, též řádkový modul podprostor K n generovaný řádky A 2

jádro matice (Ker A) podprostor K n generovaný všemi řešeními soustavy Ax = 0 Je zřejmé, že elementární maticové úpravy nemění ani řádkový prostor, ani jádro. Definice (Hodnost matice) Hodnost matice A je maximální počet lineárně nezávislých sloupců matice A (jako vektorů), značíme ji rank(a). Hodnost matice je rovna dimenzi sloupcového prostoru (to je ekvivalentní definice). (O hodnosti matice) Pro libovolnou matici A typu m n je dimenze jejího sloupcového prostoru rovna dimenzi řádkového prostoru. Tedy hodnost matice je rovna i dimenzi řádkového prostoru a platí rank(a) min{m, n} Pro horní trojúhelníkové matice je tato skutečnost zřejmá, dokazuje se, že Gaussova eliminace (tj. elementární maticové úpravy násobení vhodnou regulární maticí zleva) nemění hodnost sloupcového prostoru (při operacích s řádky). (O dimenzích maticových prostorů) Pro matici A s n sloupci platí: dim(ker A) + rank(a) = n Poznámka Po provedení Gaussovy eliminace na matici A ( A R ) je hodnost matice A rovna počtu nenulových řádků matice A R. Definice (Regulární matice) Čtvercová matice A se nazývá regulární, jestliže soustava má jediné řešení x = 0 (tzv. triviální). Ax = 0 V opačném případě se nazývá singulární (tj. platí Ax = 0 pro nějaký vektor x 0). 12.2 Operace s maticemi a jejich vlastnosti Součet a násobení skalárem 3

Definice (Sčítání) Nechť A, B jsou matice typu m n. Potom jejich součtem A+B nazýváme matici typu m n s koeficienty (A + B) ij = A ij + B ij pro i = 1,..., m; j = 1,..., n. Jsou-li A, B různých typů, potom součet A + B není definován. Definice (Násobení skalárem) Nechť A, B jsou matice typu m n a α skalár. Potom α A je matice typu m n s koeficienty (α A) ij = α A ij pro i = 1,..., m; j = 1,..., n. Nikdy nepíšeme A α. Lemma (Vlastnosti součtu matic a násobení matic skalárem) Nechť A, B, C jsou matice typu m n a α, β skaláry. Potom platí: 1. A + B = B + A (komutativita) 2. (A + B) + C = A + (B + C) (asociativita) 3. A + 0 = A (existence nulového prvku) 4. A + ( 1)A = 0 (existence opačného prvku) 5. α(βa) = (αβ)a 6. 1 A = A 7. α(a + B) = αa + αb (distributivita) 8. (α + β)a = αa + βa (distributivita) Tedy prostor matic typu m n odpovídá vektorovému prostoru. Násobení Definice (Maticové násobení) Je-li A matice typu m p a B matice typu p n, potom A B je matice typu m n definaná předpisem (A B) ij = p A ik B kj k=1 pro i = 1,..., m; j = 1,..., n. Lemma (Vlastnosti součinu matic) Nechť A, B, C jsou matice, α skalár. Potom 1. Jestliže součin (AB)C je definován, potom i součin A(BC) je definován a platí (AB)C = A(BC). 2. Jestliže A(B + C) je definován, potom i AB + AC je definován a platí A(B + C) = AB + AC. 4

3. Jestliže (A + B)C je definován, potom i AC + BC je definován a platí (A + B)C = AC + BC. 4. Je-li AB definován, je α(ab) = (αa)b = A(αB) 5. Je-li A typu m n, potom I m A = AI n = A. Násobení matic není komutativní - tj. obecně neplatí AB = BA. (O hodnosti součinu matic) Pro matici A typu m p a matici B typu p n platí: rank(ab) min{rank(a), rank(b)} Řádkový prostor AB je určitě podprostorem řádkového prostoru matice B a sloupcový prostor AB podprostorem sloupcového prostoru matice A. Transpozice Definice Pro matici A R m n definujeme transponovanou matici A T R n m předpisem (A T ) ji = A ij (i = 1,..., m; j = 1,..., n) Lemma (Vlastnosti transpozice) 1. (A T ) T = A 2. jsou-li A, B stejného typu, je (A + B) T = A T + B T 3. (αa) T = αa T, pro každé α R 4. je-li AB definován, je i B T A T definován a platí (AB) T = B T A T. Definice (Symetrická matice) Matice A se nazývá symetrická jestliže A T = A. Pro každou matici A R m n je A T A symetrická. Pro každou matici A R m n platí rank(a T ) = rank(a). 5

12.3 Inversní matice Ke každé regulární matici A R n n existuje právě jedna matice A 1 vlastností AA 1 = A 1 A = I R n n s Naopak, existuje-li k A R n n matice A 1 s touto vlastností, potom je A regulární. Definice Matici A 1 s touto vlastností nazýváme inversní maticí k matici A. Poznámka Inverzní matici mají tedy právě regulární matice. Důsledek Je-li A regulární, je i A 1 regulární. (Inversní matice je oboustranně inversní) Jestliže pro A, X R n n platí XA = I, potom A je regulární a X = A 1. Analogicky, jestliže AX = I, potom A je regulární a X = A 1. Je-li A R n n regulární, potom pro každé b R n je jediné řešení soustavy Ax = b dáno vzorcem x = A 1 b. (Výpočet inversní matice) Pro čtvercovou matici A řádu n nechť je matice (A I) (tj. zřetězení sloupců matice A a jednotkové matice I řádu n) převedena Gauss-Jordanovou eliminací na tvar (I X). Potom platí: X = A 1 Jestliže Gauss-Jordanova eliminace není proveditelná až do konce, potom A je singulární a nemá inversní matici. Víme, že Gauss-Jordanova eliminace je vlastně opakované násobení regulárními maticemi zleva. Součin všech těchto matic označme Q. Označme H,j j-tý sloupec nějaké (obecné) matice. Potom pro j {1,..., n} platí: (I X),j = I,j = Q(A I),j = (QA),j, tedy QA = I, dále platí (I X),n+j = X,j = (QI),n+j = Q,j, takže Q = X a tedy AX = I. (Vlastnosti inversní matice) Nechť A, B R n n jsou regulární matice. Potom platí: 1. (A 1 ) 1 = A 2. (A T ) 1 = (A 1 ) T 3. (αa) 1 = 1 α A 1 pro α 0 4. (AB) 1 = B 1 A 1 6

12.4 Regulární matice, různé charakteristiky (Násobení regulární maticí a hodnost) Pro čtvercovou regulární matici R řádu m a matici A typu m n platí: rank(ra) = rank(a) Nerovnost plyne přímo z věty o hodnosti součinu matic použité pro RA, opačná nerovnost z téže věty, použité na matici R 1 (RA) = A. (Násobení regulárních matic) Jsou-li A 1, A 2,..., A q R n n regulární, q 1, potom A 1 A 2... A q je regulární. Plyne přímo z předchozí věty. Poznámka (Podmínky regularity) Čtvercová A R n n je regulární matice, právě když: Její řádky jsou lineárně nezávislé Její sloupce jsou lineárně nezávislé Její hodnost je právě n A T je regulární A 1 je regulární Další charakteristiky regulárních matic: Matice A je regulární právě když je determinant nenulový. Právě když po provedení Gaussovy-Jordanovy eliminace dostaneme jednotkovou matici. Právě když lze napsat jako součin matic E k E 2 E 1 I n, kde I n je jednotková matice a E 1 E k jsou elementární matice (odpovídají elementárním řádkovým úpravám, které matici A převádí na redukovaný, řádkově odstupňovaný tvar). 12.5 Matice a lineární zobrazení, resp. změny souřadných soustav Definice Nechť V, W jsou vektorové prostory nad stejným tělesem (R nebo C). Zobrazení f : V W nazýváme lineárním zobrazením jestliže 1. f(x + y) = f(x) + f(y) pro každé x, y V 2. f(α x) = α f(x) pro každé x V a každý skalár α. 7

Definice (Souřadnicový vektor) Nechť B = (x 1,..., x n ) je báze V. Každý vektor x V lze potom vyjádřit právě jedním způsobem jako lineární kombinaci vektorů báze B. Potom aritmetický vektor [x] B = nazýváme souřadnicovým vektorem vektoru x v bázi B (a n = dimv a souřadnicový vektor závisí na výběru báze). Definice (Matice lineárního zobrazení) Nechť B = {x 1,..., x n } je báze vektorového prostoru V, B = {y 1,..., y m } je báze vekt. prostrou W a nechť f : V W je lineární zobrazení. Potom pro každé j = 1,..., n lze f(x j ) zapsat právě jedním způsobem ve tvaru f(x j ) = α 1. α n m α ij y j. i=1 Matice A = (α ij ) R m n se nazývá maticí lineárního zobrazení f vzhledem k bázím B, B a značí se [f] BB. Pozorování [f] BB. je matice sestavená ze sloupců ([f(x 1 )] B,..., [f(x n )] B ), které jsou souřadnicovými vektory vektorů f(x 1 ),..., f(x n ) v bázi B. Nechť B je báze V, B je báze W, a nechť f : V W je lineární zobrazení. Potom pro každé x V platí [f(x)] B = [f] BB.[x] B, kde napravo stojí maticový součin. (Složené zobrazení a maticový součin) Nechť f : U V, g : V W jsou lineární zobrazení a nechť B, B, B jsou báze U, V, W. Potom platí [g f] BB = [g] B B [f] BB kde napravo stojí maticový součin. (Matice inversního zobrazení) Je-li f : V W isomorfismus, potom inversní zobrazení f 1 : W V je rovněž isomorfismus a vzhledem k libovolným bázím B, B prostorů V, W platí: [f 1 ] B B = [f] 1 BB 8

(Změna souřadnic vektoru při změně báze) Nechť jsou dány dvě báze B, B vektorového prostoru V. Potom pro každé x V platí: [x] B = [id V ] BB.[x] B Matice [id V ] BB se nazývá maticí přechodu od báze B k bázi B. Poznámka Předchozí vzorec vyžaduje znalost hodnot vektorů staré báze B v nové bází B. Typická situace ale je, že máme jen starou bázi B a pomocí ní vyjádříme novou bázi B. V tom případě můžeme použít vzorec [x] B = [id V ] 1 B B [x] B 9