Základní pojmy o signálech



Podobné dokumenty
SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

Úvod do zpracování signálů

ÚPGM FIT VUT Brno, periodické a harmonické posloupnosti. konvoluce Fourierova transformace s diskrétním časem

Funkce komplexní proměnné a integrální transformace

ÚPGM FIT VUT Brno,

Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015

SIGNÁLY A LINEÁRNÍ SYSTÉMY

Náhodné signály. Honza Černocký, ÚPGM

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni

Biofyzikální ústav LF MU Brno. jarní semestr 2011

Fourierova transformace

Spektrální analýza a diskrétní Fourierova transformace. Honza Černocký, ÚPGM

Digitalizace převod AS DS (analogový diskrétní signál )

Fourierova transformace

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

25.z-6.tr ZS 2015/2016

Teorie měření a regulace

Bakalářská matematika I

Signál v čase a jeho spektrum

Derivace goniometrických funkcí

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

Přednáška 1: Reálná funkce jedné reálné proměnné

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY

doc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně

Derivace goniometrických. Jakub Michálek,

VY_32_INOVACE_E 15 03

Posloupnosti a řady. 28. listopadu 2015

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Funkce a lineární funkce pro studijní obory

10. cvičení - LS 2017

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti

Funkce tangens. cotgα = = B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá.

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že

31ZZS 9. PŘEDNÁŠKA 24. listopadu 2014

Vzorová písemka č. 1 (rok 2015/2016) - řešení

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je

Funkce tangens. cotgα = = Předpoklady: B a. A Tangens a cotangens jsou definovány v pravoúhlém trojúhelníku: a protilehlá b přilehlá

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY

Základy teorie pravděpodobnosti

Funkce pro studijní obory

Zimní semestr akademického roku 2014/ prosince 2014

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.

Funkce Arcsin. Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: 4 je číslo, jehož druhá mocnina se rovná 4.

X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky

Metody výpočtu limit funkcí a posloupností

Funkce arcsin. Některé dosud probírané funkce můžeme spojit do dvojic: 4 - je číslo, které když dám na druhou tak vyjde 4.

Flexibilita jednoduché naprogramování a přeprogramování řídícího systému

Lékařská fakulta Masarykovy univerzity Brno. MUDr. Jaromír Šrámek (BFÚ LF MU) Biosignál / 35

sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx.

Náhodné (statistické) chyby přímých měření

Základy matematiky pro FEK

Přechodné děje 2. řádu v časové oblasti

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Limita posloupnosti a funkce

Funkce - pro třídu 1EB

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

16. Goniometrické rovnice

LEKCE10-RAD Otázky

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy

ANALÝZA PNUS, EFEKTIVNÍ HODNOTA, ČINITEL ZKRESLENÍ, VÝKON NEHARMONICKÉHO PROUDU

KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

PRAVDĚPODOBNOST A STATISTIKA

8 Střední hodnota a rozptyl

Funkce kotangens. cotgα = = Zopakuj všechny části předchozí kapitoly pro funkci kotangens. B a

Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

BIOMECHANIKA KINEMATIKA

1 Modelování systémů 2. řádu

Diskretizace. 29. dubna 2015

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.

Vlastnosti konvoluce. ÚPGM FIT VUT Brno,

Limita a spojitost funkce

Aplikace derivace ( )

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

Laboratorní měření 1. Seznam použitých přístrojů. Popis měřicího přípravku

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

Univerzita Karlova v Praze procesy II. Zuzana. funkce

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Elektrický signál - základní elektrické veličiny

Derivace a monotónnost funkce

NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009

Vstupní signál protne zvolenou úroveň. Na základě získaných údajů se dá spočítat perioda signálu a kmitočet. Obrázek č.2

Transkript:

Základní pojmy o signálech klasifikace signálů transformace časové osy energie a výkon periodické signály harmonický signál jednotkový skok a impuls Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1

Signály libovolné fyzikální veličiny. jedna nebo několik nezávislých proměnných (většinou čas), jedna závislá. Příklady: akustický tlak vyvolaný hláskou e, stupně šedi na dálnici D1, kurs Kč vůči EUR. ČB snímku, síla asfaltu na 2

32.4 32 31.6 0 5 10 15 20 prac. dny 3 CZK/EUR leden 2002

Matematický pohled na signály (1 nezávislá proměnná) funkce, které převádějí nezávislou proměnnou z množiny T (signálová osa) na hodnoty z množiny A. Podle charakteru množiny T děĺıme signály na: signály se spojitým časem: t R, definován všude. Příklad: rychlost autobusu na cestě z Prahy do Brna v závislosti na čase. Budeme značit s(t). signály s diskrétním časem: n Z, pouze celočíselné hodnoty, jinde nedefinováno. Budeme značit s[n], n nemá rozměr. Příklad: můj plat v 12-ti měsících tohoto roku. Jelikož diskrétní signály nejsou nic jiného než řady čísel, budeme je někdy nazývat posloupnosti. Za množinu A budeme v průběhu tohoto kursu většinou pokládat množinu reálných čísel R, avšak mohou to být i komplexní čísla. Praktické aplikace v IT: vždy konečný počet hodnot (kvantování). 4

Deterministické a náhodné signály Deterministické signály můžeme zapsat vztahem, rovnicí, nerovností. Pro každý čas t či n víme, jaké hodnoty signál nabude. Příklad 1: obdélníkový impuls se spojitým časem: x(t) = 2 pro 2 t 2 0 jinde Příklad 2: diskrétní jednotkový impuls: δ[n] = 1 pro n = 0 0 jinde 5

Náhodné signály popsat rovnicí nemůžeme a pro čas t či n nikdy přesně nevíme, jaká bude jejich hodnota. Můžeme je charakterizovat pouze pomocí parametrů (např. střední hodnota, rozptyl). Více v přednáškách ke konci semestru. 6

Transformace nezávislé proměnné změny časové osy Jak se změní původní signál s(t) či s[n], změníme-li časovou osu? Příklady na signálu se spojitým časem: Otočení časové osy: s( t) všechno je naopak. 7

Zpoždění signálu: s(t τ) pro kladné τ signál se objeví později. Předběhnutí signálu: s(t + τ) pro kladné τ signál se objeví dříve. 8

Obrácení časové osy s posunutím Otočení se zpožděním(!): s( t + τ) pro kladné τ. Otočení s předběhnutím(!): s( t τ) pro kladné τ. V případech s otočenou časovou osou mají znaménka opačný význam. 9

Kontrola: najít si na časové ose změněného signálu několik významných bodů. pro každý z nich si vyhodnotit časovou modifikaci. podívat se do původního signálu, zda to sedí. Příklad: Nejsme si jisti, zda jsme s( t + 1) namalovali správně. s( t + 1) pro t = 0 má hodnotu 1. 0 + 1 = 1, původní signál s(t) v čase 1 má také hodnotu 1 OK. s( t + 1) pro t = 2 má hodnotu 0. 2 + 1 = 1, původní signál s(t) v čase -1 má také hodnotu 0 OK. 10

Příklady na signálu s diskrétním časem diskrétní jednotkový skok: 11

... Vyzkoušejte si kontrolu! 12

Změna časového měřítka Kontrakce času: s(mt) pro kladné m > 1 čas běží rychleji a všechno je kratší. Dilatace času: s( t m ) pro kladné m > 1 čas běží pomaleji a všechno je delší.... vyzkoušejte si pomůcku i pro kontrakci/dilataci času! 13

Energie a výkon okamžitý výkon na rezistoru můžeme spočítat jako: p(t) = u(t)i(t) = u 2 (t)/r = i 2 (t)r. Napětí i proud zde vystupují ve druhé mocnině. Při zpracování signálů většinou žádné rezistory nemáme (pokud by nám opravdu chyběl, můžeme si jej představit, s odporem 1Ω), okamžitý výkon bude dán: p(t) = s(t) 2 Absolutní hodnota není potřeba pro reálné signály, je ve vzorci pouze pro šílence pracující s komplexními signály. Pro diskrétní signály: p[n] = s[n] 2 Zajímá-li nás energie a průměrný výkon signálu v intervalu [t 1, t 2 ]: t2 t 1 p(t)dt = t2 t 1 s(t) 2 dt 1 t 2 t 1 t2 t 1 p(t)dt = 1 t 2 t 1 t2 t 1 s(t) 2 dt 14

podobně pro diskrétní signály: n 2 n 1 p[n] = n 2 n 1 s[n] 2 1 n 2 n 1 n 2 n 1 p[n] = 1 n 2 n 1 n 2 n 1 s[n] 2 V mnoha případech nás bude zajímat celková energie v celém rozmezí časů od do : T E = lim T T s(t) 2 dt = + s(t) 2 dt E = lim N N s[n] 2 = N s[n] 2 Podle hodnoty E děĺıme signály na signály s konečnou energíı a signály s nekonečnou energíı. Podobně celkový střední výkon: P = lim T 1 2T T T s(t) 2 dt P = lim N 1 2N + 1 N s[n] 2 N Pokud je P nenulový, je E =. 15

Neperiodické a periodické signály Pro neperiodické signály nemůžeme najít T nebo N takové, že: s(t + T ) = s(t) spojitý čas (1) s[n + N] = s(n) diskrétní čas, (2) signály se v čase neopakují. Pokud je T či N možné nalézt, hovoříme o periodických signálech. Např. 16

se opakuje po T = 20 s, ale také po T = 40 s, T = 60 s, atd. Nejmenší hodnota T, pro kterou rovnice 1 platí, se nazývá základní perioda T 1. Podobně pro diskrétní signály: Signál se opakuje po N = 3, ale také po N = 6, N = 9, atd. Nejmenší hodnota N, pro kterou rovnice 2 platí, se nazývá základní perioda N 1. 17

Harmonické signály jsou nejjednodušeji definovanými periodickými signály a jsou chlebem a soĺı zpracování signálů, proto jim musíme věnovat náležitou pozornost. s(t) = C 1 cos(ω 1 t + φ 1 ) (3) 18

C 1 je kladná konstanta amplituda (maximální hodnota). ω 1 je kladná konstanta úhlový nebo kruhový kmitočet [rad/s]. Ke skutečnému kmitočtu f 1 je vztažen: ω 1 = 2πf 1. Základní perioda harmonického signálu T 1 = 1 f 1 = 2π ω 1. φ 1 je počáteční fáze [rad]. Hodnota signálu pro t = 0 je s(0) = C 1 cos φ 1. Ve zpracování signálů pracujeme vždy s radiány! Nezapomeňte si přepnout kalkulačky! Hodnoty značíme indexem 1, protože později budeme rozkládat obecné periodické signály do harmonických a koeficienty budeme indexovat. 19

Výkon periodických signálů U obecných signálů jsme střední výkon počítali: P = lim T 1 2T T T s(t) 2 dt V případě periodických lze integrovat pouze přes jednu základní periodu a to jakkoliv: P s = 1 T 1 T1 /2 T 1 /2 s(t) 2 dt = 1 T 1 T1 0 s(t) 2 dt =... Velmi používaným údajem, který se odvozuje ze středního výkonu periodického signálu, je efektivní hodnota velikost stejnosměrného signálu, který by dal na stejné zátěži (kdybychom nějakou měli :-) stejný střední výkon: C ef = P s. 20

Jak je tomu u harmonického signálu (fázi neuvažujeme): s(t) = C 1 cos(ω 1 t)? Používáme vzoreček cos 2 α = 1+cos 2α 2 : P s = 1 T1 [C 1 cos(ω 1 t)] 2 dt = 1 T1 T 1 T 1 0 0 C 1 2 1 2 (1 + cos 2ω 1t)dt Integrál cosinu je 0 (uvědomte si, že v libovolném množství period funkce cos jsou záporné plochy vyváženy kladnými), takže zbývá: P s = 1 T 1 T1 0 2 1 C 1 2 dt = 1 2 C 1 T 1 2 T 1 = C 1 2 Z toho vyplývá známá poučka o efektivní hodnotě harmonického signálu: C ef = P s = C 1 2, kterou už jste asi viděli... Pozor! Platí opravdu pouze pro harmonický signál! 2 21

Harmonické signály s diskrétním časem s[n] = C 1 cos(ω 1 n + φ 1 ) (4) C 1 je kladná konstanta amplituda. ω 1 je kladná konstanta úhlový nebo kruhový kmitočet. Jelikož je n bezrozměrné, je zde jednotka ω 1 pouze [rad]. φ 1 je počáteční fáze [rad]. Hodnota signálu pro n = 0 je s[0] = C 1 cos φ 1. Příklad: s[n] = 5 cos(2πn/12), ω 1 = π/6. 5 s[n] 0 5 20 10 0 10 20 n Se základní periodou harmonické posloupnosti máme drobný problém. Není možné ji vypočítat podobně jako u signálu se spojitým časem pomocí: N 1 = 2π ω 1, protože by mohlo 22

vyjít necelé číslo. N 1 jako počet vzorků musí být vždy celý. Musíme najít takové N 1, aby platila podmínka periodicity: cos [ω 1 (n + N 1 )] = cos ω 1 n. Víme, že základní perioda funkce cos je 2π a že podmínka bude splněna pouze pro rozdíl argumentů rovný celočíselnému násobku 2π: ω 1 (n + N 1 ) ω 1 n = ω 1 N 1 = k2π, kde k je celé číslo takové, aby N 1 bylo nejmenší možné. Příklad 1: s[n] = 5 cos(2πn/12), ω 1 = π/6. π 6 N 1 = k2π, řešení je jednoduché: k = 1, N 1 = 12 (viz obrázek). Srovnání kdyby byl signál se spojitým časem, základní perioda by byla: T 1 = 2π π/6 = 12. Výsledek je stejný. Příklad 2: s[n] = cos(8πn/31), ω 1 = 8π/31. 8π 31 N 1 = k2π, k = 4 31 N 1, 31k = 4N 1. Řešením je: k = 4, N 1 = 31. Srovnání kdyby byl signál se spojitým časem, základní perioda by byla: T 1 = 2π 8π/31 = 31 4. Výsledek je jiný perioda je podstatně kratší, protože nemusíme čekat na celé číslo. 23

1 0.5 s[n] 0 0.5 1 20 10 0 10 20 n Příklad 3: s[n] = cos(n/6), ω 1 = 1/6. 1 6 N 1 = k2π, N 1 = k12π. Řešení neexistuje, signál není periodický (ale vypadá tak :-) Srovnání kdyby byl signál se spojitým časem, základní perioda by byla: T 1 = 2π 1/6 = 12π. Signál je samozřejmě periodický. 1 0.5 s[n] 0 0.5 1 20 10 0 10 20 n 24

Některé velmi zajímavé a užitečné signály diskrétní Jednotkový skok a jednotkový impuls: 1 pro n 0 σ[n] = 0 jinde δ[n] = 1 pro n = 0 0 jinde 25

Všimněme si, že jednotkový impuls vznikl diferencováním jednotkového skoku: δ[n] = σ[n] σ[n 1] Posunutý jednotkový impuls δ[n k]: 26

Některé velmi zajímavé a užitečné signály spojitý čas Jednotkový skok: σ(t) = 1 pro t 0 0 jinde Jednotkový impuls se spojitým časem (Diracův impuls) nadefinujeme jako derivaci jednotkového skoku podle času: δ(t) = dσ(t). dt Problémem je, že nevíme, jak derivovat funkci σ(t) pro t = 0 (nespojitost). Pomůžeme si malým trikem: δ (t) = dσ (t). dt 27

σ (t) má mezi 0 a směrnici (a tedy i derivaci) 1. Všimněme si, že plocha obdélníčku ohraničeného funkcí δ (t) (tedy její integrál) je rovna 1. Pak budeme zmenšovat limitně až k nule: δ(t) = lim δ (t). 0 Plocha jednotkového impulsu je tedy stále jedna, i když jeho hodnota pro t = 0 vzroste na : + δ(t)dt = 1. 28

Tuto plochu nazýváme mocnost a jednotkový impuls ji změní, pokud jej něčím vynásobíme: Jednotkové impulsy mají tzv. vzorkovací schopnost, ale o té až příště :-) 29