PRAVDĚPODOBOST A STATISTIKA
Degeerovaé rozděleí D( ) áhodá veličia X s degeerovaým rozděleím X ~D(), R má základí rostor Z = { } a ravděodobostí fukci: ( ) 1 0 Charakteristiky: středí hodota: E(X ) roztyl: D( X ) 0 Pozámka: Jedá se o kostatí áhodou roměou.
Alterativí (Beroulliovo) rozděleí A() áhodá veličia X s alterativím rozděleím X ~A(), (0, 1) má základí rostor Z = {0,1} a ravděodobostí fukci: (0) (1) 1 Charakteristiky: středí hodota: E( X ) roztyl: D( X ) (1 ) koeficiet šikmosti: A 3 ( X ) 1 2 (1 ) koeficiet šičatosti: A 4 ( 1 6 (1 ) X ) (1 )
Klasické rozděleí (diskrétí rovoměré rozděleí) C() áhodá veličia X s klasickým rozděleím X~C(), má základí rostor Z = {1, 2,, } a ravděodobostí fukci: ( ) 1 Z Charakteristiky: středí hodota: roztyl: mediá: 1 E( X ) 2 2 1 D( X ) 12 1 liché ~ 2 sudé 2 koeficiet šikmosti: A3 ( X ) 0
Biomické rozděleí Bi(,) áhodá veličia X s biomickým rozděleím X~Bi(,),, (0, 1) má základí rostor Z = {0,1, 2,, } a ravděodobostí fukci: ( ) (1 ) Charakteristiky: středí hodota: E( X ) roztyl: mediá: koeficiet šikmosti: koeficiet šičatosti: D( X ) (1 ) ~ ( 1) 1, ( 1) 1 2 A3( X ) (1 ) 1 6 (1 ) A4 ( X ) (1 )
Biomické rozděleí Bi(,) Biomické rozděleí výběr s vraceím ázev rozděleí ochází ze skutečosti, že ravděodobosti () jsou čley biomického rozvoje 1 1 ( (1 )) ( )
Biomické rozděleí Bi(,0.5) středí hodota: roztyl: E( X ) 2 D( X ) 4 koeficiet šikmosti: A3 ( X ) 0 koeficiet šičatosti: A X 2 4( )
Biomické rozděleí Bi(,) Ad2) Pro áhodou roměou oisující očet adutí 6 ři 10okusech je jedo zda hodím jedou kostkou 10 - A(1/6), ebo 10 kostkami 1 -Bi(10,1/6).
Zobecěé biomické rozděleí Bi( 1,, k, 1,, k ) áhodé veličiy X 1,, X k s zobecěým biomickým rozděleím, 1,, k, 1,, k (0, 1) fukci: Charakteristiky: ( k i1 i! k i1 i 1 1,, k ) 2 1! 2! k! 1 má ravděodobostí k středí hodota: E( X,, X k ) ( 1,, 1 k )
Geometrické rozděleí Ge() áhodá veličia X s geometrickým rozděleím X~Ge(), (0, 1) má základí rostor Z = {0,1, 2,,, } a ravděodobostí fukci: ( ) (1 ) Pokus oakujeme tak dlouho, až astae úsěch. () je ravděodobost, že rovedeme eúsěšých okusů. Charakteristiky: středí hodota: roztyl: mediá: E( X ) 1 1 D( X ) 2 ~ 0
egativí biomické (Pascalovo) rozděleí B(k,) áhodá veličia X s egativě biomickým rozděleím X~B(k,), k, (0, 1) má základí rostor Z = {0,1, 2,,, } a ravděodobostí fukci: k 1 k ( ) (1 ) Pokus oakujeme tak dlouho, až astae k úsěchů. () je ravděodobost, že rovedeme eúsěšých okusů řed k-tým úsěšým okusem. Charakteristiky: středí hodota: roztyl: mediá: E( X ) k 1 1 D( X ) k 2 ~ k 1
Pascalovo (egativí biomické ) rozděleí Ps(k,) Pojmeováo odle Blaise Pascala (1623 1862).
Zobecěé Pascalovo (egativí biomické) rozděleí Ps(k,) áhodá veličia X s ascalovým rozděleím X~Ps(k,), kr, k >0, (0, 1) má základí rostor Z = {0,1, 2,,, } a ravděodobostí fukci: k 1 k ( ) (1 ) kde místo faktoriálu oužijeme Gama fukci: k k t! ( k 1) t e dt 0
áhodá veličia X s hyergeometrickým rozděleím X~H(,M,), kde libovolé celé číslo, 1 M <, 1 <, základí rostor Z = {ma{0, M-+},, mi{m,} ravděodobostí fukci: Hyergeometrické rozděleí H(,M,) Charakteristiky: středí hodota: roztyl: mediá: M M ) ( M X E ) ( 1 1 ) ( M M X D 2 1 1 1, 2 1 1 ~ M M S1P áhodá roměá vybraá rozděleí
Hyergeometrické rozděleí H(,M,) Hyergeometrické rozděleí výběr bez vraceím
Poissoovo rozděleí Po(λ) áhodá veličia X s Poissoovým rozděleím X~Po(λ), λ R, λ>0 má základí rostor Z = {0,1, 2,,, } a ravděodobostí fukci: ( ) e! Charakteristiky: středí hodota: roztyl: E(X ) D(X ) mediá: ~ 1, koeficiet šikmosti: A3 ( X ) 1
Poissoovo rozděleí Po(λ) Poissoovo rozděleí rozděleí, které oisuje výskyt áhodého jevu v ředem daém časovém úseku. λ lze ovažovat jako růměrý očet událostí za časový úsek
Poissoův roces zkoumá ravděodobost, že se v časovém itervalu délky t stae rávě událostí. Podmíky: 1) očet událostí v disjukích itervalech jsou ezávislé 2) ravděodobost, že se během itervalu délky dt stae rávě jeda událost je rova λdt 3) ravděodobost, že se během itervalu délky dt stae dvě a více událostí je rova 0dt Hustota ravděodobosti, že se v časovém itervalu délky t stae rávě událostí. t t f ( t) e! Pro evý časový iterval délky t ozačme: λt=τ f ( t) t e!
Aroimace diskrétích rozděleí Za vhodých odmíek lze jedo rozděleí ahradit jiým aroimace Biomického rozděleí: V rai můžeme Biomické rozděleí Bi(,)ahradit Poissoovým Po(λ) za těchto odmíek: < 0.1 a > 30. Tedy λ=. Bi(,) Po() Chyba aroimace je < 10-2.
Aroimace diskrétích rozděleí Za vhodých odmíek lze jedo rozděleí ahradit jiým aroimace Biomického rozděleí:
Aroimace diskrétích rozděleí Aroimace Hyergeometrického rozděleí: Biomické rozděleí výběr s vraceím Hyergeometrické rozděleí výběr vez vracei Pokud budeme mít velký očet rvků a očet vybraých rvků bude malý, tak výsledek okusu bude málo ovlivě vraceím. Pokud 0,1, tak lze Hyergeometrické rozděleí ahradit Biomickým. M H(,M,) Bi(, )