Kpitol 5 Hilbertův prostor 5.1 Zákldní vlstnosti Historická poznámk 5.1.1. Prostor X se sklárním součinem je strukturou n lineárnímprostorus nejsilnějšími xiomy.jetonormovnýlineárníprostor,vněmžje norm definován pomocí tzv. sklárního součinu. Proto v něm můžeme využívt všech pozntků, se kterými jsme se v rámci metrických prostorů nebo normovných lineárních prostorů seznámili. Sklární součin umožňuje zvést v prostoru se sklárním součinem nvíc kolmost(ortogonlitu) prvků. Je-li tento prostor nvíc úplný, budeme ho nzývt Hilbertův prostor. D. Hilbert(1862 1943) položil zákldy studi této struktury. Vznik teorie bstrktního Hilbertov prostoru se všk klde ž do r. 1927 je spojovánsejménemj.vonneumnn(1903 1957).LátkoHilbertověprostoruptřído tzv. funkcionální nlýzy je vykládán v mnoh učebnicích věnovných této bstrktní části nlýzy. Stručný výkld nejdůležitějších výsledků lze nlézt npř. v[44] nebo[43]. Definice 5.1.2. Nechť X je lineární prostor nd tělesem K reálných nebo komplexních čísel s binární opercí(, ), která má následující vlstnosti: Provšechn x,y,z Xvšechn α,β Kpltí (1) (x,x) 0, (2) (x,x)=0právěkdyž x=0, (3) (x,y)=(y,x), (4) (αx+βy,z)=α(x,z)+β(y,z). Pkříkáme,žedvojice Xspolus(, )tvoříprostorsesklárnímsoučinem(někdy téžunitárníprostor).operci(, )nzývámesklárnísoučinn X 1 ). Položíme x := (x,x), x X ukážeme,žetktodefinovnáfunkceje oprvdu norm n X, jk to odpovídá použitému oznčení běžnému v teorii normovných lineárních prostorů. Skutečně, přímo z vlstností sklárního součinu definicenormyplyne,žeprovšechn x X je x 0,přičemž x =0, právěkdyž x=0.provšechn x X α Kjetéž αx = α x.kdůkzu trojúhelníkové nerovnosti pro normu si připrvíme užitečné lemm. Lemm 5.1.3(Schwrzov nerovnost). Je-li X prostor se sklárním součinem,pkprovšechn x,y Xpltí (x,y) x y ; (5.1) rovnostv(5.1)nstává,právěkdyžjsouprvky x,y Xlineárnězávislé. Důkz.Pro x=0nebo y=0pltív(5.1)dokoncerovnostx, yjsoulineárně závislé.nerovnostrovněžtriviálněpltípro(x,y)=0.při y 0, x X α Cje 0 (x αy,x αy)= x 2 α(y,x) α(x,y)+αα y 2. (5.2) 1 ) Jdeodlšílicenci,logičtějšíbybyloříktsklárnísoučinn X X.
76 KAPITOLA5. Hilbertůvprostor Volme α=(x,x)/(y,x)dosďmedopředchozírovnosti;tkdostneme 0 x 2 x 2 x 2 + x 4 (y,x) 2 y 2, (5.3) zčehožjižplyne(5.1).jestližepltív(5.1)rovnost,pltípostupněv(5.3)tké v(5.2),tedy x αy=0,neboli x=αyx, yjsoulineárnězávislé.abychom ukázli, že v(5.1) nstává rovnost, právě když jsou x, y lineárně závislé, zbývá vyšetřitpřípdnenulovýchzávislých x, y.pkexistuje β Ctk,že x=βyje (x,y) = (βy,y) = β (y,y) = βy y = x y, tedyv(5.1)pltírovnost.tímjedůkztvrzenídokončen. Lemm 5.1.4(trojúhelníková nerovnost). Je-li X prostor se sklárním součinempoložíme-li x := (x,x), x X,pkprokždédvprvky x,y X pltí x y x ± y x + y (5.4) Důkz. Podle(5.1) pltí x+y 2 = (x+y,x+y) (x,x)+ (x,y) + (y,x) +(y,y) z čehož dostneme odmocněním x 2 +2 x y + y 2 = ( x + y ) 2, x+y x + y. (5.5) Uvžmedále,žepltí x = x+y y x+y + y,tedy x y x+y. Zesymetriedostávámestejnýodhdpro y x spojenímobou x y x+y ; (5.6) nynístčíještěuvážit,že y = y.tímjetrojúhelníkovánerovnost(5.4) dokázán. Důsledek5.1.5. Funkce x x := (x,x), x Xdefinujen Xnormu. Definice 5.1.6. Prostor se sklárním součinem, který je vzhledem k normě tímto součinem generovné úplný, nzýváme Hilbertův prostor. Příkld 5.1.7. Nejjednodušším příkldem Hilbertov prostoru je konečněrozměrnýprostor l 2 m uspořádných m-ticreálnýchnebokomplexníchčísel,jestliže definujemepro x=(x 1,x 2,...,x m ), y=(y 1,y 2,...,y m )sklárnísoučinvzthem (x,y)= m x k y k. Sndno se ukáže, že součin má potřebné vlstnosti z Definice 5.1.2. Proto pltí Cuchyho nerovnost m ( m ) ( m x k y k x k 1/2 ) 2 y k 2 1/2. (5.7) Úplnostprostoru l 2 m jedůsledkemúplnosti RC,protožekonvergencevtomto lineárnímprostorujekonvergencí posouřdnicích.
5.1. ZÁKLADNÍ VLASTNOSTI 77 Historická poznámk 5.1.8. Existují tvry nerovnosti (5.1), spojovné s několik jmény;tománásledujícíkořeny:l.a.cuchy(1789 1858)odvodilr.1821nerovnost(5.7), která je Schwrzovou nerovností(5.1) v konkrétním Hilbertově prostoru. V. J. Bunjkovskij(1804 1889) dokázl integrální vrintu nerovnosti r. 1859. Nezávislenněmknídospělr.1875tkéH.A.Schwrz(1843 1921),kterýjipk zobecnil r. 1885 i pro přípd vícerozměrného integrálu. Cvičení5.1.9(Cuchy1821 ). Nechť x k, y k, k = 1,..., m,jsounezápornáčísl. Dokžte přímo(bez odvolání n Schwrzovu nerovnost), že pk pltí m x k y k m x 2 k 1/2 m 1=1 y 2 k 1/2. (5.8) Návod:Pro y =0tvrzenípltí.Zvoltelibovolně x, α Ry 0.Znerovnosti Èm (x k+ αy k ) 2 0,plyne,žeprodiskriminntkvdrtickérovnicesneznámou α m 1 x 2 k+2α m 1 x k y k + α 2 m 1 y 2 k=0 musí být nekldný. Příkld5.1.10(důležitý). 0znčmesymbolem l 2 systémvšechposloupností x={x k }reálnýchnebokomplexníchčísel x k, k N,proněžpltí x k 2 <. (5.9) Sndnolzenhlédnout,že l 2 jevzhledemkpřirozenýmdefinicímsčítání člen počlenu násobenísklárem členpočlenu lineárníprostor:prokždé x l 2 zřejměpltírovnost αx k 2 = α 2 x k 2,znížplyne αx l 2.Pro libovolnádvěčísl,bvyplývásndnoznerovnosti( b ) 2 0jednoduchý odhd2 b 2 + b 2,tkže +b 2 2 +2 b + b 2 2( 2 + b 2 ). (5.10) Aplikujeme-linerovnost(5.10)n x k, y k sečtemeprovšechn k N,dostneme ( x k + y k 2 2 x k 2 + y k 2) <, coždokzuje,žeprostor l 2 jeuzvřenývzkledemkesčítání.chceme-liukázt,že (x,y):= x 1 y 1 + x 2 y 2 + = x k y k, definujen l 2 sklárnísoučin,stčídokáztjehokonečnostprokždédvprvky x,y l 2.Ktomustčídokáztnásledujícílemm. Lemm5.1.11. Prokždédvěposloupnosti x,y l 2 pltínerovnost ( x k y k x k 2) ( 1/2 y k 2) 1/2. (5.11) Důkz. Stčí uvážit, že podle(5.7) pltí nerovnost s konečnými součty pro kždé m N.Vnerovnosti(5.7)přejdemeksupremupřesvšechn m Nnejprven prvé strně tk dostneme n prvé strně nekonečné řdy; pk uděláme totéž n levé strně po odmocnění obdržíme(5.11). Omezení(5.9) zručuje, že prcujeme pouze s posloupnostmi, pro které jsou příslušnýsklárnísoučinodpovídjícínormkonečné.protožejižvíme,že l 2 je prostor se sklárním součinem, je přirozené se ptát, zd je tento prostor úplný, tj. zd je Hilbertovým prostorem. To se většinou dokzuje v dleko obecnějším kontextu, není všk obtížné to dokázt přímo z definice.
78 KAPITOLA5. Hilbertůvprostor Vět5.1.12. Prostor l 2 jeúplnýjetedyhilbertovýmprostorem. Důkz.Proprácisposloupnostmiprvkůzl 2 zvedemedlšíindex npro celou posloupnost místo x n = {x n1,x n2,...}budemepsátpomocídvojitýchindexů {x nk }.Procuchyovskouposloupnost {x n }prvků(posloupností) x n l 2 pltí: kekždému ε >0existuje p Ntk,žeprovšechn m,n p ( x m x n 2 = x mk x nk 2) 1/2 < ε. (5.12) Protožesčítámenezápornáčísl,pltípki x mk x nk < εprokždé k N tk {x nk } n=1jeprokždé k Ncuchyovskáposloupnost.Tytoposloupnosti indexovnéprmetrem k konvergujístejnoměrněvzhledemke k Nknějké posloupnosti x 0 = {x 0k }.Vzhledemkestejnoměrnostivk Nlzezměnitv(5.12) limitnípřechodpro n sesčítánímřdyvzhledemkesčítcímuindexu k, tk limitovtvzhledemkn zznmenímsumy.dostnemetkpodlevrinty Věty15.3.3z[67]z(5.12)odhd x m x 0 ε.ukžmeještě,žettoposloupnost x 0 ležívprostoru l 2.Pročtverecnormy x 0,pltíodhd coždává x 0 l 2. x 0 2 x 0 x n + x n 2 2 ( x 0 x n 2 + x n 2), Poznámk 5.1.13. Čtenář ptrně zná obecnou větu o zúplnění metrických prostorů. Uveďme bez důkzu, že kždý prostor se sklárním součinem lze zúplnit že toto zúplnění je Hilbertovým prostorem: tk lze kždý unitární prostor X vnořit přirozeným způsobem donějkéhohilbertovprostoru H,kterýnení přílišveliký,tkžeproněj pltí X= H. Příkld 5.1.14. Nyní máme k dispozici jeden velmi důležitý příkld Hilbertov prostoru, který nemá konečnou dimenzi. Je možné, že je pouze speciálním přípdem obecnější situce, se kterou jste se již setkli. Uvedeme bez důkzů některá dlší důležitá fkt, nvzující n látku z teorie míry integrálu, která později použijeme.týkjíseprostorů L 2.Budemeprcovtsprostorem(tříd)funkcí,pro kteréjepro < < b < f 2 2:= f(t) 2 dt <. (5.13) Oznčíme L 2 ((,b))prostortřídreálných(resp.komplexních)funkcídefinovných λ-skorovšuden(,b),proněžpltí(5.13).zdeprcujemestřídmifunkcípodle rovnosti λ-skoro všude, kde λ je Lebesgueov mír v R, běžně se všk nerozlišuje mezi těmito třídmi funkcemi, které je reprezentují. Tento prostor je vzhledem ke sklárnímu součinu definovnému pomocí (f,g):= f(t) g(t) dt. (5.14) prostorem se sklárním součinem. Tzv. Hölderov nerovnost má pro tento speciální přípd tvr f(t)g(t) ( dt f(t) ) 2 1/2 ( dt g(t) ) 2 1/2 dt. Prodlšívýkldjezejménpodsttné,že L 2 ((,b))jehilbertůvprostor,tj.že je úplný. Toto tvrzení, které je mimořádně důležité, dokzovt nebudeme. Poznmenáváme, že právě v něm hrje prominentní roli Lebesgueův integrál. Shrňme tedy všechny tyto připomenuté pozntky do následujícího tvrzení:
5.1. ZÁKLADNÍ VLASTNOSTI 79 Vět5.1.15. Prostor L 2 ((,b))jeúplný,seprbilníjetovzhledemkesklárnímu součinu definovnému pomocí(5.13) Hilbertův prostor. K uvedeným příkldům se ještě vrátíme, nyní dokážeme několik obecných tvrzení o Hilbertových prostorech. Lemm5.1.16. Nechť HjeHilbertůvprostor, y 0 H.Zobrzení x (x,y 0 ), x (y 0,x), x x jsou(připevnězvoleném y 0 )stejnoměrněspojitán H. Zobrzení[x,y] (x,y),kdedvojici[x,y]přiřzujemehodnotusklárníhosoučinu(x,y),jespojitézobrzení H Hdo C(resp. R). Důkz. Zčneme se stejnoměrnou spojitostí všech tří zobrzení z první části tvrzení njednou. Sndno užitím(5.1) dostneme odhdy (x,y 0 ) (x 0,y 0 ) y 0 x x 0, (y 0,x) (y 0,x 0 ) y 0 x x 0 ; z trojúhelníkové nerovnosti dostneme x x0 x x0. Z těchto nerovností vyplývá stejnoměrná spojitost všech tří zkoumných zobrzení (zobrzení jsou dokonce lipschitzovská). Nkonec dokážeme spojitost sklárního součinu. Sndno ověříme přímým výpočtem (x x 0,y y 0 )=(x,y) (x,y 0 ) (x 0,y)+(x 0,y 0 )= =(x,y) (x 0,y 0 ) (x x 0,y 0 ) (x 0,y y 0 ), z čehož dostneme pomocí(5.1) již odvozených nerovností (x,y) (x 0,y 0 ) x x 0 y y 0 + x 0 y y 0 + y 0 x x 0, tedyiprvoučásttvrzení. Tvrzení5.1.17. VHilbertověprostoru Hpltíprokždoudvojiciprvků x,y H Důkz. Stčí sečíst rovnosti x+y 2 + x y 2 =2 ( x 2 + y 2). (5.15) x+y 2 =(x,x)+(x,y)+(y,x)+(y,y), x y 2 =(x,x) (x,y) (y,x)+(y,y), po úprvě dostneme okmžitě(5.15). Poznámk5.1.18. Jezjímvé,žetímtovzthemje hilbertovskánorm plněchrkterizován. Kždou normu s právě popsnými vlstnostmi lze generovt pomocí vhodného sklárního součinu. Npř. jde-li o normovný lineární prostor nd R, stčí položit (předchozí rovnosti nyní odečteme) (x, y):= x+y 2 x y 2 4 V komplexnímpřípdě jetotrochusložitější;tentofktvšknebudemevdlšímkničemu potřebovt, je všk užitečné ho znát. Geometricky je podmínk(5.15) zjímvá bývá nzýván rovnoběžníkové prvidlo. Doporučujeme čtenáři nčrtnout si obrázek uvážit, co víme v rovnoběžníku o vzthu délek jeho strn úhlopříček. Konečně stojí z povšimnutí, že podmínk se ověřuje v(mximálně) dvourozměrném podprostoru generovném prvky x, y. Je-li tedy kždý nejvýše dvourozměrný podprostor úplného normovného lineárního prostoru Hilbertovým prostorem, je tké celý prostor Hilbertovým prostorem. Vět 5.1.19. Nechť M je neprázdná, konvexní uzvřená podmnožin Hilbertov prostoru H. Potom pro kždé x H existuje právě jedno y M tk, že x y =dist(x,m)..
80 KAPITOLA5. Hilbertůvprostor Důkz.Existujeposloupnost {y n } M tk,že x y n d:=dist(x,m). Potomz(5.15)plynevzhledemk y m y n = (y m x) (y n x) odhd (y n x) (y m x) 2 =2 ( y n x 2 + y m x 2 ) y n + y m 2x 2 = =2 ( y n x 2 + y m x 2 ) 4 y n+ y m x 2 2 2 ( y m x 2 + y n x 2 ) 4d 2, zněhožplyne,žeposloupnost {y n }jecuchyovská.oznčmejejílimitu y;je y n y, y M x y =d.pokudbyexistovlydvprvky y, zstouto vlstností, musel by podle předcházející úvhy být též cuchyovská posloupnost {y,z,y,z,...}.muselbytedybýtikonvergentní,zčehožjižplyne y= z. Oznčení5.1.20. Jestližepro x,y H pltí(x,y)=0,říkáme,že x,yjsou ortogonální;píšemepk x y.jestližeprovšechn x A,y Bje x y,píšeme A Bmnožiny A,Bnzývámetéžortogonální.Množinuvšech y H,pro kteréje y A(tkzkrácenězpisujeme {y} A),znčíme A ;podobněpíšeme x místo {x}. Poznámk 5.1.21(důležitá). Z linerity sklárního součinu jeho spojitosti plyne,žeprokždé x Hpltí: (1) x jelineárnípodprostor H (2) x jeuzvřený. Odtud jednoduše plyne následující tvrzení: Důsledek5.1.22. Množin M = x M x jeuzvřenýpodprostor Hprokždoumnožinu M H. Vět 5.1.23. Nechť M je uzvřený lineární podprostor v H. Potom existuje dvojice lineárních zobrzení P, Q tkových,žeprovšechn x Hpltí: (1) x=px+qx; (2) x M = Px=x, Qx=0; (3) x M = Px=0, Qx=x; P:H M, Q: H M (5.16) (4) zobrzení P, Q jsou určen jednoznčně; (5) x Px =dist(x,m); (6) x 2 = Px 2 + Qx 2. Důkz.Je-li x H,je x+m := {x+y; y M}konvexníuzvřenámnožin. Položme Qx: = zproto z x+m,projehožnormupltí z = z 0 =dist(0,x+m)=dist(x,m); Vět 5.1.19 zručuje existenci jednoznčnost tkového prvku z. Dále definujme Pxrovností Px: = x Qx.Pkzřejměpltírovnost(1).ZQx x+mplyne Px=x Qx Mtedy P:H M. Ukžme,že(Qx,y)=0provšechn y M;tolestčíukáztprot y,pro něž y =1.Zdefinice Qx=zplyneprokždýsklár α z 2 =(z,z) z αy 2, tedy 0 α(y,z) α(z,y)+ α 2.
5.1. ZÁKLADNÍ VLASTNOSTI 81 Dosdíme α=(z,y),zčehožpoúprvěobdržíme0 (z,y) 2.Odtudjižvyplývárovnost(z,y)=(Qx,y)=0.Tímjsmeověřili,žezobrzení P, Qzobrzují Hdle(5.16).Zřejmětéžpltí(2)(3). Rozložme x Hnsoučet x=x 1 + x 2,kde x 1 M, x 2 M.Potomje Px+Qx=x 1 + x 2, resp. Px x 1 = x 2 Qx. Pkle Px x 1 M, x 2 Qx M (Px x 1,x 2 Qx)=(Px,x 2 )+(x 1,Qx) (x 1,x 2 ) (Px,Qx)=0 tedy Px=x 1, Qx=x 2 ;tímjedokázánjednoznčnost.použitímnlogické úvhyorozklduprolineárníkombinci αx+βydostnemelineritu P, Q:Je tedy αx+βy= P(αx+βy)+Q(αx+βy), x=px+qx, y= Py+ Qy, P(αx+βy) αpx βpy= αqx+βqy Q(αx+βy). Odtud již plyne linerit obou zobrzení. Konečně zbývá zdůvodnit poslední rovnost tvrzení, která je opět důsledkem ortogonlity: x 2 = Px+Qx 2 =(Px+Qx,Px+Qx)= = Px 2 +(Px,Qx)+(Qx,Px)+ Qx 2 = Px 2 + Qx 2. Tím je důkz celého tvrzení dokončen. Poznámky 5.1.24. (1) Předcházející tvrzení lze zobecnit n konečný počet vzájemně ortogonálních uzvřených podprostorů H. (2)Pokudje M H,pkexistujenenulové z H, z M,neboťpro x H \ M je x=y+ z z 0.Prostor M jetedynetriviálnímpodprostorem H. (3) Lineární zobrzení A lineárního prostoru X do X, pro které pltí A 2 (x)=(a A)(x)=Ax provšechn x X se nzývjí projekce(n A(X)). Zobrzení P, Q jsou zřejmě(speciální) projekce nzývjíseortogonálníprojekceprostoru Hn M M. Definice5.1.25. Řekneme,že {x α ; α A}jeortonormálnísystém(též:ortonormální množin), pokud x α =1provšechn α A vektory x α jsoupodvouortogonální,tj.použijeme-likroneckerovsymbolu δ αβ =1pro α=β δ αβ =0pro α β,pltírovnost (x α,x β )=δ αβ, α,β A. Definice 5.1.26. Mximální ortonormální množinu v Hilbertově prostoru H nzýváme ortonormální báze Hilbertov prostoru. Podrobněji: Je to tková ortonormálnímnožin B H,prokteroupltí:je-li B 1 ortonormálnímnožinvh, B B 1,potom B= B 1. Dvouslovný název ortonormální báze, se kterým v Hilbertově prostoru budeme prcovt,je nedělitelný.bázelineárníhoprostoru 2 )ortonormálníbázejsou podsttněrozdílnépojmy.kždýortonormálnísystém {x k }jetvořenlineárně nezávislýmivektory.je-litotiž α 1 x 1 + +α n x n =0,pkpostupnýmnásobením 2 ) NěkdyseužíváprorozlišeníširšíhonázvulineárníbázeneboHmelovbáze.
82 KAPITOLA5. Hilbertůvprostor prvky x 1,...,x n dostneme α 1 = =α n =0.Podsttnýrozdílsevškprojeví v nekonečně rozměrném prostoru. Následující látk spdá do lgebry, proto se omezíme jen n její popis. Vzniká přirozená otázk, jk lze ortonormální systém v nějkém Hilbertově prostoru H získt. Kždý konečný lineárně nezávislý systém A prvků unitárního prostoru lze nhrdit ortonormálním systémem B tk, by pro jejich lineární obly pltil rovnostlin[a]=lin[b].toseprktickyprovádípomocítzv.grm-schmidtov ortogonlizčního procesu. Při něm se postupně z báze H sestrojuje ortonormální systém, přičemž kždý krok procesu přímo souvisí s konstrukcí, se kterou jsme se setkli ve Větě 5.1.23 se kterou budeme ještě prcovt. Je-linpř. {y k }nekonečnáposloupnostlineárněnezávislýchprvků Hjsou-li jižnlezenyortonormálníprvky x 1,...,x n tk,žepltírovnost Lin[x 1,...,x n ]=Lin[y 1,...,y n ], pksestrojímeky n+1 prvky yzpodlevěty5.1.23,kdeje y= (x,x k )x k, z= x y, položíme x n+1 = z/ z.olineárníbázipltítotodůležitétvrzení:vkždém lineárním prostoru X existuje(lineární) báze, což je podle definice tková množin A lineárně nezávislých prvků, pro kterou lineární obl Lin[ A] je roven X. Kždý lineárně nezávislý systém lze doplnit n bázi. Důkz existence báze A se provádí npř. pomocí Zornov lemmtu či podobného prátu. Poznmenejme, že báze A je mximální množinou lineárně nezávislýchprvkůvnásledujícímsmyslu:pokudexistuje A 1 X, A A 1 A 1 je lineárněnezávislá,pk A=A 1. Tvrzení 5.1.27. Kždou ortonormální množinu B H lze doplnit n mximální ortonormální množinu, tj. ortonormální bázi. Tto vět se dokzuje podobně jko vět o existenci báze lineárního prostoru n zákldě Zornov lemmtu nebo některého jiného tvrzení s ním ekvivlentního (jsou to tvrzení ekvivlentní xiomu výběru). Ani tuto větu dokzovt nebudeme. Jevhodnésiuvědomit,žev lgebrickém přípděprcujemeskonečnýmilineárními kombincemi bez jkékoli topologie, ve druhém využíváme i topologické vlstnosti prostoru. Vágně řečeno, prcujeme s nekonečnými lineárními kombincemi. Proto též obecně dimenze prostoru H, tj. mohutnost jeho báze, může být větší než mohutnost jeho ortonormální báze. Uvědomte si rozdíl mezi Lin[A]=H Lin[A]=H. V R m jeortonormálníbázezároveňbází,všknpř.v reálném l 2 tvoří vektorye 1 =(1,0,...),e 2 =(0,1,...),... mximálníortonormálnímnožinu B. Lineární obl Lin[ B] této množiny je všk tvořen pouze tkovými posloupnostmi x=(x 1,x 2,...),proněžje {k N;x k 0}konečnámnožin.Všechnytkové posloupnostitvořílineárnípodprostorprostoru l 2,kterýjevlstnímpodprostorem l 2.Nprotitomuprokždé x l 2 je x=(x 1,x 2,...)= x k e k, x l 2. 1 Vtomtopřípděortonormálníbáze Bnení(lineární)bází l 2. Poznámk 5.1.28. Promyslete si následující zobecnění: Je-li A libovolná množin, uvžujtechrkteristickéfunkce ϕ U jejíchpodmnožin U.Potomchrkteristickéfunkce jednobodových množin jsou zřejmě lineárně nezávislé jejich lineární obl tvoří prostor
5.1. ZÁKLADNÍ VLASTNOSTI 83 chrkteristických funkcí konečných podmnožin A. V lineárním prostoru X všech chrkteristických funkcí podmnožin A umíme prcovt bez obtíží(nemáme potíže s opercemi), ty nstnou při snze o definici sklárního součinu. Zmyslete se nd problémy, kterébychommuseliřešit,pokudbychomdefinovli přirozeně prochrkteristické funkce množin U, V A sklární součin (ϕ U, χ V ): = t A ϕ U(t)ϕ V(t). Tento problém vyřešíme tím, že se omezíme n speciální přípd seprbilních Hilbertových prostorů, dříve všk dokážeme ještě jedno důležité tvrzení, které pltí obecně. Vět 5.1.29(Rieszov vět o reprezentci). Je-li f je spojitý lineární funkcionálnhilbertověprostoru H,pkexistujeprávějedenprvek y f Htk,že provšechn x Hpltí f(x)=(x,y f ). Důkz.Je-li f 0,položíme y f =0.Vopčnémpřípděje M= {x H; f(x)=0} uzvřenýpodprostor H,přičemž M (neboť M H).Zvolme z M, z =1položme u=f(x)z f(z)x. Protožeje f(u)=f(x)f(z) f(z)f(x)=0,je u M(u,z)=0.Odtudvyplývá (u,z)=f(x)(z,z) f(z)(x,z)=0,zčehoždostneme f(x)=f(x)(z,z)=f(z)(x,z)=(x,f(z)z). Stčítedypoložit y f = f(z)z.jednoznčnostsedokážejednoduše:pokudexistují dvprvky y, y spopsnouvlstností,pkprovšechn x Hpltí 0=(x,y) (x,y )=(x,y y ), tedyi(y y,y y )=0.Odtudplyne y= y,čímžjedůkzdokončen. Lemm 5.1.30. Nechť je prostor H seprbilní nechť A je ortonormální systém v H.Potomjesystém Aspočetný 3 ). Důkz.Jestliže x = y =1x y,pk (x y,x y)=(x,x) (x,y) (y,x)+(y,y)=2, tedy δ:= x y = 2.Protožeexistujespočetná Stková,že S= H,lze prokždé x Azvolittkové z x S,že x z x < δ/3.prorůzná x,y Aje δ= x y x z x + z x z y + z y y <2δ/3+ z x z y, tedy z x z y > δ/3zobrzení x z x jeprosté.jelikožexistujeprosté zobrzení množiny A do S, je množin A spočetná. Úmluv 5.1.31. Budeme prcovt s ortonormálními systémy vektorů v Hilbertově prostoru H; všude v dlším výkldu budeme bez upozornění předpokládt, že tento prostor H je seprbilní. Hilbertův prostor nemusí být seprbilní, tím se všk, jk jsme již viděli, některé úvhy zkomplikují. I když jde o komplikci pouze technického rázu, vyhneme se jí. 3 ) Tedykonečnýnebonekonečnýspočetný,lzehotedyindexovtprvky N,přípdně Z.
84 KAPITOLA5. Hilbertůvprostor Lemm5.1.32. Nechť {x k ;,...,n}jeortonormálnísystémvhilbertově prostoru H.Potomprolibovolnéskláry α 1,...,α n zpolepříslušnéhokhpltí x Důkz. Dokážeme, že pltí x Spočteme nejprve n. (x,x k )x k x α k x k 2 n (x,x k )x k + α k (x,x k ) 2 = x αk (x,x k ) 2 = = = (α k (x,x k ))(α k (x,x k ))= 2 α k x k. ( αk 2 α k (x,x k ) α k (x,x k )+ (x,x k ) 2 ) = ( αk 2 α k (x k,x) α k (x,x k )+ (x,x k ) 2 ). Nyní již sndno dostneme rovnost x 2 α k x k = (x = x 2 = x 2 + α k x k, x α k x k )= α k (x k,x) α k (x,x k )+ αk (x,x k ) 2 α k 2 = (x,x k ) 2. Druhýčlenvevýrzunprvéstrněrovnostijenezápornýnbýváhodnoty0, právě když pltí Zbytek je zřejmý. α k =(x,x k ),,...,n. (5.17) Definice5.1.33. Je-li {x k ; k N}={x k }ortonormálnísystémvhilbertově prostoru H,pkčíslům(x,x k )říkámefourierovykoeficientyvzhledemksystému {x k ; k N}.Budemejeznčit x(k)=(x,x k ), k N. Důsledek5.1.34(Besselovnerovnost). Nechť {x k }jeortonormálnísystém v(seprbilním)hilbertověprostoru Hnechť x H x(k)=(x,x k ).Potom pltí x(k) 2 x 2. (5.18) Důkz.K(5.18)dospějemetkto:je-li HHilbertůvprostor{x k ;,...,n} jeortonormálnísystémvh,odvodilijsmeprokždé x H x α k x k 2 = x 2 + α k (x,x k ) 2 (x,x k ) 2.
OdtuddostávámevolbouFourierovýchkoeficientůnmístě α k 5.1. ZÁKLADNÍ VLASTNOSTI 85 (x,x k ) 2 = x 2 x (x,x k )x k 2, tedy (x,x k ) 2 x 2. Přechodem k supremu n levé strně plyne odtud(5.18). Poznámk 5.1.35(důležitá). Vzhledem k tomu, že máme k dispozici pojem konvergence v Hilbertově prostoru, lze sndno definovt součet řdy prvků H. Vímetotiž,jkdefinovt y m : = m x kkdy y n y.můžemetedyzcházet s řdmi v H, niž budeme budovt rozsáhlejší teorii. Budou nás zjímt řdy speciálníhotvru.je-li B= {x k }ortonormálnímnožinvhkonverguje-liřd α k x k, k y H,pkpro y m = m α kx k jezřejmě α k =(y m,x k ) m m y m 2 = (y m,x k ) 2 = α k 2. Odtudplyne,žepokudřdkonvergujeky,musípltit α k 2 = y 2, nebolivbesselověnerovnostinstávárovnostposloupnost {α k }jeprvkem l 2. Sndno též nhlédneme, že při dném ortonormálním systému {x k } je prvek (x,x k)x k jednoznčněurčenpomocí x:k (x,x k ), k N. Rovnost x(k)=(x,x k )definujespojitýlineárnífunkcionálprotojezobrzení F: H l 2,přiřzující x x,lineární.znerovnosti x(k) ŷ(k) 2 x y 2 plyne, že toto zobrzení F je spojité. Důležitou otázkou je zkoumt, zd kdy je v předchozím kontextu F zobrzenímn l 2 izometrií.důkznásledujícívětysezdálehkýjenproto,žeprcujeme s úplným prostorem. Vět5.1.36(F.Riesz,Fischer1907). Nechť {x k } Hjeortonormálnísystémnechť ϕ(k) l 2.Potomexistuje y Htk,žeje ϕ=ŷ,řd ϕ(k)x k konvergujevhpltí ( y = ϕ(k) 2) 1/2. Důkz.Oznčme y n := n ϕ(k)x k.potompro m,n N, m > n,pltí ( m y m y n 2 = k=n+1 ϕ(k)x k, m k=n+1 ϕ(k)x k )= m k=n+1 ϕ(k) 2. Protoževškřd ϕ(k) 2 konverguje,jeposlednísoučetvpředchozím vzthulibovolněmlýprovšechn m > n,jkmileje n Ndosttečněvelké. Jetedy {y n }cuchyovskáposloupnost,kterávúplnémprostoru l 2 konverguje knějkému y l 2,čímžjedůkzdokončen;zdejdeprktickyoodhdzbytkem konvergentní řdy po n-tém členu.
86 KAPITOLA5. Hilbertůvprostor Dokázlijsmetedy,žesohledemnúplnost H jezobrzení F : H l 2 vždyn.nássmozřejměnejvícezjímá,kdylzekždé x H vseprbilním (nekonečněrozměrném) Hilbertově prostoru vyjádřit pomocí určité ortonormální množiny D={x k },tovetvru x= (x,x k )x k, což je Fourierov řd v H vzhledem k ortonormální množině D. Nzávěrnšepozntkyshrnemedojedinévětyuvedemejedovzájemné souvislosti. Pk si již jen uvědomíme, co odtud z vybudovné bstrktní teorie dostnemepro klsické Fourierovyřdy. Vět5.1.37. Nechť B:= {w k } HjeortonormálnívH.Následujícípodmínky jsou ekvivlentní. () B je ortonormální báze Hilbertov prostoru H; (b) všechny konečné lineární kombince prvků z B tvoří hustou podmnožinu H, tj.lin[b]=h; (c) jestližeprovšechn w k, k N,pltí(x,w k )=0,pk x=0; (d)provšechn x Hje x= (x,w k)w k ; (e) provšechn x,y Hje (x,y)= x(k)ŷ(k). (f)provšechn x Hpltítzv.Prsevlovrovnost x 2 = x(k) 2 (5.19) Důkz.Dokážemepostupněsériiimplikcí()... (f) (). () (b): ZřejmějeLin[B]lineárnípodprostor HprotojeLin[B]uzvřený lineární podprostor H, neboť sndno ověříme, že x n x, y n y x n + y n x+y,...; operce sčítání násobení sklárem ve zřejmém smyslu spojité n H. Při Lin[B] H jelin[b] netriviálnítedy B nenímximální,coždává ekvivlentní výrok non(b) non(). (b) (c): Jestližepltí(x,w k )=0provšechn k N,jei(x,y)=0prokždé y Lin[B]zespojitostisklárníhosoučinuiprokždé y Lin[B]=H, tedyjei(x,x)=0x=0. (c) (d): Prokždé w l Bkždé x Hdostáváme ( x (x,w k )w k, w l )=(x,w l ) (x,w k )(w k,w l )= což dává potřebné tvrzení. =(x,w l ) (x,w l )=0,
(d) (e): Prokždédvprvky x,y Hdostáváme ( (x,y)= (w k,x)w k, 5.1. ZÁKLADNÍ VLASTNOSTI 87 (w l,y)w l )= l=1 = [k,l](x,w k,)(w k,w l )(y,w l )= (e) (f): Nynístčídotvruz(e)dosdit x=y. (x,w m )(y,w m ). (f) (): Budeme postupovt sporem: Předpokládejme, že existuje nenulové z H \B, z =1.Uvžujmeortonormálnímnožinu B 1 = B {z}.pomocí (f) Besselovy nerovnosti dostneme m=1 z 2 = (z,w k ) 2 < (z,w k ) 2 + (z,z) 2 = z 2 Nlezený spor ukzuje, že B je mximální. Tímjedůkz kolečkimplikcí tedyitvrzenívětydokončen. Příkld 5.1.38. Teorii, se kterou jsme se seznámili, lze plikovt n klsický přípd Fourierových řd. Je všk nutná jistá optrnost související s tím, že jsme používli některá oznčení ve dvojím význmu(npř. Fourierovy koeficienty pod.). Vdlšímbudemeužívtoznčení L p (2π)pro2π-perodickéfunkcezprostoru (tříd)funkcí L p,tj.funkcískonvergentnímlebesgueovýmintegrálemnintervlu( π, π). Systémfunkcí {1,cos kx,sin kx} jetvořenfunkcemivl 2(2π),kteréjsou ortogonální; tyto funkce všk nejsou ortonormální. Odpovídjící ortonormální systémje(prcujemesnormouzl 2 (2π)!) { 1 2π, cos kx π, sin kx π }. Protožetrigonometricképolynomytvoříhustoupodmnožinu L 2 (2π),jesplněn podmínk(b)zvěty5.1.37,tedyikterákolizpodmínektéževěty. Pro Fourierovy koeficienty ve smyslu teorie Hilbertových prostorů pltí npř. ( cos kx ) f, = 1 π f(t)cosktdt, π π π tkžeodpovídjícíkoeficient k v klsickéteorii jeroventomutočíslužn fktor1/ π.obdobnývzthpltíiproosttníkoeficienty;připomeňmeještě,že bsolutníčlen jsmevklsickéteoriipslivetvru 0 /2. ProfunkcizL 2 (2π)tkdostnemerovnost(jereálnéčíslo) +2π ( f(t) 2 0 2 dt= π 2 + ) ( k 2 + b k 2 ), (5.20) která je pouze přepisem Prsevlovy rovnosti(5.19) z podmínky(f) z Věty 5.1.37. Tutorovnostlzevyužítnpříkldkvýpočtunormyfunkce fv L 2 (2π),známe-li její Fourierovy koeficienty umíme sečíst řdu n prvé strně rovnosti(5.20), nebo k sečtení hodnoty téže řdy v přípdě, že nopk známe hodnotu integrálu v(5.20) vlevo. Oznčíme-li k, b k, k N 0Fourierovykoeficientyfunkce g L 2 (2π)budeme-li předpokládt, že obě funkce f, g jsou reálné, můžeme pro ně odvodit vzorec +2π ( 0 ) 0 f(t)g(t)dt=π + ( k 2 k+ b k b k).
88 KAPITOLA5. Hilbertůvprostor Čtenářsijižvcelkusndno přeloží dlšívýsledky. ProfunkcezL 2 (2π)vycházítedyceláteorievelmielegntnějejichFourierovy řdy konvergují bodově skoro všude ve smyslu Lebesgueovy míry. Výše popsnými prostředky všk přesnější informci o množině bodů, v níž řd konverguje, nemáme. Tu při výlučném použití teorie Hilbertových prostorů získt nemůžeme. Příkld 5.1.39(Legendreovy polynomy). Výše probrná teorie všk dává jistou informci npř. pro různé systémy ortogonálních polynomů. V obecné poloze jde o vyšetřování systémů funkcí, jejichž sklární součin je definován vzorcem (f,g)= V(t)f(t)g(t)dt, kde(,b) RjejistýintervlV jekldná(konečná)funkcen(,b);tse nzývá váh. Pro přiblížení těchto speciálních tříd si blíže všimneme ortogonálních polynomů. které se nzývjí Legendreovy polynomy. V tom přípdě je(, b) omezený intervl v R váh V je identicky rovn 1. Podrobnější informci nlezne zvídvý čtenář v[34]. OznčímehlednéLegendreovypolynomysymbolem P n,kde njestupeňpolynomu P n.zřejmělze P n zpstjko n-touderivcipolynomu Q n,kterýje stupně2n.potomprokždýpolynom Rstupněnižšíhonež npltí(užíváme metodu per-prtes) = [ Q (n 1) n P n (t)r(t)dt= Q (n) n (t)r(t) dt = (t)r(t) Q n (n 2) (t)r (t)+ ± Q n (t)r (n 1) (t) ] b t= Zpodmínkyortogonlityplyne,žebytentovýrzmělbýtroven0.Tonstnenpříkldtehdy,jestližebudemítpolynom Q n z n-násobnékořenykrjníbody,b. Definujemetedy Q n (t)=a n (t ) n (t b) n,kdedlezvykukldeme A n =1/(2 n n!), tkže Pltí = [ Q (n) n Q (n 1) n d n P n (t)= 1 2 n n! dt n ((t )(t b)) n. P 2 n(t)dt= Q (n+1) n Q n (n 2) Q (n) n (t)q (n) n (t)dt= + ± Q (2n 1) n Q n ] b ± Q (2n) n (t)q n (t)dt. Závork je rovn 0, tkže vprvo zbude poslední integrál, který je roven (2n)! 2 2n (n!) 2 (t ) n (t b) n dt. Dlší n-násobná plikce metody per-prtes dá P 2 n(t)dt= (b )2n+1 2 2n (2n+1). Položíme-li(, b) =( 1, 1) ponecháme-li všechno osttní oznčení, dostneme P n (t)= 1 2 n n! d n dx n ( (x 2 1) n), 1 1 P 2 n(t)dt= 2 2n+1. Pro tyto polynomy lze odvodit různé rekurentní formule; srv. npř.[34], Věty 212 213: (n+1)p n+1 (t) (2n+1)tP n (t)+np n 1 (t)=0,
5.1. ZÁKLADNÍ VLASTNOSTI 89 odkud vyplývá P 0 (t)=1, P 1 (t)=t, P 2 (t)= 3t2 2 1 2, P 3(t)= 5t3 2 3 2 t,. Legendreovypolynomysplňujíprovšechn n N 0 diferenciálnírovnici (1 t 2 )P n(t) 2tP n(t)+n(n+1)p n (t)=0. Příkld 5.1.40(Čebyševovy polynomy). Tyto polynomy tvoří rovněž ortogonálnísystémv( 1,1)vzhledemkváze V(t)=(1 t 2 ) 1/2.Přístupknim jerůzný.jsoutonpříkldpolynomyskoeficientem1u nejvyššímocniny x n, které nejlépe proximují v suprémové normě identicky nulovou funkci n intervlu [ 1,1].Lzejevyjádřitvzorcem T 0 (t)=1, T n (t)= 1 2n 1cos(nrccos t). Jiný přístup k ortogonálním polynomům je možný přes tzv. vytvořující funkce.