26. listopadu a 10.prosince 2016

Rozměr: px
Začít zobrazení ze stránky:

Download "26. listopadu a 10.prosince 2016"

Transkript

1 Integrální počet Přednášk listopdu 10.prosince 2016

2 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce

3 K čemu integrální počet? určení funkce, je-li znám její derivce neurčitý integrál výpočet plochy, která je vymezen grfem funkce f (x) n intervlu,, b osou nezávislé proměnné x, délky křivky, objemu, fyzikálních veličin - moment,... Úloh: zdné funkci f budeme hledt funkci F tkovou, by pltilo: F = f. Doporučený text

4 Neurčitý integrál Definice. Necht funkce f (x) je definovná n intervlu I. Funkce F (x) se nzývá primitivní k funkci f (x) n I, jestliže pltí F (x) = f (x) pro kždé x I. Množin všech primitivních funkcí k funkci f (x) n I se nzývá neurčitý integrál z funkce f (x) znčí se f (x)dx: f (x)dx = F (x) Vět. Necht funkce F (x) je primitivní k funkci f (x) n intervlu I. Pk kždá jiná primitivní funkce k funkcif (x) n I má tvr F (x) + c, kde c R. Vět. Je-li funkce f spojitá n intervlu I, pk n tomto intervlu existuje lespoň jedn primitivní funkce k funkci f.

5 Vět. Necht n intervlu I existují integrály f (x)dx g(x)dx. Pk n I existují tké integrály (f (x) ± g(x))dx f (x)dx, kde R je libovolná konstnt, pltí: (f (x) ± g(x))dx = f (x)dx ± g(x)dx, f (x)dx = f (x)dx Neurčitý integrál ze součtu (rozdílu) je součtem (rozdílem) neurčitých integrálů, konstntu lze z neurčitého integrálu vytknout. Přímo z definice neurčitého integrálu vyplývá pltnost rovností [ f (x)dx] = f (x) F (x) dx = F (x) + c, c R

6 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce

7 Zákldní integrční metody Tbulkové integrály Metod per prtes Substituční metod

8 Tbulkové integrály 1 2 0dx = c dx = x + c 3 x α dx = xα+1 α c α R, α dx = ln x + c x 5 e x dx = e x + c 6 x dx = x ln + c, > 0 7 sin xdx = cos x + c 8 cos xdx = sin x + c 1 9 dx = rctgx + c 1 + x dx = rcsinx + c 1 x cos 2 dx = tgx + c x Příkldy ( x ) dx x x 3 1 x 1 dx x 4 1 x + 2 dx ( 3 ) 2 x x dx x 2 x x 2 dx dx sin 2 x cos 2 x cos 2x cos 2 x dx cotg 2 xdx

9 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce

10 Substituční metod Připomenutí: (F [ϕ(x)]) = F [ϕ(x)] ϕ (x) Vět. Necht funkce f (u) má n otevřeném intervlu J primitivní funkci F (u), funkce ϕ(x) má derivci n otevřeném intervlu I pro libovolé x I je ϕ(x) J. Pk má složená funkcef [(ϕ(x))]ϕ (x) n intervlu I primitivní funkci pltí f [(ϕ(x))]ϕ (x) dx = F [ϕ(x)] + c Použití: Oznčíme u = ϕ(x). Rovnost u = ϕ(x) diferencujeme: u = du dx = 1, ϕ (x) = dϕ(x) dx Nhrdíme ϕ(x) u, ϕ (x) dx du: f [(ϕ(x))]ϕ (x) dx = ϕ(x) = u ϕ (x)dx = du = f (u) du

11 Příkldy : substituční metod sin x cos xdx dx x ln x dx 1 x 2 rccosx e x e x + 2 dx sin 2xdx e 5x dx dx x dx 4x x 2

12 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce

13 Metod per-prtes Připomenutí: (u(x) v(x)) = u (x) v(x) + u(x) v (x) u(x) v (x)dx = u(x) v(x) u (x) v(x)dx Příkldy 1. (2x + 3) cos x dx 2. x 2 ln x dx 3. x ln 2 x dx 4. ln x dx rctgx dx e x cos x dx cos(ln x)x dx 2x sin 2 x dx

14 Rozkld n prciální zlomky Rcionální funkce je podíl dvou mnohočlenů. Kždou neryze lomenou rcionální funkci (stupeň čittele je větší než stupeň jmenovtele nebo je mu roven) lze dělením převést n součet mnohočlenu ryze lomené rcionální funkce ( stupeň čittele je menší než stupeň jmenovtele). Prciální zlomky A, k N, α, A R (x α) k Mx + N (x 2 + px + q) k, k N, M, N, p, q R, p2 4q < 0

15 Rozkld n prciální zlomky - příkldy Necht R(x) P(x) je rcionální ryze lomená funkce. Q(x) Podle rozkldu jmenovtele Q(x) = (x α 1 ) k 1... (x α r ) kr (x 2 +p 1 x +q 1 ) l 1... (x 2 +p s x +q s ) ls rozkládáme R(x) n součet prciálních zlomků: k násobnému reálnému kořenu α hledáme A i : A 1 x α,..., A k (x α) k l násobným komplexně sdruženým kořenům (x + px + q): M 1 x + N 1 x 2 + px + q,..., M l x + N l (x 2 + px + q) l 2x x x 2 6x + 5 dx 3. x dx dx 3x x 2 (x 1) dx 4. x 3 1 dx

16 Integrály obshující goniometrické funkce: R(cos x, sin x) cos m x sin n x dx, m, n Z spoň jedno z čísel m, n je liché: substituce: (m je liché) sin x = t resp. (n je liché) cos x = t cos x dx = dt resp. sin x dx = dt, sin 2 x = 1 cos 2 x cos 2 x = 1 sin 2 x obě čísl jsou sudá úprv: sin 2 x = Příkldy 1. cos 5 x sin 2 x dx 2. 1 cos 2x, cos 2 x = sin x dx, x (0, π) 1 + cos 2x 2 cos 2 x dx univerzální substituce t = tg x, x ( π, π), 2 x = rctg t, dx = 2 2t 1 t2 dt, sin x =, cos x = 1 + t2 1 + t2 1 + t 2

17 Integrály obshující odmocniny R(x, s x): substituce x = t s x 2 + x + 1 Příkld: x + x dx R(x, s x + b): substituce x + b = t s R(x, x 2 + bx + c): Eulerovy substituce, goniometrické substituce

18 Určitý integrál Existence: Necht funkce f (x) je definovná n uzvřeném intervlu, b. Necht je splněn n tomto intervlu kterákoliv z následujících podmínek: (1) f (x) je monotónní, (2) f (x) je spojitá, (3) f (x) je omezená má nejvýše konečný počet bodů nespojitosti. Potom existuje určitý integrál b f (x)dx. Výpočet určitého integrálu: Newtonov - Leibnitzov formule Necht funkce f (x) je integrovtelná n intervlu, b necht F (x) je její primitivní funkce. Potom pltí: b f (x) dx = F (b) F ()

19 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce

20 Aplikce určitého integrálu Geometrické plikce Obsh rovinné množiny Délk křivky Objem rotčního těles Obsh pláště rotčního těles Fyzikální plikce hmotnost, sttický moment, souřdnice těžiště, moment setrvčnosti...

21 Výpočet obshu (plochy) rovinných útvrů Necht je funkce f (x) integrovtelná n intervlu, b, je n něm nezáporná. Pk pro obsh křivočrého lichoběžník ohrničeného shor grfem funkce f (x), přímkmi x =, x = b osou x pltí P = b f (x) dx. Je-li funkce f (x) n intervlu, b nekldná, pro obsh křivočrého lichoběžník ohrničeného zdol grfem funkce f (x), přímkmi x =, x = b osou x pltí P = b f (x) dx. Necht jsou funkce f (x) g(x) integrovtelné pltí g(x) f (x) pro kždé x, b. Pk pro obsh křivočrého lichoběžník ohrničeného zdol grfem funkce g(x), shor grfem funkce f (x) přímkmi x =, x = b pltí P = b (f (x) g(x)) dx.

22 Příkldy Vypočtěte obsh rovinného obrzce ohrničeného 1 y = 4 x 2 ; y = 0 2 xy = 4; x + y = 5 3 y 2 = 2x + 1, x y 1 = 0 4 y 4, x 2 y, x 2 4y

23 Prmetricky zdná funkce Necht funkce f je dán prmetrickými rovnicemi x = ϕ(t) y = ψ(t), přičemž funkce ϕ(t) ψ(t)jsou spojité pro t α, β. Je-li funkce ϕ(t) ryze monotonní má spojitou derivci n intervlu α, β, přičemž ϕ(α) = ϕ(β) = b, pk pro obsh křivočrého lichoběžník ohrničeného shor grfem funkce f, přímkmi x =, x = b osou x pltí β P = ψ(t)ϕ (t) dt. Příkldy 1 x = 2 sin t, y = 2 cos t, 0 t π; 2 x = 2t t 2, y = 2t 2 t 3, 0 t 2 α

24 Délk oblouku křivky Necht je funkce f (x) definovná n intervlu <, b > má zde spojitou derivci. Pk délk této křivky s = b 1 + [f (x)] 2 dx. Necht funkce f je dán prmetrickými rovnicemi x = ϕ(t) y = ψ(t), přičemž funkce ϕ(t) ψ(t)jsou spojité pro t α, β, přičemž funkce ϕ(t) ψ(t) mjí spojité derivci n intervlu α, β Pk délk této křivky Příkldy s = β 1 y = ln x, 3 x 8 α [ϕ (t)] 2 + [ψ (t)] 2 dt. 2 x = 2 cos t, y = 2 sin t, 0 t π

25 Objem rotčního těles Necht je funkce f (x) spojitá nezáporná n intervlu <, b >. Pk rotční těleso, které vznikne rotcí křivočrého lichoběžník ohrničeného shor funkcí f (x), osou x přímkmi x =, x = b kolem osy x, má objem V = π b f 2 (x) dx Pro výpočet objemu rotčního těles, které vznikne rotcí oblsti ohrničené křivkmi g(x) f (x) kolem osy x pro x <, b > použijeme vzth V = π b f 2 (x) dx π b g 2 (x) dx = π b [ f 2 (x) g 2 (x) ] dx Zcel nlogicky můžeme určit objem rotčního těles, jehož plášt vznikl rotcí spojité křivky x = h(y), y < c, d > kolem osy y: d V = π h 2 (y) dy c Příkld: y = x 2, x = y 2 kolem osy x; kolem osy y

26 Obsh pláště rotčního těles Necht je funkcef (x) spojitá nezáporná n intervlu <, b > má zde spojitou derivc if (x). Pk pro obsh rotční plochy vzniklé rotcí oblouku křivkyy = f (x) kolem osy x pltí S = 2π b f (x) 1 + [f (x)] 2 dx Necht je funkce f dán prmetrickými rovnicemi x = ϕ(t) y = ψ(t), t α, β, přičemž funkce ϕ(t), ψ(t) mjí spojité derivce n intervlu α, β funkceψ(t) je nezáporná n intervlu α, β. Pk pro obsh plochy, která vznikne rotcí grfu funkce f kolem osy x pltí β S = 2π ψ(t) [ϕ (t)] 2 + [ψ (t)] 2 dt α

27 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce

28 Křivk zdná prmetricky Necht je křivk dán prmetrickými rovnicemi x = ϕ(t) y = ψ(t), t α, β, přičemž funkce ϕ(t), ψ(t) mjí spojité derivce n intervlu α, β. Je-li délková hustot ρ křivky konstntní, pk má křivk hmotnost β m = ρ [ϕ (t)] 2 + [ψ (t)] 2 dt α Pro sttické momenty pltí β S x = ρ ψ(t) [ϕ (t)] 2 + [ψ (t)] 2 dt S y = ρ α β α ϕ(t) [ϕ (t)] 2 + [ψ (t)] 2 dt Momenty setrvčnosti této křivky dostneme ze vzthů: β I x = ρ ψ 2 (t) [ϕ (t)] 2 + [ψ (t)] 2 dt I y = ρ α β α ϕ 2 (t) [ϕ (t)] 2 + [ψ (t)] 2 dt Těžiště T = (ξ, η) má souřdnice ξ = S y m, η = S x m

29 Křivk zdná explicitně Necht je hmotná křivk určená explicitní rovnicíy = f (x) se spojitou derivci f (x) n intervlu <, b > konstntní délkovou hustotou ρ. Pk má křivk hmotnost m = ρ Pro sttické momenty pltí: S x = ρ S y = ρ b b b 1 + [f (x)] 2 dx f (x) 1 + [f (x)] 2 dx x 1 + [f (x)] 2 dx Momenty setrvčnosti této křivky dostneme ze vzthů: b I x = ρ f 2 (x) 1 + [f (x)] 2 dx I y = ρ b x [f (x)] 2 dx Těžiště T = (ξ, η) má souřdnice ξ = S y m, η = S x m

30 Těžiště moment setrvčnosti rovinné oblsti Necht je hmotná rovinná oblst ohrničen křivkmi g(x) f (x), kde g(x) f (x) n intervlu, b. Pk hmotnost této oblsti s konstntní plošnou hustotou ρ je m = ρ Pro sttické momenty pltí: S x = ρ 1 2 S y = ρ b b b [f (x) g(x)] dx [f 2 (x) g 2 (x)] dx x[f (x) g(x)] dx Momenty setrvčnosti této rovinné oblsti dostneme ze vzthů: S x = ρ 1 3 S y = ρ b b [f 3 (x) g 3 (x)] dx x 2 [f (x) g(x)] dx Těžiště T = (ξ, η) má souřdnice ξ = S y m, η = S x m

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34.

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34. I. Určete integrály proved te zkoušku. Určete intervl(y), kde integrál eistuje... 3. 4. 5. 6. 7. 8. 9. 0... 3. 4. 5. 6. 7. e d substituce t = ln ln(ln ) d substituce t = ln(ln ), dt = ln 3 e 4 d substituce

Více

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26

LDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26 Určitý integrál Zákldy vyšší mtemtiky LDF MENDELU Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu http://kdemie.ldf.mendelu.cz/cz

Více

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x. KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou

Více

Integrální počet - II. část (určitý integrál a jeho aplikace)

Integrální počet - II. část (určitý integrál a jeho aplikace) Integrální počet - II. část (určitý integrál jeho plikce) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednášk z ESMAT Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 23 Obsh 1 Určitý vlstní (Riemnnův)

Více

Integrální počet - III. část (určitý vlastní integrál)

Integrální počet - III. část (určitý vlastní integrál) Integrální počet - III. část (určitý vlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednášk z AMA1 Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 18 Obsh 1 Určitý vlstní (Riemnnův)

Více

7. Integrální počet Primitivní funkce, Neurčitý integrál

7. Integrální počet Primitivní funkce, Neurčitý integrál 7. Integrální počet 7.. Primitivní funkce, Neurčitý integrál Definice 7. Říkáme, že F (x) je v intervlu (, b) (přitom může být tké =, b = + ) primitivní funkcí k finkci f(x), jestliže pro všechn x (, b)

Více

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Určitý integrál Petr Hsil Přednášk z mtemtiky Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

II. 5. Aplikace integrálního počtu

II. 5. Aplikace integrálního počtu 494 II Integrální počet funkcí jedné proměnné II 5 Aplikce integrálního počtu Geometrické plikce Určitý integrál S b fx) dx lze geometricky interpretovt jko obsh plochy vymezené grfem funkce f v intervlu

Více

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.

Více

Matematika II: Pracovní listy Integrální počet funkce jedné reálné proměnné

Matematika II: Pracovní listy Integrální počet funkce jedné reálné proměnné Mtemtik II: Prcovní listy Integrální počet funkce jedné reálné proměnné Petr Schreiberová, Petr Volný Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Ostrv 8 Obsh Neurčitý integrál.

Více

Integrál a jeho aplikace Tomáš Matoušek

Integrál a jeho aplikace Tomáš Matoušek Integrál jeho plikce Tomáš Mtoušek Křivk Definice.(Vektorováfunkce) Funkci ϕ:r R n,kteráreálnémučíslupřiřzuje n-tici reálných čísel(vektor), nzýváme funkcí vektorovou. Lze ji tké popst po složkáchjko ϕ(t)=(ϕ

Více

6. Určitý integrál a jeho výpočet, aplikace

6. Určitý integrál a jeho výpočet, aplikace Aplikovná mtemtik 1, NMAF071 6. Určitý integrál výpočet, plikce T. Slč, MÚ MFF UK ZS 2017/18 ZS 2017/18) Aplikovná mtemtik 1, NMAF071 6. Určitý integrál 1 / 13 6.1 Newtonův integrál Definice 6.1 Řekneme,

Více

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál)

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál) Integrální počet - IV. část (plikce n určitý vlstní integrál, nevlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednášk z AMA Michl Fusek (fusekmi@feec.vutbr.cz) / 4 Obsh

Více

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. IV. Základy integrálního počtu

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. IV. Základy integrálního počtu MATEMATIKA I. prof. RNDr. Gejz Dohnl, CSc. IV. ákldy integrálního počtu 1 Mtemtik I. I. Lineární lgebr II. ákldy mtemtické nlýzy III. Diferenciální počet IV. Integrální počet 2 Mtemtik I. IV. Integrální

Více

Matematika II: Testy

Matematika II: Testy Mtemtik II: Testy Petr Schreiberová Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Mtemtik II - testy 69. Řy 9 - Test Ktedr mtemtiky deskriptivní geometrie, VŠB - Technická univerzit

Více

Kapitola 7: Neurčitý integrál. 1/14

Kapitola 7: Neurčitý integrál. 1/14 Kapitola 7: Neurčitý integrál. 1/14 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní

Více

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu.

integrovat. Obecně lze ale říct, že pokud existuje určitý integrál funkce podle různých definic, má pro všechny takové definice stejnou hodnotu. Přednášk 1 Určitý integrál V této přednášce se budeme zbývt určitým integrálem. Eistuje několik definic určitého integrálu funkce jedné reálné proměnné. Jednotlivé integrály se liší v tom, jké funkce lze

Více

Přehled základních vzorců pro Matematiku 2 1

Přehled základních vzorců pro Matematiku 2 1 Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,

Více

2. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ

2. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ . INTEGRÁLNÍ POČET FUNKE JEDNÉ PROMĚNNÉ Při řešení technických prolémů, ve fyzice pod. je velmi čsto tře řešit orácenou úlohu k derivování. K zdné funkci f udeme hledt funkci F tkovou, y pltilo F f. Budeme

Více

Kapitola 7: Integrál.

Kapitola 7: Integrál. Kapitola 7: Integrál. Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f(x) x I nazýváme primitivní funkcí k funkci

Více

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby: .. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto

Více

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funkce Riemnnův integrál VIII.2. Primitivní funkce Definice. Nechť funkce f je definován n neprázdném otevřeném intervlu I. Řekneme, že funkce F : I R je primitivní funkce k f n intervlu

Více

12.1 Primitivní funkce

12.1 Primitivní funkce Integrání počet. Primitivní funkce Již jsme definovli pojem derivce funkce, k funkci f(x) jsme hledli její derivci f (x). Nyní chceme ukázt opčný postup, tzn. k funkci f (x) njít funkci f(x). Přesněji,

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

Kapitola 8: Dvojný integrál 1/26

Kapitola 8: Dvojný integrál 1/26 Kapitola 8: vojný integrál 1/26 vojný integrál - osnova kapitoly 2/26 dvojný integrál přes obdélník definice výpočet (Fubiniova věta pro obdélník) dvojný integrál přes standardní množinu definice výpočet

Více

Kapitola 7: Integrál. 1/17

Kapitola 7: Integrál. 1/17 Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený

Více

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je

Více

Matematika II: Listy k přednáškám

Matematika II: Listy k přednáškám Mtemtik II: Listy k přednáškám Rdomír Pláček, Petr Schreiberová, Petr Volný Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Kpitol 1 Integrální počet funkcí jedné proměnné 1.Řy 11

Více

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí

10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí 10 Určitý integrál 10.1 Riemnnův integrál Definice. Konečnou posloupnost {x j } n j=0 nzýváme dělením intervlu [,b], jestliže pltí = x 0 < x 1 < < x n = b. Body x 0,...,x n nzýváme dělícími body. Normou

Více

Matematika II: Listy k přednáškám

Matematika II: Listy k přednáškám Mtemtik II: Listy k přednáškám Rdomír Pláček, Petr Schreiberová, Petr Volný Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Kpitol 1 Integrální počet funkcí jedné proměnné 1.Řy 11

Více

11. cvičení z Matematické analýzy 2

11. cvičení z Matematické analýzy 2 11. cvičení z Mtemtické nlýzy 1. - 1. prosince 18 11.1 (cylindrické souřdnice) Zpište integrály pomocí cylindrických souřdnic pk je spočítejte: () x x x +y (x + y ) dz dy dx. (b) 1 1 x 1 1 x x y (x + y

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Petr Schreierová, Ph.D. Ostrv Ing. Petr Schreierová, Ph.D. Vsoká škol áňská Technická univerzit

Více

17 Křivky v rovině a prostoru

17 Křivky v rovině a prostoru 17 Křivky v rovině prostoru Definice 17.1 (rovinné křivky souvisejících pojmů). 1. Nechť F (t) [ϕ(t), ψ(t)] je 2-funkce spojitá n, b. Rovinnou křivkou nzveme množinu : {F (t) : t, b } R 2. 2-funkce F [ϕ,

Více

Masarykova univerzita

Masarykova univerzita Msrykov univerzit Přírodovědecká fkult Diplomová práce Web k témtu: Integrální počet Bc. Ev Schlesingerová Brno 9 Prohlášení Prohlšuji, že jsem tuto diplomovou práci npsl sm s použitím uvedené litertury.

Více

Obsah na dnes Derivácia funkcie

Obsah na dnes Derivácia funkcie Johnnes Kepler Dec 2, 57- Nov 5, 63 Mtemtik I Prednášjúci: prof. RNDr. Igor Podlný, DrSc. http://www.tke.sk/podln/ # Osh n dnes Deriváci fnkcie 74 KAPITOLA 3. FUNKCE JEDNÉ PROMĚNNÉ Určitý integrál 8. Vlstnosti

Více

KŘIVKOVÉ INTEGRÁLY. Křivka v prostoru je popsána spojitými funkcemi ϕ, ψ, τ : [a, b] R jako množina bodů {(ϕ(t), ψ(t), τ(t)); t

KŘIVKOVÉ INTEGRÁLY. Křivka v prostoru je popsána spojitými funkcemi ϕ, ψ, τ : [a, b] R jako množina bodů {(ϕ(t), ψ(t), τ(t)); t KŘIVKOVÉ INTEGRÁLY Má-li se spočítt npř. spotřeb betonu n rovný plot s měnící se výškou, stčí spočítt integrál z této výšky podle zákldny plotu. o když je le zákldnou plotu nikoli rovná úsečk, le křivá

Více

Integrální počet - II. část (další integrační postupy pro některé typy funkcí)

Integrální počet - II. část (další integrační postupy pro některé typy funkcí) Integrální počet - II. část (další integrační postupy pro některé typy funkcí) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 7. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz) 1 /

Více

5.2. Určitý integrál Definice a vlastnosti

5.2. Určitý integrál Definice a vlastnosti Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)

Více

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci

Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci Mtemtik 1A. PetrSlčJiříHozmn Fkult přírodovědně-humnitní pedgogická Technická univerzit v Liberci petr.slc@tul.cz jiri.hozmn@tul.cz 21.11.2016 Fkult přírodovědně-humnitní pedgogická TUL ZS 2016-2017 1/

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

FAKULTA STAVEBNÍ MATEMATIKA I MODUL 8 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA I MODUL 8 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL 8 URČITÝ INTEGRÁL STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Dněček, Oldřich Dlouhý,

Více

Ur itý integrál. Úvod. Denice ur itého integrálu

Ur itý integrál. Úvod. Denice ur itého integrálu V tomto lánku se budeme v novt ur itému integrálu, který dné funkci p i zuje íslo. My²lenk integrování pochází z geometrických poºdvk - zji² ování povrch, objem délek geometrických útvr. To znmená, ºe

Více

JEDNODUCHÝ INTEGRÁL příklady. pro vysoké školy

JEDNODUCHÝ INTEGRÁL příklady. pro vysoké školy JEDNODUCHÝ INTEGRÁL příkldy pro vysoké školy Bohemicus mthemticus doctor Pvel Novotný 0 Vzor citce: NOVOTNÝ, P. Jednoduchý integrál příkldy : pro vysoké školy. Bučovice : Nkldtelství Mrtin Stříž, 0. 6

Více

je daná funkce. Množinu všech primitivních funkcí k f na I nazveme neurčitým f(x)dx nebo f.

je daná funkce. Množinu všech primitivních funkcí k f na I nazveme neurčitým f(x)dx nebo f. MATEMATICKÁ ANALÝZA INTEGRÁLNÍ POČET PŘEDNÁŠEJÍCÍ ALEŠ NEKVINDA. Přednášk Oznčme R = R {, } jko v minulém semestru. V tomto semestru se budeme zbývt opčným úkonem k derivování. Primitivní funkce. Definice.

Více

III.4. Fubiniova (Fubiniho) věta pro trojný integrál

III.4. Fubiniova (Fubiniho) věta pro trojný integrál E. Brožíková, M. Kittlerová, F. Mrá: Sbírk příkldů Mtemtik II ( III.. Fubiniov (Fubiniho vět pro trojný integrál Vpočítejte trojné integrál n dných množinách E : Příkld. I Řešení : I ( + d d d; {[,, E

Více

2.3 Aplikace v geometrii a fyzice Posloupnosti a řady funkcí Posloupnosti funkcí... 17

2.3 Aplikace v geometrii a fyzice Posloupnosti a řady funkcí Posloupnosti funkcí... 17 Obsh Derivce Integrály 6. Neurčité integrály.................. 6. Určité integrály....................3 Aplikce v geometrii fyzice............ 6 3 Posloupnosti řdy funkcí 7 3. Posloupnosti funkcí.................

Více

8. Elementární funkce

8. Elementární funkce Historie přírodních věd potvrzuje, že většinu reálně eistujících dějů lze reprezentovt mtemtickými model, které jsou popsán tzv. elementárními funkcemi. Elementární funkce je kždá funkce, která vznikne

Více

5.5 Elementární funkce

5.5 Elementární funkce 5.5 Elementární funkce Lemm 5.20. Necht x R. Potom existuje kldné C R (závisející n x) tkové, že pro kždé n N h ( 1, 1) pltí (x + h) n x n nhx n 1 h 2 C n. Definice. Exponenciální funkci exp definujme

Více

Obsah rovinného obrazce

Obsah rovinného obrazce Osh rovinného orzce Nejjednodušší plikcí určitého integrálu je výpočet oshu rovinného orzce. Zčneme větou. Vět : Je-li funkce f spojitá nezáporná n n orázku níže roven f ( ) d. ;, je osh rovinného orzce

Více

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5.

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5. 10. Komplexní funkce reálné proměnné. Křivky. Je-li f : (, b) C, pk lze funkci f povžovt z dvojici (u, v), kde u = Re f v = Im f. Rozdíl proti vektorovému poli je v tom, že jsou pro komplexní čísl definovány

Více

OBECNÝ URČITÝ INTEGRÁL

OBECNÝ URČITÝ INTEGRÁL OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,

Více

Teorie. Hinty. kunck6am

Teorie. Hinty.   kunck6am kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

Matematika II: Pracovní listy do cvičení

Matematika II: Pracovní listy do cvičení Matematika II: Pracovní listy do cvičení Radomír Paláček, Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Příklady Integrální počet funkcí

Více

Matematické metody v kartografii

Matematické metody v kartografii Mtemtické metody v krtogrfii. Přednášk Referenční elipsoid zákldní vzthy. Poloměry křivosti. Délky poledníkového rovnoběžkového oblouku. 1. Zákldní vzthy n rotčním elipoidu Rotční elipsoid dán následujícími

Více

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza ve Vesmíru. Jiří Bouchala Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.

Více

Riemannův určitý integrál.

Riemannův určitý integrál. Riemnnův určitý integrál. Definice 1. Budiž

Více

8.6. Aplikace určitého integrálu ve fyzice Index

8.6. Aplikace určitého integrálu ve fyzice Index 8 Určitý integrál 8.. Integrování - sčitání mnoh mlých příspěvků.......................... 3 8.. Výpočet určitého integrálu.............................................9 8.3. Zákldní vlstnosti určitého

Více

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Neurčitý integrál Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje. 4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost

Více

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci

Více

2.3 Aplikace v geometrii a fyzice... 16

2.3 Aplikace v geometrii a fyzice... 16 Obsh Derivce 3 Integrály 7. Neurčité integrály.................. 7. Určité integrály................... 3.3 Aplikce v geometrii fyzice............ 6 3 Diferenciální rovnice 8 3. Motivce.......................

Více

Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce

Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních

Více

f(x)dx, kde a < b < c

f(x)dx, kde a < b < c URČITÝ INTEGRÁL jeho plikce Newton-Leibnizov formule f(x)=f(b) F(), kde F (x)=f(x). Vlstnosti ) ) ) 4) Substituce f(x)+ c f(x)= f(x)= f(x)= b f(g(x))g (x)= f(x)= f(x) c f(x), kde < b < c pro fsudou, =

Více

Úvod. Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali

Úvod. Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali NEURČITÝ INTEGRÁL Úvod Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali Umět pracovat s integrálním počtem Je důležité pro

Více

Primitivní funkce. Definice a vlastnosti primitivní funkce

Primitivní funkce. Definice a vlastnosti primitivní funkce Obsh PŘEDMLUVA OBSAH 5 I. PRIMITIVNÍ FUNKCE 7 Definice vlstnosti primitivní funkce............ 7 Metody výpočtu primitivních funkcí............. Rcionální funkce................... 7 Ircionální funkce...................

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

NMAF061, ZS Písemná část zkoušky 25. leden 2018

NMAF061, ZS Písemná část zkoušky 25. leden 2018 Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 3 4 5 6 Celkem bodů Bodů 6 6 4

Více

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x. VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální

Více

Matematika II: Pracovní listy

Matematika II: Pracovní listy Matematika II: Pracovní listy Zuzana Morávková, Radomír Paláček, Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava K M D G Předmluva Studijní

Více

Kapitola 1. Taylorův polynom

Kapitola 1. Taylorův polynom Kpitol Tylorův polynom Definice. Budeme psát f = o(g) v R, je-li lim x ( f )(x) =, f = O(g) g v R, je-li ( f ) omezená n nějkém U (). g Příkld. lim x (x + x + 3) 5 (x 5 x 3 + 7x 9) = lim x + o(x ) x x

Více

Správné řešení písemné zkoušky z matematiky- varianta A Přijímací řízení do NMgr. studia učitelských oborů 2010

Správné řešení písemné zkoušky z matematiky- varianta A Přijímací řízení do NMgr. studia učitelských oborů 2010 právné řešení písemné koušky mtemtiky- vrint A Přijímcí říení do NMgr. studi učitelských oborů Příkld. Vyšetřete průběh funkce v jejím mimálním definičním oboru nčrtněte její grf y Určete pritu (sudá/lichá),

Více

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

Funkce jedné proměnné

Funkce jedné proměnné Funkce jedné proměnné Lineární funkce f: y = kx + q, D f = R, H f = R, grf je přímk množin odů [x, y], x D f, y = f(x) q úsek n ose y, tj. od [0, q], k směrnice, k = tn φ = 2 2 1 1, A[ 1, 2 ], B[ 1, 2

Více

Matematická analýza II Osnova cvičení

Matematická analýza II Osnova cvičení Mtemtická nlýz II Osnov cvičení Cvičení 2. 2. 207 22. 2. 207. Rovinná křivk její průběh Křivk (prmetrizovná, hldká, regulární, sm sebe protínjící v nejvýše konečně mnoh bodech). Průběh křivky: první druhá

Více

Výpočet obsahu rovinného obrazce

Výpočet obsahu rovinného obrazce Výpočet oshu rovinného orzce Pro výpočet oshu čtverce, odélník, trojúhelník, kružnice, dlších útvrů, se kterými se můžeme setkt v elementární geometrii, máme k dispozici vzorce Kdchom chtěli vpočítt osh

Více

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková

Text m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková Tento text není smosttným studijním mteriálem. Jde jen o prezentci promítnou n p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze n tbuli nejsou zde obsºeny. Text m ºe

Více

Matematika II: Pracovní listy

Matematika II: Pracovní listy Matematika II: Pracovní listy Zuzana Morávková, Radomír Paláček, Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava K M D G ISBN 978-80-48-334-8

Více

II. INTEGRÁL V R n. Obr. 9.1 Obr. 9.2 Integrál v R 2. z = f(x, y)

II. INTEGRÁL V R n. Obr. 9.1 Obr. 9.2 Integrál v R 2. z = f(x, y) . NTEGRÁL V R n Úvod Určitý integrál v intervlu, b Pro funki f :, b R jsme definovli určitý integrál jko číslo, jehož hodnot je obshem obrze znázorněného n obrázíh. Pro funki f : R n R budeme zvádět integrál

Více

Definice. Nechť k 0 celé, a < b R. Definujeme. x < 1. ϕ(x) 0 v R. Lemma [Slabá formulace diferenciální rovnice.] x 2 1

Definice. Nechť k 0 celé, a < b R. Definujeme. x < 1. ϕ(x) 0 v R. Lemma [Slabá formulace diferenciální rovnice.] x 2 1 9. Vriční počet. Definice. Nechť k 0 celé, < b R. Definujeme C k ([, b]) = { ỹ [,b] : ỹ C k (R) } ; C 0 ([, b]) = { y C ([, b]) : y() = y(b) = 0 }. Důležitá konstrukce. Shlzovcí funkce (molifiér, bump

Více

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n,

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n, ZÁKLADNÍ POZNATKY ČÍSELNÉ MNOŽINY (OBORY) N... množin všech přirozených čísel: 1, 2, 3,, n, N0... množin všech celých nezáporných čísel (přirozených čísel s nulou: 0,1, 2, 3,, n, Z... množin všech celých

Více

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4) KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1

Více

1 Neurčitý integrál 1.1 NEURČITÝ INTEGRÁL

1 Neurčitý integrál 1.1 NEURČITÝ INTEGRÁL 1 Neurčitý integrál 1.1 NEURČITÝ INTEGRÁL V předchozím semestru jsme se seznámili s derivováním funkcí. Nyní se přesuneme k integrování funkce, což je vlastně zpětný proces k derivaci. Ukážeme si, jakým

Více

Teorie. Hinty. kunck6am

Teorie. Hinty.   kunck6am kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

Digitální učební materiál

Digitální učební materiál Digitální učení mteriál Číslo projektu CZ.1.07/1.5.00/34.080 Název projektu Zkvlitnění výuky prostřednictvím ICT Číslo název šlony klíčové ktivity III/ Inovce zkvlitnění výuky prostřednictvím ICT Příjemce

Více

DERIVACE A INTEGRÁLY VE FYZICE

DERIVACE A INTEGRÁLY VE FYZICE DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická

Více

Limity, derivace a integrály Tomáš Bárta, Radek Erban

Limity, derivace a integrály Tomáš Bárta, Radek Erban Limity, derivce integrály Tomáš Bárt, Rdek Erbn Úvod Definice. Zobrzení(téžfunkce) f M Njemnožinuspořádnýchdvojic(x, y) tková,žekekždému xexistujeprávějedno y,žedvojice(x,y) f.tj.kždývzor xmáprávějedenobrz

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

vás seznámí s učivem, které v dané kapitole poznáte a které byste po jejím prostudování měli umět.

vás seznámí s učivem, které v dané kapitole poznáte a které byste po jejím prostudování měli umět. POKYNY KE STUDIU Pokyny ke studiu V úvodu si vysvětlíme jednotnou pevnou strukturu kždé kpitoly tetu, která by vám měl pomoci k rychlejší orientci při studiu Pro zvýrznění jednotlivých částí tetu jsou

Více

Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.

Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34. Vzdělávcí mteriál vytvořený v projektu OP VK Název školy: Gymnázium, Zářeh, náměstí Osvoození 20 Číslo projektu: Název projektu: Číslo název klíčové ktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek pro

Více

II. 3. Speciální integrační metody

II. 3. Speciální integrační metody 48 II. Integrální počet funkcí jedné proměnné II.. Speciální integrační metody Integrály typu f ( x, r x, r x,..., r k x ), tj. integrály obsahující proměnnou x pod odmocninou, kde k N a r,..., r k jsou

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

Geometrické a fyzikální aplikace určitého integrálu. = b a. je v intervalu a, b záporná, je integrál rovněž záporný.

Geometrické a fyzikální aplikace určitého integrálu. = b a. je v intervalu a, b záporná, je integrál rovněž záporný. 4. přednášk Geometické zikální plikce učitého integálu Geometické plikce. Osh ovinného útvu A. Pokud se jedná o ovinný útv omezený osou přímkmi gem spojité nezáponé unkce pk je jeho osh dán učitým integálem

Více

Křivkový integrál funkce

Křivkový integrál funkce Kpitol 6 Křivkový integrál funkce efinice způsob výpočtu Hlvním motivem pro definici určitého integrálu funkce jedné proměnné byl úloh stnovit obsh oblsti omezené grfem dné funkce intervlem n ose x. Řd

Více

Matematika vzorce. Ing. Petr Šídlo. verze

Matematika vzorce. Ing. Petr Šídlo. verze Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............

Více

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx. Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál

Více

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57 Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více