Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat?



Podobné dokumenty
PRŮBĚH FUNKCE - CVIČENÍ

c ÚM FSI VUT v Brně 20. srpna 2007

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ

Označení derivace čárkami, resp. římskými číslicemi, volíme při nižším řádu derivace, jinak užíváme horní index v závorce f (5), f (6),... x c g (x).

Aplikace derivace ( )

Seminární práce z matematiky

Průběh funkce pomocí systému MAPLE.

Průběh funkce pomocí systému MAPLE.

Zlín, 23. října 2011

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou

Definice derivace v bodě

Mocninná funkce: Příklad 1

NMAF 051, ZS Zkoušková písemná práce 17. února ( sin (π 2 arctann) lim + 3. n 2. π 2arctan n. = lim + 3.

MATEMATIKA I - vybrané úlohy ze zkoušek v letech

Digitální učební materiál

Diferenciální počet funkcí jedné proměnné

Aplikace derivace a průběh funkce

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy

Univerzita Karlova v Praze Pedagogická fakulta

LDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii

Univerzita Karlova v Praze Pedagogická fakulta

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

Kapitola 4: Průběh funkce 1/11

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

NMAF 051, ZS Zkoušková písemná práce 4. února 2009

NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009

Výsledky Př.1. Určete intervaly monotónnosti a lokální extrémy funkce a) ( ) ( ) ( ) Stacionární body:

10. cvičení - LS 2017

Stručný přehled učiva

Lineární funkce, rovnice a nerovnice

Pavlína Matysová. 5. listopadu 2018

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Základy matematiky pro FEK

[ 5;4 ]. V intervalu 1;5 je funkce rostoucí (její první derivace je v tomto intervalu

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost

Limita a spojitost LDF MENDELU

Kapitola 4: Průběh funkce 1/11

Konvexnost, konkávnost

Průběh funkce 1. Průběh funkce. Při vyšetření grafu funkce budeme postupovat podle následujícího algoritmu:

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy

Derivace a monotónnost funkce

Prbh funkce Jaroslav Reichl, 2006

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

7.1 Extrémy a monotonie

IX. Vyšetřování průběhu funkce

D(f) =( 1, 1) [ ( 1, 1) [ (1, 1). 2( x)3 ( x) 2 1 = 2(x) 3. (x) 2 1 = f(x) Funkce je lichá, není periodická

1.1 Příklad z ekonomického prostředí 1

Diferenciální počet funkce jedné proměnné 1

. (x + 1) 2 rostoucí v intervalech (, 1) a. ) a ( 2, + ) ; rostoucí v intervalu ( 7, 2) ; rostoucí v intervalu,

13. DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

FUNKCE, ZÁKLADNÍ POJMY

Úloha určit průběh funkce znamená nakreslit graf funkce na zadaném intervalu, nejčastěji na celé množině reálných čísel R.

FUNKCE, ZÁKLADNÍ POJMY

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Asymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze

KFC/SEM, KFC/SEMA Elementární funkce

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Vyšetření průběhu funkce zadané předpisem

Rolleova věta. Mějme funkci f, která má tyto vlastnosti : má derivaci c) f (a) = f (b). a) je spojitá v a, b b) v každém bodě a,b

Základy matematiky pro FEK

( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

DIFERENCIÁLNÍ POČET SPOJITOST FUNKCE,

Matematika B 2. Úvodní informace

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =

Přednáška 3: Limita a spojitost

Funkce. Vlastnosti funkcí

Matematika 2 Průběh funkce

Matematika I A ukázkový test 1 pro 2014/2015

MATEMATICKÁ ANALÝZA STUDIJNÍ OPORA PRO KOMBINOVANÉ

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017

1. Definiční obor funkce dvou proměnných

MATEMATIKA I. Diferenciální počet funkcí jedné proměnné

1 Polynomiální interpolace

Cvičení 1 Elementární funkce

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Funkce a lineární funkce pro studijní obory

Limita a spojitost funkce

4. Určete definiční obor elementární funkce g, jestliže g je definována předpisem

2. Ur íme sudost/lichost funkce a pr se íky s osami. 6. Na záv r na rtneme graf vy²et ované funkce. 8x. x 2 +4

Bakalářská matematika I

ZMĚNY VE VÝUCE MATEMATIKY JAKO DŮSLEDEK POČÍTAČEM PODPOROVANÉ VÝUKY

Význam a výpočet derivace funkce a její užití

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) =

Pojem limity funkce charakterizuje chování funkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých funkce není definovaná. platí. < ε.

Funkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO

Matematika I pracovní listy

Vyšetřování průběhu funkcí v programu GeoGebra

Obsah. Derivace funkce. Petr Hasil. L Hospitalovo pravidlo. Konvexnost, konkávnost a inflexní body Asymptoty

Transkript:

Vyšetřování průběhu funkce pomocí programu MatLab K práci budeme potřebovat následující příkazy pro 1. Co budeme potřebovat? (a) zadání jednotlivých výrazů symbolicky (obecně) (b) řešení rovnice f()=0, (c) symbolický (obecný) výpočet první a druhé derivace funkce f(), tedy zjískání předpisu pro f '() a f ''(), (d) výpočet limity. Všechny nadále uvedené příkazy (a další) je možno nalézt v Symbolic Math Toolbo. Tak se nazývá skupina příkazů, které s daty pracijí symbolicky. To znamená, že pracijí s algebraickou podobou výrazů (tedy s písmenky) a ne s jejich funkčními hodnotami (tedy ne s konkrétními čísly). 2. Co k tomu využijeme? Odpovídající příkazy k předchozímu výčtu (a) až (c) uvedeme pro konkrétní případ funkcí f =a 2 b c, g =2 2 1 4, h a =sin a. (a) Zavedení symbolických proměnných a jejich následné použití při definici funkce: >> syms a b c >> f = a*^2 + b* + c, g = 2 * ^2 + 1 / + 4, h = sin (a* ) (b) Nalezení nulových bodů funkcí f, g a h je vlastně úkolem nalézt řešení rovnic g =0 a h a =0. K tomuto účelu použijeme >> nul_g = solve (g) >> nul_h = solve (h) (c) Derivace vyhodnocujeme následujícím způsobem. Jména proměnných (vždy na levé straně rovnosí) volíme vhodně, například: >> prvni_derivace_f_podle_ = diff ( f, ) >> prvni_derivace_g_podle_ = diff ( g ) '--> není potřeba zadávat diff ( g, ), protože v předpisu fukce g je jen jediná neznámá a to >> prvni_derivace_h_podle_a = diff ( h, a ) >> druha_derivace_f_podle_ = diff ( f,, 2 ) >> druha_derivace_g_podle_ = diff ( g, 2 ) >> druha_derivace_h_podle_a = diff ( h, a,2 ) (d) Výpočet limity a uložení výsledku pod zvolenými názvy lim_f = lim 0 f, lim_g = lim t g, lim_h = lim a h a : >> lim_f = limit (f,,0) >> lim_g = limit (g,,t) >> lim_h = limit (g,a,inf ) Limita funkce f v bodě 0 zprava je >> lim_f_zprava = limit (f,,0, 'right') a zleva >> lim_f_zleva = limit (f,,0, 'left'). Konkrétní příklad Pro teoretický podklad odkazuji na přednášky z matematiky. Postup dále uvedený není univerzální, ale ukazuje příklad využití příkazů v programu MatLab k zjednodušení práce při vyšetřování průběhu funkce.konkrétní kroky postupu se mohou lišit v závislosti na vyšetřované funkci. Zadání: Vyšetřete průběh funkce f = 2 1.

Řešení: (1.) Symbolické zadání funkce f, symbolické vyhodnocení její první a druhé derivace Zavedeme symbolickou proměnnou : >> syms Z důvodu, který bude zřejmý v kroku (2), si nejdříve zvlášť definujeme funkce v čitateli i ve jmenovateli označené g1 a g2. Až potom definujeme funkci f jako podíl g1() a g2() : >> g1 = -^2 + - 1 ; >> g2 = ; >> f = g1 / g2 ; Dále si nechejme vypočítat první a druhou derivaci funkce f. První derivaci označíme df a druhou ddf : >> df = diff(f,) df = (-2*+1)/-(-^2+)/^2 >> ddf = diff(f,,2) ddf = -2/-2*(-2*+1)/^2+2*(-^2+)/^ Případně si můžeme nechat vyjádření df a ddf zjednodušit následujícím způsobem >> df = simplify(df) df = -(^2)/^2 >> ddf = simplify(ddf) ddf = -2/^ (2.) Základní vlastnosti: body nespojitosti a definiční obor Jelikož funkce f je racionální (lomená) potřebujeme nejdříve nalézt body nespojitosti. To jsou nulové body fukce ve jmenovateli. Budeme tedy hledat řešení rovnice g2 =0, které si označíme zero_g2: >> zero_g2 = 0 Tento výsledek můžeme rovnou napsat, protože g2 =. (Jinak bysme použili příkaz solve) Funkce v čitateli f je definována na celé reálné ose, tedy definiční obor funkce f je celá reálná osa až na bod 0 : Df =,0 0, (.) Nulové body - průsečíky f s -ovou osou Nulový bod nalezneme jako všechna reálná řešení rovnice f =0 tedy : >> zero_f = solve(f) zero_f = [ 1/2/2*i*^(1/2)] [ 1/2+1/2*i*^(1/2)] Vidíme, že v obou dvou případech jde o komplení číslo (objevuje se tam imaginární jednotka i ). Proto můžeme říci, že funkce f nemá průsečíky s osou (pracujeme totiž v reálném oboru). (4.) Kladnost a zápornost funkce f Protože nenáme žádný reálný nulový bod funkce, budeme studovat jen dva intervaly,0 a 0,. Hodnoty funkce budou stejné vždy v celém intervalu. Takže postačí jen dosadit libovolnou hodnotu z každého z těchto intervalů. Zvlome například a 1. Opět si můžeme pomoci MalLabovským příkazem: >> subs(f,) >> subs(f,1) Tedy f() > 0 pro,0 a f() < 0 pro 0,.

(5.) Stacionární body a monotónnost funkce f Stacionární body nalezneme jako nulové body df první derivace funkce f, tedy řešení rovnice df =0 : >> zero_df = solve (df) zero_df = [ 1] [ ] Máme tedy dva stacionární body. Funkce f bude vždy rostoucí nebo klesající na celém intervalu z následujícího výčtu, 1, 1,0, 0,1 a 1,. Kladné hodnoty první derivace značí rostoucí funkci a záporné funkci klesající. Proto opět jako v kroku (4.) zvolíme z každého intervalu nějakého zástupce, například -2, -0.5, 0.5, 2. Tedy >> subs(df,-2) -0.7500 >> subs(df,-0.5) >> subs(df,0.5) >> subs(df,2) -0.7500 Vidíme, že funkce f je rostoucí (df() > 0 ) na intervalech a 1,0 a 0,1 a klesající (df() < 0 ) na, 1 a 1,. (6.) Inflení body, konvenost a konkávnost funkce f Inflení body nalezneme jako nulové body ddf druhé derivace funkce f, tedy řešení rovnice ddf =0 : >> zero_ddf = solve (ddf) Warning: Eplicit solution could not be found. > In E:\MATLAB6p5\toolbo\symbolic\solve.m at line 16 In E:\MATLAB6p5\toolbo\symbolic\@sym\solve.m at line 49 zero_ddf = [ empty sym ] Protože druhá derivace je tvaru ddf = 2 vidíme, že MatLab píše správně, že množina řešení dovnice ddf =0 je prázdná ( empty ). Funkce f nemá inflení body. Funkce f bude vždy konvení nebo konkávní na celém intervalu ze stejného výčtu jako v (5.) :, 1, 1,0, 0,1,a 1,. Kladné hodnoty druhé derivace značí konvení funkci a záporné funkci konkávní. Proto opět jako v kroku (4.) a v kroku (5.) zvolíme z každého intervalu nějakého zástupce, například -2, -0.5, 0.5, 2. Pak >> subs(ddf,-2) 0.2500 >> subs(ddf,-0.5) 16 >> subs(ddf,0.5) 6

>> subs(ddf,2) -0.2500 Závěr předchozího vyhodnocení je tedy ten, že funkce f je konvení (ddf() > 0 ) na intervalech, 1 a 1,0 a konkávní (ddf() < 0 ) na 0,1 a 1,. (7.) Lokální etrémy funkce f Stacionární body mohou být lokálním etrémem funkce.pokud v inflením bodě je hodnota druhé derivace kladná, jde o lokální mimimum, pokud je záporná, pak je lokální maimum. Stacionární body jsme nalezli v (5.). Jsou to 1 a, tedy >> subs(ddf,) 2 >> subs(ddf,1) -2 Tedy bod = je ostrým lokálním minimem a bod = 1 je ostrým lokálním maimem. Navíc si můžeme vyhodnotit funkční hodnoty v těchto etremálních bodech: >> subs(f,) >> subs(f,1) (8.) Asymptoty fumkce f (8a.) Vertikální asymptoty Chování funkce v bodech nespojitosti, tj. = a = 1. Pro 0 zleva je limita f rovna, >> lim_0_zleva = limit (f,,0,'left') lim_0_zleva = inf podobně pro je 0 zpava limita f rovna >> lim_0_zprava = limit (f,,0,'right') lim_0_zprava = - inf Vertikální asymptotou (tedy tzv. asymtotou bez směrnice) je tedy = 0. (8b.) Asymptoty v bodech a Jde o chování funkčních hodnot pro rostoucí nade vše meze. Pro je limita f rovna. >> lim_plus_inf = limit (f,,inf) lim_plus_inf = -inf >> lim_minus_inf = limit (f,,-inf) lim_minus_inf = inf Vyšetříme tedy, zda má funkce f asymptoty v a. Pokud budou hodnoty limit k=lim f a

q=lim f k nějaká konečná reálná čísla, pak je asymptotou v bodě přímka tvaru p =k q. Podobná podmínka platí pro bod. >> k_1 = limit (f/,,inf) k_1 = >> q_1 = limit (f - k*,,inf) q_1 = 1 Vidíme tedy, že funkce f má v bodě asymptotu p = 1. Podobně budeme postupovat v případě bodu : >> k_2 = limit (f/,,- inf) k_2 = >> q_2 = limit (f - k*,,- inf) q_2 = 1 I v bodě má funkce f asymptotu p = 1. (9.) Porovnání vlastního náčrtku s vykreslením pomocí programu MatLab. >> ezplot(f) Případně můžeme do grafu přidat asymptotu a vyznačit etrémy: >> p = - + 1 ; >> etremy = [ 1] ; hodnoty = [subs(f,) subs(f,1)] >> ezplot(f),hold on,plot(etremy,hodnoty,'or'),hold on,fplot(p,[-6 6],'g')