Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra stavebí mechaky Fakulta stavebí, VŠB - Techcká uverzta Ostrava
Zadáí síly prostorového svazku sl Tř ebo více sl ( obecě ) působí v prostoru o společém působšt, paprsky sl eleží v téže rově. Síla u prostorového svazku sl je určea (působště je dáo): a) prostředctvím složek P x, P y, P z kladépř shodě jejch smyslů s kladým smysly souřadcových os b) kladou velkostí P a třem směrovým úhly α, β, γ (mez kladým polopaprskem síly a odpovídající kladou souřadcovou poloosou) Platí: a) b) c) d) α o 80 α β 90 + o α β 90 β Prostorový svazek sl o o 80 o β + γ 90 β γ o 90 2 2 2 cos α + cos β + cos γ γ o 80 o α + γ 90 α γ o 90 Zadáí síly prostorového svazku, kvádr sl Obr. 3.. / str. 25 2 / 56
Pravdlo o kvádru sl V rově axom o rovoběžíku sl, v prostoru obdoba pravdlo o rovoběžostěu sl. Pokud jsou tř skládaé síly kolmé a rovoběžé se souřadcovým osam kvádr sl. Pravdlo o kvádru sl: Výsledce tří osových složek síly o společém působšt je jedozačě určea tělesovou úhlopříčkou kvádru sl. Platí: P P + P + 2 x 2 y P 2 z Px cosα P P cos β P y P Pz cosγ P x P.cosα Py P.cos β z P P.cosγ Prostorový svazek sl Zadáí síly prostorového svazku, kvádr sl Obr. 3.. / str. 25 3 / 56
Výsledce prostorového svazku sl Postup určeí výsledce prostorového svazku sl: a) určt (pokud eí zadáo) složky P x, P y, P z každé ze sl P P x P.cosα P y P.cos β z P b) vypočítat výsledce tří přímkových soustav sl v souřadcových osách y P y x P x P.cosγ z P z c) určt velkost výsledce prostorového svazku sl a její směrové kosy (úhly) P P + P + 2 x 2 y P 2 z Px cosα P d) za působště výsledce je považováo většou společé působště a svazku sl, může mít povahu volého vektoru Py cos β P Pz cosγ P Prostorový svazek sl 4 / 56
Příklad. Určeí výsledce prostorového svazku čtyř sl Zadáí sl P,P 2,P 3,P 4 : P [kn] α [ o ] β [ o ] γ [ o ] P x [kn] P y [kn] P z [kn] 38 58 72 37,838 2-30,000-6,000-20,000 3 45 52 08 36,46 4-20,000 22,000 26,000 (a) (b) (c) (d) Prostorový svazek sl Zadáí příkladu. Obr. 3.2.. / str. 26 5 / 56
Příklad. Tabulkový výpočet: cos α cos β cos γ P x [kn] P y [kn] P z [kn] 0,5299 0,3090 0,7897 20,37,743 30,00 2-30,000-6,000-20,000 3 0,657-0,3090-0,7249 27,705-3,906-32,620 4-20,000 22,000 26,000 Σ -2,58 3,837 3,390 2 2 2 ( 2,58) + ( 3,837) + ( 3,390) 5,556kN cosα 2,58 5,556 0,3884 α o 2,86 3,837 cos β 0,6905 5,556 β o 46,33 3,390 cos γ 0,60 5,556 Prostorový svazek sl γ o 52,40 Výsledek příkladu. Obr. 3.2. / str. 26 6 / 56
Podmíky rovováhy prostorového svazku sl ovováha prostorového svazku sl - výsledce je rova ule: 0 Platí v případě: x P x 0 y P y 0 z P z 0 Podmíky rovováhy prostorového svazku sl Prostorový svazek sl 7 / 56
Příklad.2 Určeí velkost tří sl P 5, P 6 a P 7, kterým se prostorový svazek sl z příkladu 3. doplí. Požadavek rovovážý stav. Zadáo: α [ o ] β [ o ] γ [ o ] cos α cos β cos γ 5 30 90 60 0,8660 0,0000 0,5000 6 90 60 30 0,0000 0,5000 0,8660 7 60 50 90 0,5000-0,8660 0,0000 Prostorový svazek sl Výsledek příkladu. Obr. 3.2. / str. 26 Zadáí příkladu.2 Obr. 3.3. / str. 27 8 / 56
Příklad.2 Podmíky rovováhy prostorového svazku sl osa x : P cosα P.cosα + P.cosα + 0 0 5. 5 + 6 6 7 7 x P x osa y : P5. cos β5 + P6.cos β6 + P7.cos β7 + y 0 P y 0 osa z : atcový záps P5. cosγ 5 + P6.cosγ 6 + P7.cosγ 7 + z 0 P z 0 cosα 5 cosα6 cosα P Obecě [ A ]{. x} { b} 7 5 x cos β5 cos β6 cos β7. P6 y cosγ 5 cosγ 6 cosγ 7 P7 z Podmíka: det[ A] 0 Číselé řešeí atce [A] 0,8660 0,0000 0,5000 0,0000 0,5000-0,8660 0,5000 0,8660 0,0000 Vektor {b} 2,58-3,837-3,390 Řešeí -vektor {x} kořey soustavy P 5 [kn],534 P 6 [kn] -4,80 P 7 [kn],659 záporá hodota, uto upravt směrové úhly Prostorový svazek sl 9 / 56
Kotrola: Příklad.2 P [kn] α [ o ] β [ o ] γ [ o ] P x [kn] P y [kn] P z [kn] 38 58 72 37,838 2-30,000-6,000-20,000 3 45 52 08 36,46 4-20,000 22,000 26,000 5,534 30 90 60 6 4,80 90 20 50 7,659 60 50 90 cos α cos β cos γ P x [kn] P y [kn] P z [kn] 0,5299 0,3090 0,7897 20,37,743 30,00 2-30,000-6,000-20,000 3 0,657-0,3090-0,7249 27,705-3,906-32,620 4-20,000 22,000 26,000 5 0,8660 0,0000 0,5000,329 0,000 0,767 6 0,0000-0,5000-0,8660 0,000-2,400-4,57 7 0,5000-0,8660 0,0000 0,829 -,437 0,000 Prostorový svazek sl je v rovováze Σ 0,000 0,000 0,000 Prostorový svazek sl 0 / 56
Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl / 56
Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl 2 / 56
Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl 3 / 56
Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl 4 / 56
Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl 5 / 56
Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl 6 / 56
Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl 7 / 56
Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl 8 / 56
Ukázka využtí pozatků o prostorovém svazku sl Kocertí a předášková hala pro 500 ldí Sbelus Hall, Laht, Fsko, osá kostrukce vstupí haly z lepeého lamelového dřeva ve tvaru stromů, foto: Doc. Ig. Atoí Lokaj, Ph.D. Prostorový svazek sl 9 / 56
Ukázka využtí pozatků o prostorovém svazku sl Kocertí a předášková hala pro 500 ldí Sbelus Hall, Laht, Fsko, osá kostrukce vstupí haly z lepeého lamelového dřeva ve tvaru stromů, foto: Doc. Ig. Atoí Lokaj, Ph.D. Prostorový svazek sl 20 / 56
Ukázka využtí pozatků o prostorovém svazku sl Kocertí a předášková hala pro 500 ldí Sbelus Hall, Laht, Fsko, osá kostrukce vstupí haly z lepeého lamelového dřeva ve tvaru stromů, foto: Doc. Ig. Atoí Lokaj, Ph.D. Prostorový svazek sl 2 / 56
Ukázka využtí pozatků o prostorovém svazku sl Kocertí a předášková hala pro 500 ldí Sbelus Hall, Laht, Fsko, osá kostrukce vstupí haly z lepeého lamelového dřeva ve tvaru stromů, foto: Doc. Ig. Atoí Lokaj, Ph.D. Prostorový svazek sl 22 / 56
Ukázka využtí pozatků o prostorovém svazku sl Prostorový svazek sl Petříská rozhleda, Praha 23 / 56
Ukázka využtí pozatků o prostorovém svazku sl Prostorový svazek sl Petříská rozhleda, Praha 24 / 56
Ukázka využtí pozatků o prostorovém svazku sl Prostorový svazek sl Prostorová příhradová ocelová kostrukce plaveckého stadóu v Brě, autor osé kostrukce: Ig. Dr. Ferdad Lederer 25 / 56
Ukázka využtí pozatků o prostorovém svazku sl Prostorový svazek sl Prostorová příhradová ocelová kostrukce plaveckého stadóu v Brě, autor osé kostrukce: Ig. Dr. Ferdad Lederer 26 / 56
Ukázka využtí pozatků o prostorovém svazku sl Prostorový svazek sl Prostorová příhradová ocelová kostrukce plaveckého stadóu v Brě, autor osé kostrukce: Ig. Dr. Ferdad Lederer 27 / 56
Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová ocelová kostrukce zmího stadóu v Brě, deší zdevastovaý stav, autor osé kostrukce: Ig. Dr. Ferdad Lederer Prostorový svazek sl 28 / 56
Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová ocelová kostrukce zmího stadóu v Brě, deší zdevastovaý stav, autor osé kostrukce: Ig. Dr. Ferdad Lederer Prostorový svazek sl 29 / 56
Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová ocelová kostrukce zmího stadóu v Brě, deší zdevastovaý stav, autor osé kostrukce: Ig. Dr. Ferdad Lederer Prostorový svazek sl 30 / 56
Statcký momet síly k bodu v prostoru ova ρ proložea paprskem síly P a mometovým středem s, je lbovolě skloěa vůč souřadcovým osám. Pro statcký momet síly k bodu s v rově ρ platí pravdla pro rovou úlohu (poučky, zázorěí), kromě zamékové kovece (dvduálí pro každou úlohu). Platí: s P. p Začeí pomocí mometového vektoru, jehož paprsek o a paprsek síly tvoří pravoúhlé mmoběžé přímky. atematcký pops obtížý, vhodější pojem statckého mometu síly k ose o. Statcký momet síly a dvojce sl v prostoru Statcký momet síly k bodu v prostoru Obr. 3.4. / str. 29 3 / 56
Statcký momet síly k ose Statcký momet o síly P k ose o, kteráje kolmáa přtom mmoběžá vzhledem k paprsku síly, má absolutí hodotu dáu vzorcem: o P. p kde p je ejkratší délka příčky obou mmoběžých přímek. atematcký pops stále obtížý, proto se statcký momet určuje pomocí osových složek sl, vztažeých k souřadcovým osám. Úmluva prot-prot, vzdáleost p dáy souřadcem. Řešeí: P. z + P. y x y x y z z P. z P. x P. y + P. x z (každá složka síly vyvozuje statcký momet pouze ke dvěma osám, emá vlv a statcký momet k ose rovoběžé) Statcký momet síly a dvojce sl v prostoru x y Statcké momety osových složek síly k souřadcovým osám Obr. 3.5. / str. 29 32 / 56
Příklad.3 Zadáo: souřadce působště a, složky síly P x a P z Předmět výpočtu: statcké momety x, y a z k souřadcovým osám Řešeí: x Pz ( 30)(.,4 ) 42kNm. y + y 50. Px. z Pz. x (,8 ) ( 30).2,3 2kNm z (,4 ) 70kNm Px. y 50. + Statcký momet síly a dvojce sl v prostoru Zadáí příkladu.3 Obr. 3.6. / str. 30 33 / 56
Dvojce sl v prostoru Defováa stejě jako u rové úlohy. Působí však v rově ρ, která je k souřadcovým osám lbovolě akloěa. Statcký momet dvojce sl v prostoru: Platí: a) je stejý ke všem bodům vyšetřovaého tuhého tělesa (a) b) se ezměí, pootočí-l se dvojce sl v ρ ebo posue-l se rovoběžě s ρ P. p (b) c) Dvojc sl lze ahradt statckým mometem v působšt mometu dvojce sl d) grafcké zázorěí stejé jako u rové úlohy, volý mometový vektor e) pracuje se se statckým momety v rovách rovoběžým se souřadcovým rovam (uverzálí zaméková kovece) Statcký momet síly a dvojce sl v prostoru Dvojce sl v prostoru Obr. 3.7. / str. 30 34 / 56
Skládáí statckých mometů Soustavu dvojc sl (jejch statckých mometů) tvoří ěkolk ( obecě m ) dvojc sl se statckým momety j (j,, m). Působí-l dvojce sl v téže rově ebo rovách rovoběžých lze algebracky sčítat, jak uto skládat s využtím kvádru sl. Působeí v souřadcových rovách Výsledý mometový vektor: + + j 2 jx 2 jy 2 jz Sklo dá směrovým úhly: cos λ j jx jx j j cos μ.cos λ Statcký momet síly a dvojce sl v prostoru j j Opačá úloha rozklad: jy j.cos μ j jy j cosν jz j j jz.cosν j j Skládáí statckých mometů Obr. 3.8. / str. 3 35 / 56
Řešeí: ovoběžý posu síly v prostoru Společý úček síly F a statckého mometu lze vyjádřt rovoběžým posuutím síly F v rově ρ o vzdáleost d, aby ke svému původímu působšt vykazovala momet. d F Naopak: Je-l zadáa pouze síla F a v rově ρ se posue o vzdáleost d, uto přdat statcký momet opačého smyslu, ež jaký vyvozuje síla F po svém posuu k původímu působšt. Řešeí: F. d Příklad: Př posuu P x do počátku O (dvojí posuutí o z a y ) P. z Statcký momet síly a dvojce sl v prostoru y x P. y z x Statcké momety osových složek síly k souřadcovým osám Obr. 3.5. / str. 29 36 / 56
Příklad.4 Předmět výpočtu: statcké momety x, y a z k souřadcovým osám, vyvolaé rovoběžým posuem sl P x, P y a P z do počátku souřadcové soustavy (Příklad.3). Řešeí: x Pz. y +42kNm y z (a) Px z. z P. x 2kNm Px. y +70kNm (b) Zadáí příkladu.3 Obr. 3.6. / str. 30 Statcký momet síly a dvojce sl v prostoru Výsledek příkladu.4 Obr. 3.9. / str. 32 37 / 56
Obecá prostorová soustava sl Působí-l a těleso obecě sl P (,, ), jejchž růzá působště ebo paprsky eleží v téže rově. Součástí mohou být statcké momety dvojc sl (j,, m) v obecě růzých rovách. Zadáí sl: souřadce působště síly x a, y a, z a, velkost, směr a smysl stejě jako u prostorového svazku sl. Zadáí statckých mometů: obdobě jako síla, vz obr.3.8. Zadáí síly prostorového svazku Obr. 3.. / str. 25 Obecá prostorová soustava sl Skládáí statckých mometů Obr. 3.8. / str. 3 38 / 56
Postup: Výsledý úček obecé prostorové soustavy sl a) pro každou sílu P určt složky P x, P y, P z b) určt osové složky výsledce x, y, z x P x y P y z P z c) vypočítat velkost výsledce a její směrové úhly, působště v počátku + + 2 x 2 y 2 z cosα x cos β y cosγ d) všechy složky sl P x, P y, P z přemístt do počátku O, určt statcké momety x, y a z, otáčející kolem souřadcových os (vz příklad 3.4) e) vypočítat algebracké součty pravoúhlých složek mometů, způsobeých přesuy sl x x y y z z z Obecá prostorová soustava sl 39 / 56
Postup: Výsledý úček obecé prostorové soustavy sl f) pro každý zadaý momet j vypočítat jeho složky jx, jy a jz v souřadcových rovách jx j.cos λ j jy j.cos μ j jz j.cosν j g) sečíst složky zadaých mometů s momety způsobeým přesuy sl a určt pravoúhlé složky výsledého statckého mometu m x jx + j x m y jy + j y m z jz + j z h) vypočítat (pomocí pravdla o kvádru sl) výsledý statcký momet a směrové úhly jeho vektorové úsečky + + 2 x 2 y 2 z cos λ x cos μ y cosν z Obecá prostorová soustava sl 40 / 56
Výsledý úček obecé prostorové soustavy sl Výsledý úček obecé prostorové soustavy lze vyjádřt: a) šestcí objektů: třem složkam x, y, z slové výsledce a třem složkam x, y, z výsledého statckého mometu, ejčastější způsob b) dvěma objekty: výsledcí a výsledým statckým mometem, tzv. bvektor ebo dyama, používá se zřídkakdy pro obtížost matematckého zápsu c) tzv. šroubem, mometový vektor lze rozložt a složku ležící v paprsku a složku kolmou k, která se může ahradt rovoběžým posuem o vzdáleost d do cetrálí osy prostorové soustavy sl c, evyužívá se pro svou svízelost. Obecá prostorová soustava sl Bvektor Obr. 3.0. / str. 33 Šroub Obr. 3.. / str. 34 4 / 56
Příklad.5 Zadáo: síly P a P 2 P [kn] α [ o ] β [ o ] γ [ o ] cos α cos β cos γ P x [kn] P y [kn] P z [kn] 38 62 53 49,754 0,4695 0,608 0,646 7,840 22,869 24,55 2 6,000-0,000-8,000 Σ 33,840 2,869 6,55 (a) (b) Obecá prostorová soustava sl Zadáí příkladu.5 Obr. 3.2. / str. 34 42 / 56
Příklad.5 Zadáo: statcký momet j j [knm] λ [ o ] μ [ o ] ν [ o ] cos α cos β cos γ jx [knm] jy [knm] jz [knm] 60 35 45 90-0,707 0,707 0,0000-42,426 42,426 0,000 (c) Obecá prostorová soustava sl Zadáí příkladu.5 Obr. 3.2. / str. 34 43 / 56
Příklad.5 Předmět výpočtu: výsledý úček obecé prostorové soustavy sl Postup výpočtu: a) Výpočet osových složek výsledce zadaých sl P [kn] α [ o ] β [ o ] γ [ o ] cos α cos β cos γ P x [kn] P y [kn] P z [kn] 38 62 53 49,754 0,4695 0,608 0,646 7,840 22,869 24,55 2 6,000-0,000-8,000 Σ 33,840 2,869 6,55 b) Výpočet mometových složek způsobeých přeložeím sl x [m] y [m] z [m] x [knm] y [knm] z [knm] 2,8,4 0,8 6,076-54,470 39,057 2 2 -,6 -, 7,800 8,400 5,600 Σ 33,876-36,070 44,657 c) Výpočet složek zadaého mometu j j [knm] λ [ o ] μ [ o ] ν [ o ] cos α cos β cos γ jx [knm] jy [knm] jz [knm] 60 35 45 90-0,707 0,707 0,0000-42,426 42,426 0,000 Obecá prostorová soustava sl 44 / 56
Příklad.5 d) Výpočet složek výsledého mometu a vyjádřeí výsledého účku pomocí šestce objektů x [kn] y [kn] z [kn] x [knm] y [knm] z [knm] 33,840 2,869 6,55-8,55 6,356 44,657 Výsledý úček lze rověž pomocí bvektoru: + + 2 x 2 y 2 z cosα x cos β y cosγ z + + 2 x 2 y 2 z cos λ x cos μ Obecá prostorová soustava sl y cosν z Výsledek příkladu.5 Obr. 3.2. / str. 34 45 / 56
Podmíky rovováhy obecé prostorové soustavy sl Obecá prostorová soustava sl je v rovováze, je-l splěo 6 podmíek rovováhy, zajšťující ulovou hodotu výsledce (0) a ulovou hodotu výsledého statckého mometu ( 0). 3 slové podmíky x P x 0 y P y 0 z P z 0 3 mometové podmíky m x jx + x 0 y jy + y 0 z jz + z 0 j m j m j Obecá prostorová soustava sl 46 / 56
Příklad.6 Předmět výpočtu: Určeí velkost tří sl P, P 2 a P 3, a tří statckých mometů, 2 a 3, kterým se doplí soustava sl z příkladu.5. Požadavek rovovážý stav. Výsledý úček soustavy z příkladu.5 x [kn] y [kn] z [kn] x [knm] y [knm] z [knm] 33,840 2,869 6,55-8,55 6,356 44,657 Výsledek příkladu.5 Obr. 3.2. / str. 34 Obecá prostorová soustava sl Zadáí příkladu.6 Obr. 3.3. / str. 36 47 / 56
Příklad.6 Řešeí: uplatt jedotlvé podmíky rovováhy ve vhodém pořadí a) slová podmíka ve směru osy y: y + P 0 2 P 2 b) slová podmíka ve směru osy x: o x + P3.cos 60 0 P 3 c) slová podmíka ve směru osy z: o z + P + P3.cos 30 0 P Obecá prostorová soustava sl Zadáí příkladu.6 Obr. 3.3. / str. 36 48 / 56
Příklad.6 o d) mometová podmíka k ose x: x 3 + P3.cos30.3,3 0 3 e) mometová podmíka k ose y: f) mometová podmíka k ose z:. o y 2 P 2,8 P3.cos30.6,0 0 2. o z + P2 2,8 P3.cos60.3,3 0 Pozámka: záporé hodoty výsledků zameají, že skutečé smysly sl a mometů jsou opačé ež předpokládaé Obecá prostorová soustava sl Zadáí příkladu.6 Obr. 3.3. / str. 36 49 / 56
Prostorová soustava rovoběžých sl Jsou-l paprsky tří ebo více (obecě ) sl P (,, ) rovoběžé a eleží v téže rově. Pokud jsou síly svslé (rovoběžé se souřadcovou osou z), pak každá síla musí mít zadáo působště a (x a, y a, z a ), velkost a smysl (zamékem). Souřadce x a, y a jsou zároveň ramey svslých sl vůč vodorovým souřadcovým osám. Prostorová soustava rovoběžých sl Zadaá síla a výsledce prostorové soustavy rovoběžých sl Obr. 3.4. / str. 39 50 / 56
Výsledce prostorové soustavy rovoběžých sl Postup př určováí výsledého účku prostorové soustavy rovoběžých sl: a) vypočítat velkost výsledce b) určt polohu výsledce d pomocí Vargoovy věty y. x P. x x P y. P. x y x. y x. P. y P. y Výsledý úček lze vyjádřt: a) výsledcí v počátku a x, y b) výsledcí d a paprsku procházejícím bodem x, y (vz obrázek 3.4.) Prostorová soustava rovoběžých sl Zadaá síla a výsledce prostorové soustavy rovoběžých sl Obr. 3.4. / str. 39 5 / 56
Příklad.7 Předmět výpočtu: výsledý úček prostorové soustavy rovoběžých sl P až P 4 Tabulkové řešeí: P [kn] x [m] y [m] P. y [knm] - P. x [knm] 30 0,0 0,0 0 0 2 50,4 0,6 30-70 3-40,6, -44 64 4 0 2,0,8 98-220 Σ 50 Σ 84-226 Souřadce paprsku výsledce d : x y 226,507m 50 y x 84,227m 50 Prostorová soustava rovoběžých sl 52 / 56
Podmíky rovováhy prostorové soustavy rovoběžých sl Prostorová soustava rovoběžých sl je v rovováze, jsou-l splěy 3 podmíky rovováhy, zajšťující ulovou hodotu výsledce (0) a ulovou hodotu obou složek x, y výsledého statckého mometu k souřadcovým osám x, y. slová podmíka P 0 2 mometové podmíky x m P. y j 0 y m y P. x j 0 Prostorová soustava rovoběžých sl 53 / 56
Statcký střed v prostoru Předpoklad vyšetřovaá soustava rovoběžých sl v prostoru má eulovou hodotu výsledce ( 0) a síly P mají svá působště o souřadcích x, y, z. Vyšetřovaá soustava rovoběžých sl v prostoru se otáčí tak, že paprsky zůstávají stále rovoběžé, síly P kolem svých působšť, výsledce d kolem pevého bodu s statckého středu prostorové soustavy rovoběžých sl. Cíl řešeí určeí souřadc x s, y s, z s statckého středu. Velkost výsledce P souřadce s (z Vargoovy věty) x Prostorová soustava rovoběžých sl y z... P. x P. y P. z Statcký střed v prostoru Obr. 3.5. / str. 39 54 / 56
Příklad.8 Předmět výpočtu: souřadce statckého středu s prostorové soustavy rovoběžých sl P až P 4 Tabulkové řešeí: P [kn] x [m] y [m] z [m] P. x [knm] P. y [knm] P. z [knm] 20 0,8-0,6 0,0 6-2 0 2 60,6,2-0,4 96 72-24 3-80 -2,0,8 -,3 60-44 04 4 00-2, -,4,5-20 -40 50 Σ 00 Σ 62-224 230 Souřadce statckého středu: x y z. P. x. P. y. P. z 62 00 332 00 230 00 0,62m 3,32m 2,30m Prostorová soustava rovoběžých sl 55 / 56
Okruhy problémů k ústí část zkoušky. Podmíky rovováhy prostorového svazku sl 2. Podmíky rovováhy obecé prostorové soustavy sl 3. Statcký střed prostorové soustavy rovoběžých sl Podklady ke zkoušce 56 / 56