Téma 11 Prostorová soustava sil



Podobné dokumenty
Téma 2 Přímková a rovinná soustava sil

Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228)

ZÁKLADY STAVEBNÍ MECHANIKY

Předmět: SM 01 ROVINNÉ PŘÍHRADOVÉ KONSTRUKCE

TĚŽIŠTĚ A STABILITA. Těžiště tělesa = bod, kterým stále prochází výslednice tíhových sil všech jeho hmotných bodů, ať těleso natáčíme jakkoli

Stavební statika. Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228) Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava

7. Analytická geometrie

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

rovinná soustava sil (paprsky všech sil soustavy leží v jedné rovině) rovinný svazek sil rovinná soustava rovnoběžných sil

Univerzita Karlova v Praze Pedagogická fakulta

1.3. ORTOGONÁLNÍ A ORTONORMÁLNÍ BÁZE

Stavební mechanika 1 (K132SM01)

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

IV. MKP vynucené kmitání

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Obecná soustava sil a momentů v prostoru

Stabilita svahu Mechanika hornin a zemin - cvičení 05

1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru

3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě.

Základní pojmy Přímková a rovinná soustava sil

12. N á h o d n ý v ý b ě r

1.7.4 Těžiště, rovnovážná poloha

Komplexní čísla. Definice komplexních čísel

Generování dvojrozměrných rozdělení pomocí copulí

S k l á d á n í s i l

6. PŘEDNÁŠKA LETNÍ 2010

Střední průmyslová škola, Uherské Hradiště, Kollárova 617 MECHANIKA I M.H MECHANIKA I STATIKA, PRUŽNOST A PEVNOST - 1 -

1. Základy měření neelektrických veličin

Ing. Lenka Lausová Ing. Vladimíra Michalcová, Ph.D.

Analytická geometrie

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

4. Statika základní pojmy a základy rovnováhy sil

6. FUNKCE A POSLOUPNOSTI

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

P1: Úvod do experimentálních metod

Analytická geometrie

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

VY_52_INOVACE_J 05 01

3.3.3 Rovinná soustava sil a momentů sil

Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Doc. Ing. Dagmar Blatná, CSc.

1.2. NORMA A SKALÁRNÍ SOUČIN

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

Náhodné jevy, jevové pole, pravděpodobnost

FYZIKA I. Newtonovy pohybové zákony

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

3.3 Soustavy sil a silových momentů. soustava sil a momentů = seskupení sil a momentů sil působících na těleso

obsah obsah... 5 Přehled veličin... 7

Pravděpodobnostní modely

SMR 1. Pavel Padevět

4.2 Elementární statistické zpracování Rozdělení četností

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

Lineární regrese ( ) 2

Matematika I, část II

Chyby měření: 1. hrubé chyby - nepozornost, omyl, únava pozorovatele... - významně převyšuje rozptyl náhodné chyby 2. systematické chyby - chybné

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Podmínky k získání zápočtu

Deskriptivní statistika 1

Univerzita Karlova v Praze Pedagogická fakulta

Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

[ jednotky ] Chyby měření

Základní požadavky a pravidla měření

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

ANALÝZA A KLASIFIKACE DAT

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Metody zkoumání závislosti numerických proměnných

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

Plochy počítačové grafiky

Analytická geometrie

Pružnost a plasticita II

3. Lineární diferenciální rovnice úvod do teorie

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 5

Přednáška č. 2 náhodné veličiny

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Matematika I A ukázkový test 1 pro 2018/2019

z možností, jak tuto veličinu charakterizovat, je určit součet

1.3. POLYNOMY. V této kapitole se dozvíte:

Nosné stavební konstrukce Výpočet reakcí Výpočet vnitřních sil přímého nosníku

Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i

2.4. INVERZNÍ MATICE

1. Číselné obory, dělitelnost, výrazy

6. Posloupnosti a jejich limity, řady

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3]

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ převody. Přednáška 8

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Spolehlivost a diagnostika

14. B o d o v é o d h a d y p a r a m e t r ů

Cvičení 7 (Matematická teorie pružnosti)

USTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava ENERGETIKA U ŘÍZENÝCH ELEKTRICKÝCH POHONŮ. 1.

OVMT Přesnost měření a teorie chyb

Cílem kapitoly je zvládnutí řešení determinantů čtvercových matic.

Transkript:

Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra stavebí mechaky Fakulta stavebí, VŠB - Techcká uverzta Ostrava

Zadáí síly prostorového svazku sl Tř ebo více sl ( obecě ) působí v prostoru o společém působšt, paprsky sl eleží v téže rově. Síla u prostorového svazku sl je určea (působště je dáo): a) prostředctvím složek P x, P y, P z kladépř shodě jejch smyslů s kladým smysly souřadcových os b) kladou velkostí P a třem směrovým úhly α, β, γ (mez kladým polopaprskem síly a odpovídající kladou souřadcovou poloosou) Platí: a) b) c) d) α o 80 α β 90 + o α β 90 β Prostorový svazek sl o o 80 o β + γ 90 β γ o 90 2 2 2 cos α + cos β + cos γ γ o 80 o α + γ 90 α γ o 90 Zadáí síly prostorového svazku, kvádr sl Obr. 3.. / str. 25 2 / 56

Pravdlo o kvádru sl V rově axom o rovoběžíku sl, v prostoru obdoba pravdlo o rovoběžostěu sl. Pokud jsou tř skládaé síly kolmé a rovoběžé se souřadcovým osam kvádr sl. Pravdlo o kvádru sl: Výsledce tří osových složek síly o společém působšt je jedozačě určea tělesovou úhlopříčkou kvádru sl. Platí: P P + P + 2 x 2 y P 2 z Px cosα P P cos β P y P Pz cosγ P x P.cosα Py P.cos β z P P.cosγ Prostorový svazek sl Zadáí síly prostorového svazku, kvádr sl Obr. 3.. / str. 25 3 / 56

Výsledce prostorového svazku sl Postup určeí výsledce prostorového svazku sl: a) určt (pokud eí zadáo) složky P x, P y, P z každé ze sl P P x P.cosα P y P.cos β z P b) vypočítat výsledce tří přímkových soustav sl v souřadcových osách y P y x P x P.cosγ z P z c) určt velkost výsledce prostorového svazku sl a její směrové kosy (úhly) P P + P + 2 x 2 y P 2 z Px cosα P d) za působště výsledce je považováo většou společé působště a svazku sl, může mít povahu volého vektoru Py cos β P Pz cosγ P Prostorový svazek sl 4 / 56

Příklad. Určeí výsledce prostorového svazku čtyř sl Zadáí sl P,P 2,P 3,P 4 : P [kn] α [ o ] β [ o ] γ [ o ] P x [kn] P y [kn] P z [kn] 38 58 72 37,838 2-30,000-6,000-20,000 3 45 52 08 36,46 4-20,000 22,000 26,000 (a) (b) (c) (d) Prostorový svazek sl Zadáí příkladu. Obr. 3.2.. / str. 26 5 / 56

Příklad. Tabulkový výpočet: cos α cos β cos γ P x [kn] P y [kn] P z [kn] 0,5299 0,3090 0,7897 20,37,743 30,00 2-30,000-6,000-20,000 3 0,657-0,3090-0,7249 27,705-3,906-32,620 4-20,000 22,000 26,000 Σ -2,58 3,837 3,390 2 2 2 ( 2,58) + ( 3,837) + ( 3,390) 5,556kN cosα 2,58 5,556 0,3884 α o 2,86 3,837 cos β 0,6905 5,556 β o 46,33 3,390 cos γ 0,60 5,556 Prostorový svazek sl γ o 52,40 Výsledek příkladu. Obr. 3.2. / str. 26 6 / 56

Podmíky rovováhy prostorového svazku sl ovováha prostorového svazku sl - výsledce je rova ule: 0 Platí v případě: x P x 0 y P y 0 z P z 0 Podmíky rovováhy prostorového svazku sl Prostorový svazek sl 7 / 56

Příklad.2 Určeí velkost tří sl P 5, P 6 a P 7, kterým se prostorový svazek sl z příkladu 3. doplí. Požadavek rovovážý stav. Zadáo: α [ o ] β [ o ] γ [ o ] cos α cos β cos γ 5 30 90 60 0,8660 0,0000 0,5000 6 90 60 30 0,0000 0,5000 0,8660 7 60 50 90 0,5000-0,8660 0,0000 Prostorový svazek sl Výsledek příkladu. Obr. 3.2. / str. 26 Zadáí příkladu.2 Obr. 3.3. / str. 27 8 / 56

Příklad.2 Podmíky rovováhy prostorového svazku sl osa x : P cosα P.cosα + P.cosα + 0 0 5. 5 + 6 6 7 7 x P x osa y : P5. cos β5 + P6.cos β6 + P7.cos β7 + y 0 P y 0 osa z : atcový záps P5. cosγ 5 + P6.cosγ 6 + P7.cosγ 7 + z 0 P z 0 cosα 5 cosα6 cosα P Obecě [ A ]{. x} { b} 7 5 x cos β5 cos β6 cos β7. P6 y cosγ 5 cosγ 6 cosγ 7 P7 z Podmíka: det[ A] 0 Číselé řešeí atce [A] 0,8660 0,0000 0,5000 0,0000 0,5000-0,8660 0,5000 0,8660 0,0000 Vektor {b} 2,58-3,837-3,390 Řešeí -vektor {x} kořey soustavy P 5 [kn],534 P 6 [kn] -4,80 P 7 [kn],659 záporá hodota, uto upravt směrové úhly Prostorový svazek sl 9 / 56

Kotrola: Příklad.2 P [kn] α [ o ] β [ o ] γ [ o ] P x [kn] P y [kn] P z [kn] 38 58 72 37,838 2-30,000-6,000-20,000 3 45 52 08 36,46 4-20,000 22,000 26,000 5,534 30 90 60 6 4,80 90 20 50 7,659 60 50 90 cos α cos β cos γ P x [kn] P y [kn] P z [kn] 0,5299 0,3090 0,7897 20,37,743 30,00 2-30,000-6,000-20,000 3 0,657-0,3090-0,7249 27,705-3,906-32,620 4-20,000 22,000 26,000 5 0,8660 0,0000 0,5000,329 0,000 0,767 6 0,0000-0,5000-0,8660 0,000-2,400-4,57 7 0,5000-0,8660 0,0000 0,829 -,437 0,000 Prostorový svazek sl je v rovováze Σ 0,000 0,000 0,000 Prostorový svazek sl 0 / 56

Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl / 56

Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl 2 / 56

Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl 3 / 56

Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl 4 / 56

Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl 5 / 56

Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl 6 / 56

Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl 7 / 56

Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová kostrukce letští haly v Římě, foto: Doc. Ig. Alos atera, CSc., BA Prostorový svazek sl 8 / 56

Ukázka využtí pozatků o prostorovém svazku sl Kocertí a předášková hala pro 500 ldí Sbelus Hall, Laht, Fsko, osá kostrukce vstupí haly z lepeého lamelového dřeva ve tvaru stromů, foto: Doc. Ig. Atoí Lokaj, Ph.D. Prostorový svazek sl 9 / 56

Ukázka využtí pozatků o prostorovém svazku sl Kocertí a předášková hala pro 500 ldí Sbelus Hall, Laht, Fsko, osá kostrukce vstupí haly z lepeého lamelového dřeva ve tvaru stromů, foto: Doc. Ig. Atoí Lokaj, Ph.D. Prostorový svazek sl 20 / 56

Ukázka využtí pozatků o prostorovém svazku sl Kocertí a předášková hala pro 500 ldí Sbelus Hall, Laht, Fsko, osá kostrukce vstupí haly z lepeého lamelového dřeva ve tvaru stromů, foto: Doc. Ig. Atoí Lokaj, Ph.D. Prostorový svazek sl 2 / 56

Ukázka využtí pozatků o prostorovém svazku sl Kocertí a předášková hala pro 500 ldí Sbelus Hall, Laht, Fsko, osá kostrukce vstupí haly z lepeého lamelového dřeva ve tvaru stromů, foto: Doc. Ig. Atoí Lokaj, Ph.D. Prostorový svazek sl 22 / 56

Ukázka využtí pozatků o prostorovém svazku sl Prostorový svazek sl Petříská rozhleda, Praha 23 / 56

Ukázka využtí pozatků o prostorovém svazku sl Prostorový svazek sl Petříská rozhleda, Praha 24 / 56

Ukázka využtí pozatků o prostorovém svazku sl Prostorový svazek sl Prostorová příhradová ocelová kostrukce plaveckého stadóu v Brě, autor osé kostrukce: Ig. Dr. Ferdad Lederer 25 / 56

Ukázka využtí pozatků o prostorovém svazku sl Prostorový svazek sl Prostorová příhradová ocelová kostrukce plaveckého stadóu v Brě, autor osé kostrukce: Ig. Dr. Ferdad Lederer 26 / 56

Ukázka využtí pozatků o prostorovém svazku sl Prostorový svazek sl Prostorová příhradová ocelová kostrukce plaveckého stadóu v Brě, autor osé kostrukce: Ig. Dr. Ferdad Lederer 27 / 56

Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová ocelová kostrukce zmího stadóu v Brě, deší zdevastovaý stav, autor osé kostrukce: Ig. Dr. Ferdad Lederer Prostorový svazek sl 28 / 56

Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová ocelová kostrukce zmího stadóu v Brě, deší zdevastovaý stav, autor osé kostrukce: Ig. Dr. Ferdad Lederer Prostorový svazek sl 29 / 56

Ukázka využtí pozatků o prostorovém svazku sl Prostorová příhradová ocelová kostrukce zmího stadóu v Brě, deší zdevastovaý stav, autor osé kostrukce: Ig. Dr. Ferdad Lederer Prostorový svazek sl 30 / 56

Statcký momet síly k bodu v prostoru ova ρ proložea paprskem síly P a mometovým středem s, je lbovolě skloěa vůč souřadcovým osám. Pro statcký momet síly k bodu s v rově ρ platí pravdla pro rovou úlohu (poučky, zázorěí), kromě zamékové kovece (dvduálí pro každou úlohu). Platí: s P. p Začeí pomocí mometového vektoru, jehož paprsek o a paprsek síly tvoří pravoúhlé mmoběžé přímky. atematcký pops obtížý, vhodější pojem statckého mometu síly k ose o. Statcký momet síly a dvojce sl v prostoru Statcký momet síly k bodu v prostoru Obr. 3.4. / str. 29 3 / 56

Statcký momet síly k ose Statcký momet o síly P k ose o, kteráje kolmáa přtom mmoběžá vzhledem k paprsku síly, má absolutí hodotu dáu vzorcem: o P. p kde p je ejkratší délka příčky obou mmoběžých přímek. atematcký pops stále obtížý, proto se statcký momet určuje pomocí osových složek sl, vztažeých k souřadcovým osám. Úmluva prot-prot, vzdáleost p dáy souřadcem. Řešeí: P. z + P. y x y x y z z P. z P. x P. y + P. x z (každá složka síly vyvozuje statcký momet pouze ke dvěma osám, emá vlv a statcký momet k ose rovoběžé) Statcký momet síly a dvojce sl v prostoru x y Statcké momety osových složek síly k souřadcovým osám Obr. 3.5. / str. 29 32 / 56

Příklad.3 Zadáo: souřadce působště a, složky síly P x a P z Předmět výpočtu: statcké momety x, y a z k souřadcovým osám Řešeí: x Pz ( 30)(.,4 ) 42kNm. y + y 50. Px. z Pz. x (,8 ) ( 30).2,3 2kNm z (,4 ) 70kNm Px. y 50. + Statcký momet síly a dvojce sl v prostoru Zadáí příkladu.3 Obr. 3.6. / str. 30 33 / 56

Dvojce sl v prostoru Defováa stejě jako u rové úlohy. Působí však v rově ρ, která je k souřadcovým osám lbovolě akloěa. Statcký momet dvojce sl v prostoru: Platí: a) je stejý ke všem bodům vyšetřovaého tuhého tělesa (a) b) se ezměí, pootočí-l se dvojce sl v ρ ebo posue-l se rovoběžě s ρ P. p (b) c) Dvojc sl lze ahradt statckým mometem v působšt mometu dvojce sl d) grafcké zázorěí stejé jako u rové úlohy, volý mometový vektor e) pracuje se se statckým momety v rovách rovoběžým se souřadcovým rovam (uverzálí zaméková kovece) Statcký momet síly a dvojce sl v prostoru Dvojce sl v prostoru Obr. 3.7. / str. 30 34 / 56

Skládáí statckých mometů Soustavu dvojc sl (jejch statckých mometů) tvoří ěkolk ( obecě m ) dvojc sl se statckým momety j (j,, m). Působí-l dvojce sl v téže rově ebo rovách rovoběžých lze algebracky sčítat, jak uto skládat s využtím kvádru sl. Působeí v souřadcových rovách Výsledý mometový vektor: + + j 2 jx 2 jy 2 jz Sklo dá směrovým úhly: cos λ j jx jx j j cos μ.cos λ Statcký momet síly a dvojce sl v prostoru j j Opačá úloha rozklad: jy j.cos μ j jy j cosν jz j j jz.cosν j j Skládáí statckých mometů Obr. 3.8. / str. 3 35 / 56

Řešeí: ovoběžý posu síly v prostoru Společý úček síly F a statckého mometu lze vyjádřt rovoběžým posuutím síly F v rově ρ o vzdáleost d, aby ke svému původímu působšt vykazovala momet. d F Naopak: Je-l zadáa pouze síla F a v rově ρ se posue o vzdáleost d, uto přdat statcký momet opačého smyslu, ež jaký vyvozuje síla F po svém posuu k původímu působšt. Řešeí: F. d Příklad: Př posuu P x do počátku O (dvojí posuutí o z a y ) P. z Statcký momet síly a dvojce sl v prostoru y x P. y z x Statcké momety osových složek síly k souřadcovým osám Obr. 3.5. / str. 29 36 / 56

Příklad.4 Předmět výpočtu: statcké momety x, y a z k souřadcovým osám, vyvolaé rovoběžým posuem sl P x, P y a P z do počátku souřadcové soustavy (Příklad.3). Řešeí: x Pz. y +42kNm y z (a) Px z. z P. x 2kNm Px. y +70kNm (b) Zadáí příkladu.3 Obr. 3.6. / str. 30 Statcký momet síly a dvojce sl v prostoru Výsledek příkladu.4 Obr. 3.9. / str. 32 37 / 56

Obecá prostorová soustava sl Působí-l a těleso obecě sl P (,, ), jejchž růzá působště ebo paprsky eleží v téže rově. Součástí mohou být statcké momety dvojc sl (j,, m) v obecě růzých rovách. Zadáí sl: souřadce působště síly x a, y a, z a, velkost, směr a smysl stejě jako u prostorového svazku sl. Zadáí statckých mometů: obdobě jako síla, vz obr.3.8. Zadáí síly prostorového svazku Obr. 3.. / str. 25 Obecá prostorová soustava sl Skládáí statckých mometů Obr. 3.8. / str. 3 38 / 56

Postup: Výsledý úček obecé prostorové soustavy sl a) pro každou sílu P určt složky P x, P y, P z b) určt osové složky výsledce x, y, z x P x y P y z P z c) vypočítat velkost výsledce a její směrové úhly, působště v počátku + + 2 x 2 y 2 z cosα x cos β y cosγ d) všechy složky sl P x, P y, P z přemístt do počátku O, určt statcké momety x, y a z, otáčející kolem souřadcových os (vz příklad 3.4) e) vypočítat algebracké součty pravoúhlých složek mometů, způsobeých přesuy sl x x y y z z z Obecá prostorová soustava sl 39 / 56

Postup: Výsledý úček obecé prostorové soustavy sl f) pro každý zadaý momet j vypočítat jeho složky jx, jy a jz v souřadcových rovách jx j.cos λ j jy j.cos μ j jz j.cosν j g) sečíst složky zadaých mometů s momety způsobeým přesuy sl a určt pravoúhlé složky výsledého statckého mometu m x jx + j x m y jy + j y m z jz + j z h) vypočítat (pomocí pravdla o kvádru sl) výsledý statcký momet a směrové úhly jeho vektorové úsečky + + 2 x 2 y 2 z cos λ x cos μ y cosν z Obecá prostorová soustava sl 40 / 56

Výsledý úček obecé prostorové soustavy sl Výsledý úček obecé prostorové soustavy lze vyjádřt: a) šestcí objektů: třem složkam x, y, z slové výsledce a třem složkam x, y, z výsledého statckého mometu, ejčastější způsob b) dvěma objekty: výsledcí a výsledým statckým mometem, tzv. bvektor ebo dyama, používá se zřídkakdy pro obtížost matematckého zápsu c) tzv. šroubem, mometový vektor lze rozložt a složku ležící v paprsku a složku kolmou k, která se může ahradt rovoběžým posuem o vzdáleost d do cetrálí osy prostorové soustavy sl c, evyužívá se pro svou svízelost. Obecá prostorová soustava sl Bvektor Obr. 3.0. / str. 33 Šroub Obr. 3.. / str. 34 4 / 56

Příklad.5 Zadáo: síly P a P 2 P [kn] α [ o ] β [ o ] γ [ o ] cos α cos β cos γ P x [kn] P y [kn] P z [kn] 38 62 53 49,754 0,4695 0,608 0,646 7,840 22,869 24,55 2 6,000-0,000-8,000 Σ 33,840 2,869 6,55 (a) (b) Obecá prostorová soustava sl Zadáí příkladu.5 Obr. 3.2. / str. 34 42 / 56

Příklad.5 Zadáo: statcký momet j j [knm] λ [ o ] μ [ o ] ν [ o ] cos α cos β cos γ jx [knm] jy [knm] jz [knm] 60 35 45 90-0,707 0,707 0,0000-42,426 42,426 0,000 (c) Obecá prostorová soustava sl Zadáí příkladu.5 Obr. 3.2. / str. 34 43 / 56

Příklad.5 Předmět výpočtu: výsledý úček obecé prostorové soustavy sl Postup výpočtu: a) Výpočet osových složek výsledce zadaých sl P [kn] α [ o ] β [ o ] γ [ o ] cos α cos β cos γ P x [kn] P y [kn] P z [kn] 38 62 53 49,754 0,4695 0,608 0,646 7,840 22,869 24,55 2 6,000-0,000-8,000 Σ 33,840 2,869 6,55 b) Výpočet mometových složek způsobeých přeložeím sl x [m] y [m] z [m] x [knm] y [knm] z [knm] 2,8,4 0,8 6,076-54,470 39,057 2 2 -,6 -, 7,800 8,400 5,600 Σ 33,876-36,070 44,657 c) Výpočet složek zadaého mometu j j [knm] λ [ o ] μ [ o ] ν [ o ] cos α cos β cos γ jx [knm] jy [knm] jz [knm] 60 35 45 90-0,707 0,707 0,0000-42,426 42,426 0,000 Obecá prostorová soustava sl 44 / 56

Příklad.5 d) Výpočet složek výsledého mometu a vyjádřeí výsledého účku pomocí šestce objektů x [kn] y [kn] z [kn] x [knm] y [knm] z [knm] 33,840 2,869 6,55-8,55 6,356 44,657 Výsledý úček lze rověž pomocí bvektoru: + + 2 x 2 y 2 z cosα x cos β y cosγ z + + 2 x 2 y 2 z cos λ x cos μ Obecá prostorová soustava sl y cosν z Výsledek příkladu.5 Obr. 3.2. / str. 34 45 / 56

Podmíky rovováhy obecé prostorové soustavy sl Obecá prostorová soustava sl je v rovováze, je-l splěo 6 podmíek rovováhy, zajšťující ulovou hodotu výsledce (0) a ulovou hodotu výsledého statckého mometu ( 0). 3 slové podmíky x P x 0 y P y 0 z P z 0 3 mometové podmíky m x jx + x 0 y jy + y 0 z jz + z 0 j m j m j Obecá prostorová soustava sl 46 / 56

Příklad.6 Předmět výpočtu: Určeí velkost tří sl P, P 2 a P 3, a tří statckých mometů, 2 a 3, kterým se doplí soustava sl z příkladu.5. Požadavek rovovážý stav. Výsledý úček soustavy z příkladu.5 x [kn] y [kn] z [kn] x [knm] y [knm] z [knm] 33,840 2,869 6,55-8,55 6,356 44,657 Výsledek příkladu.5 Obr. 3.2. / str. 34 Obecá prostorová soustava sl Zadáí příkladu.6 Obr. 3.3. / str. 36 47 / 56

Příklad.6 Řešeí: uplatt jedotlvé podmíky rovováhy ve vhodém pořadí a) slová podmíka ve směru osy y: y + P 0 2 P 2 b) slová podmíka ve směru osy x: o x + P3.cos 60 0 P 3 c) slová podmíka ve směru osy z: o z + P + P3.cos 30 0 P Obecá prostorová soustava sl Zadáí příkladu.6 Obr. 3.3. / str. 36 48 / 56

Příklad.6 o d) mometová podmíka k ose x: x 3 + P3.cos30.3,3 0 3 e) mometová podmíka k ose y: f) mometová podmíka k ose z:. o y 2 P 2,8 P3.cos30.6,0 0 2. o z + P2 2,8 P3.cos60.3,3 0 Pozámka: záporé hodoty výsledků zameají, že skutečé smysly sl a mometů jsou opačé ež předpokládaé Obecá prostorová soustava sl Zadáí příkladu.6 Obr. 3.3. / str. 36 49 / 56

Prostorová soustava rovoběžých sl Jsou-l paprsky tří ebo více (obecě ) sl P (,, ) rovoběžé a eleží v téže rově. Pokud jsou síly svslé (rovoběžé se souřadcovou osou z), pak každá síla musí mít zadáo působště a (x a, y a, z a ), velkost a smysl (zamékem). Souřadce x a, y a jsou zároveň ramey svslých sl vůč vodorovým souřadcovým osám. Prostorová soustava rovoběžých sl Zadaá síla a výsledce prostorové soustavy rovoběžých sl Obr. 3.4. / str. 39 50 / 56

Výsledce prostorové soustavy rovoběžých sl Postup př určováí výsledého účku prostorové soustavy rovoběžých sl: a) vypočítat velkost výsledce b) určt polohu výsledce d pomocí Vargoovy věty y. x P. x x P y. P. x y x. y x. P. y P. y Výsledý úček lze vyjádřt: a) výsledcí v počátku a x, y b) výsledcí d a paprsku procházejícím bodem x, y (vz obrázek 3.4.) Prostorová soustava rovoběžých sl Zadaá síla a výsledce prostorové soustavy rovoběžých sl Obr. 3.4. / str. 39 5 / 56

Příklad.7 Předmět výpočtu: výsledý úček prostorové soustavy rovoběžých sl P až P 4 Tabulkové řešeí: P [kn] x [m] y [m] P. y [knm] - P. x [knm] 30 0,0 0,0 0 0 2 50,4 0,6 30-70 3-40,6, -44 64 4 0 2,0,8 98-220 Σ 50 Σ 84-226 Souřadce paprsku výsledce d : x y 226,507m 50 y x 84,227m 50 Prostorová soustava rovoběžých sl 52 / 56

Podmíky rovováhy prostorové soustavy rovoběžých sl Prostorová soustava rovoběžých sl je v rovováze, jsou-l splěy 3 podmíky rovováhy, zajšťující ulovou hodotu výsledce (0) a ulovou hodotu obou složek x, y výsledého statckého mometu k souřadcovým osám x, y. slová podmíka P 0 2 mometové podmíky x m P. y j 0 y m y P. x j 0 Prostorová soustava rovoběžých sl 53 / 56

Statcký střed v prostoru Předpoklad vyšetřovaá soustava rovoběžých sl v prostoru má eulovou hodotu výsledce ( 0) a síly P mají svá působště o souřadcích x, y, z. Vyšetřovaá soustava rovoběžých sl v prostoru se otáčí tak, že paprsky zůstávají stále rovoběžé, síly P kolem svých působšť, výsledce d kolem pevého bodu s statckého středu prostorové soustavy rovoběžých sl. Cíl řešeí určeí souřadc x s, y s, z s statckého středu. Velkost výsledce P souřadce s (z Vargoovy věty) x Prostorová soustava rovoběžých sl y z... P. x P. y P. z Statcký střed v prostoru Obr. 3.5. / str. 39 54 / 56

Příklad.8 Předmět výpočtu: souřadce statckého středu s prostorové soustavy rovoběžých sl P až P 4 Tabulkové řešeí: P [kn] x [m] y [m] z [m] P. x [knm] P. y [knm] P. z [knm] 20 0,8-0,6 0,0 6-2 0 2 60,6,2-0,4 96 72-24 3-80 -2,0,8 -,3 60-44 04 4 00-2, -,4,5-20 -40 50 Σ 00 Σ 62-224 230 Souřadce statckého středu: x y z. P. x. P. y. P. z 62 00 332 00 230 00 0,62m 3,32m 2,30m Prostorová soustava rovoběžých sl 55 / 56

Okruhy problémů k ústí část zkoušky. Podmíky rovováhy prostorového svazku sl 2. Podmíky rovováhy obecé prostorové soustavy sl 3. Statcký střed prostorové soustavy rovoběžých sl Podklady ke zkoušce 56 / 56